KONINKLIJKE NEDERLANDSCHE AKADEMIE VAN
WETENSCHAPPEN

On the minimum determinant and the
circumscribed hexagons of a

convex domain

BY

K. MAHLER

Reprinted from Proceedings Vol. L, No, 6, 1947
Reprinted from Indagationes Mathematicae, Vol. IX, Fasc. 3, 1947

1947
NORTH-HOLLAND PUBLISHING COMPANY
(N.V. Noord-Hollandsche Uitgevers Mij.)
AMSTERDAM



K. MAHLER: On the minimum determinant and the circumscribed hexagons
of a convex domain.

(Communicated at the meeting of May 31, 1947.)

In his “Diophantische Approximationen”, MINKOWSKI gave a simple rule
for obtaining the critical lattices of a convex domain by means of the
inscribed hexagons (see Lemma 2). I study here an analogous method
based instead on the circumscribed hexagons. In the special case of a
convex polygon, a simple rule for finding all critical lattices and the
minimum determinant is obtained. I also show the surprising result that
the boundary of an irreducible convex domain not a parallelogram has in
all points a continuous tangent. Finally the lower bound of Q(K) is
evaluated for all convex octagons.

§ 1. Notation.

The same notation as in earlier papers of mine is used 1). In particular,
the determinant of a lattice A is called d(4); V(K) and A(K) are the
area and the minimum determinant of a domain K, and Q(K) is the
absolute affine invariant

Q(K):AV%.

The letter L is used for straight lines not passing through the origin
O = (0,0), and — L is then the line symmetrical to L in O.

All domains K considered in this paper are assumed to be symmetrical
in O; the boundary of K is called C. A convex polygon of 2n sides and
symmetrical in O will be denoted by II,, its boundary by I'.. The indices
of its vertices Py and its sides Lx are always chosen in such a way that if
I'; is described in positive direction, then the successive vertices are

QLQu. .. Qu Quii=— Q1 Quiz=—Q, ..., Qon=—Q,,
and the successive sides are
L1:Q1 Qz, L2:Q2 Q3y0v ..Ln:QnQrH-l,

Ln+1 - Qn+1 Qn+2 = L1, Ln+2 — Qn+2 Qn+3 _ Lz. ey
L2n = QZn Qx _ Ln-

§ 2. Basic lemmas.

The following lemmas are essential for our investigations.

1)  See, e.g. Proc. Kon. Ned. Akad. v. Wetensch.,, Amsterdam, 50, 98—107 and
108—118 (1947). These two papers will be quoted as A and B, respectively.
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Lemma 1: Let K be a convex domain; let & P,, &= P,, 7 P; be six
points on C such that P, + Pz — P,, and let A be the lattice generated
by P, and P,. Then A is K-admissible.

Proof: Obvious from the convexity.

Lemma 2: Let A be any critical lattice of the convex domain K. Then
A contains three points Py, Py, P3 on C such that, (i) Py, P, is a basis of
A, and (ii) OPP,P; is a parallelogram of area d(A) = A(K). Conversely,
if Py, Py, Py are three points on C such that OP{P,P; is a parallelogram,
then the area of this parallelogram is not less than A(K), and it is equal
to A(K) if and only if the lattice of basis Py, Py is critical 2).

Lemma 3: The convex domain K is irreducible if and only if every
boundary point of K belongs to a critical lattice of K 3).
Lemma 4: For every parallelogram I,
A(Ily) =3V (Iz), Q) = 4.
Moreover, every such parallelogram is an irreducible domain *).

Lemma 5: For every convex hexagon II3,
A(llz) =3 V(L) Q) = 4.

Moreover, every such hexagon has only one critical lattice, and this lattice
has just six points on I's, viz. the midpoints of the six sides of II35).

§ 3. Two formulae for A(K).

Let K be a convex domain symmetrical in O. From Lemma 2, we im-
mediately obtain the formula
(I): A (K)=1%fininf V (h)
hEIK

for A{K); here Ix denotes the set of all hexagons h which have their six
vertices &= P,;, = P,, & P; on the boundary C of K and for which

pl + p3 == p2.
For this relation implies evidently that
V(h) = 3V (p)

2)  This is Lemma 3 of paper A.

3) See Lemmas 8 and 12 of paper A.

4) The first part of the assertion is equivalent to MINKOWSKI's theorem on linear
forms; for the second part see Lemma 1 of paper A.

5) The assertion follows from the fact that the whole plane can be covered in just one
way without overlapping by means of hexagons congruent to //3; see paper B, § 7.

An entirely different result holds for non-convex hexagonal star domains I/3
symmetrical in O, viz.

AL)=1 VL), QL)> 4;
here IIs is the inscribed parallelogram of maximum area. There are an infinity of critical
lattices, and every critical lattice has points only on four of the sides of I/3.
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where p is the parallelogram OP,P,P;. Since in (I) the lower bound is
attained, it is allowed to replace “fin inf” by the sign “min’".

The following theorem gives a formula analogous to (I) but involving
the circumscribed hexagons.

Theorem 1: Let K be an convex domain symmetrical in O, and let Ug
be the set of all hexagons H bounded by any three pairs of tac-lines
:FLl, F Lz, :FL3 Of KG). Then

(IT): A (K) =1 fininf V (H).

HeUg
Proof: By the Lemmas 4 and 5, since K is a subset of every hexagon H,
ANK)=A(H) =1V(H),

hence

ARK)=Lfininf VH). . . . . . . . (1)

HeUg
Next choose any critical lattice A of K, and denote by = P,, = P,, = P;,
where Py + P3 = P,, its points on C (Lemma 2), and by ¥ L,,  L,,
F L; three pairs of symmetrical tac-lines of K at these points. The hexagon
H bounded by these tac-lines is convex; hence, by Lemma 1, A is H-admis~
sible, and so by Lemmas 4 and 5,

AK)=dM=AH)=LVH). . . . .. (2

Since H belongs to Uk, the assertion follows from (1) and (2).
By this proof, the lower bound is attained also in (II); hence the sign
“fin inf" may also in this formula be replaced by the sign “min’.

§ 4. Properties of critical lattices.
The two formulae (1) and (2) of the last paragraph imply that

VH)=4AK) . . . . . . . . (3
for every hexagon H belonging to a critical lattice. Hence we find:

Theorem 2: Let K be a convex domain symmetrical in O which is not
a parallelogram; let A be any critical lattice of K; and let = P,,  P,,
F P;, where Py + P; = Py, be the points of A on C. Then, (i) there are
unique tac-lines = L,, F L,, & L; of K at these points 7); (ii) no two of
these tac-lines coincide; (iii) the hexagon H bounded by the tac-lines is of
area V(H) =4 A(K): (iv) each side F Ly of H is bisected at the lattice
point = Py where it meets and touches C.

Proof. The notation can be chosen such that when C is described in
positive direction, then the six lattice points follow one another in the
sequence

pl’p21p3rP4:—Px,P5:—-—pz,p6:—-—-p3‘

6) Parallelograms are considered as limiting cases of hexagons and must be included
in Up.
K

7) These tac-lines are therefore tangents of C.
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Since K is not a parallelogram, none of the six arcs

P e A~ L~ ~~ A~
b, P, B,P, b,P, P, P, DD, P,P,

of Cis a line segment 8), and so (ii) is true. Hence H is a proper hexagon,
and the tac-lines L; at P; and Lg at P; are not parallel or coincident.
Assume there is more than one tac-line L, at P; then this tac-line can
vary over a whole angle, and so V(H) is also variable and not constant,
contrary to (3). Therefore the assumption is false and (i) is true. The
assertion (iii) is identical to (3); from it, A must be a critical lattice of H,
and so (iv) follows at once from Lemma 5.
One consequence of Theorem 2 is of particular interest:

Theorem 3: Let K be an irreducible convex domain symmetrical in O
which is not a parallelogram. Then the boundary C of K has everywhere
a continuous tangent.

Proof: Obvious from Lemma 3 and the last theorem.

This theorem is rather surprising, since the boundary of non-convex
irreducible star domains may have angular points.

§ 5. An inequality property of convex domains.

Theorem 4: To every convex domain K symmetrical in O, there exist
an inscribed hexagon h and a circumscribed hexagon H both symmetrical
in O such that

4V (h) = 3V (H).

Proof: Obvious from (I) and (II), since the bounds are attained.

We deduce that if A runs over all inscribed symmetrical hexagons and
H over all circumscribed symmetrical hexagons, then

4 fin sup V(h) = 3 fin inf V(H);

and here the ratio 4/3 of the constants can not be replaced by a smaller
one, as the example of the ellipse shows 82).

§ 6. The case of a polygon.

Let II» be a convex polygon of 2n sides == L,, F L,, ..., = L, where
n == 3, and let Hapy be the proper hexagon bounded by = L., = Lg, 7L,
where a, f8, y run over all systems of three different indices 1, 2, ..., n.
The number of such hexagons is thus

‘ (n) :n(n—-l)(n—?.)'

3 6
Theorem 5: If I1, is a polygon of 2n = 6 sides symmetrical in O, then
(III): A (Hll) = ji‘ m;n V (Haﬂy).
& 5,y

Every critical lattice of Il is also a critical lattice of at least one hexagon
Hoagy; hence Il, has at most (%) different critical lattices.

8) See paper A, Lemma 5.
8a) Theorem 4 is a special case of a more general result of L. FEJES, Compositio
Mathematica 6, 456—467 (1939), § 3.
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Proof: Analogous to that of Theorem 1, except that Uy is replaced by
the set of all hexagons Hagpy.

The upper bound (7) for the number of critical lattices of IIn is attained
for n = 3 and n = 4, but not for larger n; it would therefore be of interest
to find then the exact upper bound for this number.

§ 7. The constants Q and Q,.
The lower bound
Q = fin inf Q(K)

extended over all convex domains symmetrical in O exists and satisfies
the inequalities 9)
- 2
VH<Q<%....., (4)
Moreover, there exist convex domains for which this bound is attained;
they are called extreme domains.

Let, similarly, Q. denote the lower bound

Q. =fin inf Q (II,)
extended over all convex polygons II. of 2n = 4 sides. It is evident that
this limit exists and that Q. = Q. From Lemmas 4 and 5.
Qz - Qs = 4.
We call IT, extreme if
Q(Hn) — Qno

§ 8. The existence of extreme polygons II,.

Theorem 6: If n = 3, then there exists to every given polygon II. of
2n sides a polygon Ilni1 of 2(n'+ 1) sides such that

Q(Hn+1) < Q(Hn)

Proof: From Lemma 3 and any one of the Theorems 1, 3, or 5, every
polygon not a parallelogram is reducible. Hence II, contains a convex
domain K symmetrical in O and satisfying

V(K) <V(II.), A(K)= A(IIa).

At least one pair of vertices of II,, say the vertices F Q;, lie cutside K.
Therefore there exist a pair of symmetrical tac-lines & L of K such that L
separates Q; and — L separates — Q; from O, while all the other vertices
of II, lie between these two lines. Denote by II»1 the set of all points of
"Il lying between L and — L. Then Il 41 is a proper polygon of 2(n + 1)
sides, and from the construction
VL) < VL), A IT) = A (),

hence

V (In41)
A (1)

V (I1,)

Q (Hn+1) = A (Hn)

< - Q (Hn)'

as asserted.

9) See paper B, §§ 1 and 5.
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Theorem 7: For every n = 2, there exists a polygon I, such that
Q(Hn) fa— Qﬂ»
and this polygon is a proper 2n-side.
Proof: There exists an infinite sequence of polygons

ny . o? ., o9, .. . .. . . (5
satisfying
lim Q1) = Q,.
r—>
By affine invariance, these polygons may be assumed to satisfy the two
conditions,

(a): Q(Hm 1/3 (r=1,2,3,...).

(b): The six fixed points

1 V3 1 73
=00 pz:(i'%‘)’ 3:(‘5'%’)

Ps+—— P Ds = — D2, Ps— —P3
lie on the boundary of each polygon II(.

Denote by H the regular hexagon of vertices py, ..., ps, and by S the
figure consisting of six equilateral triangles cof unit side, where each such
triangle has its base on one of the sides of IH, while its opposite vertex lies
outside H. From (b) and from the assumed convexity, all 2n vertices of
each polygon II!7) belong to the finite set S. It is therefore possible to
select an infinite subsequence

1, , =", I, =117, I, ;= i, ... (n<rm<ry<...
of (5) such that the vertices of these polygons tend to 2n limiting points,
FQ,+=Qy...,FQp say.

Let I1. be the polygon which has these points as its vertices. Then by
the continuity of V and A,

A (IL) = lim A (I, ) = lim A (II{") = VS
hence r—»w r—» o

V()= lim V(II;;)= lim V H(r) V lim Q(Um :V'3 Qn,
rr® r—»o r—» o

Q(Hn) f— Qn,

so that I1, is an extreme polygon. This implies that IT, is a proper 2n-side,
since it would otherwise be possible, by Theorem 6, to inscribe a polygon
IT, of at most 2n-sides for which

Q(II%) < Q(IIn) = Qn,

contrary to the definition of Q.

whence
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§ 9. Properties of the constants Q and Q..
Theorem 8: The constants Qa and Q satisfy the relations,

‘1:Q22Q3>Q4>Q5>~.>Q'
lim Q,=Q.

n-»> w
Proof: The inequalities Qn > Qn 41 for n = 3 follow at once from the
last two theorems. The further inequality Q.>Q holds since every
polygon which is not a parallelogram is reducible. Finally, for the proof
of the limit formula, denote by K any extreme convex domain, so that

QK) = Q.
Given £>0, it is possible to approximate to K by a polygon II. of suf-
ficiently large n such that
V(1) < (1 +¢) V(K), A1) = A(K),
hence

QIn) <(1+¢) QK) = (1 +£)Q.

On allowing ¢ to end to zero, the assertion becomes obvious.

§ 10. The triangles T belonging to an extreme octagon.

The preceding results enable us to determine the extreme octagons I,
and to evaluate the constant Qy, as follows.

Let 1, be a fixed extreme octagon; for its vertices and sides, we use the
notation of § 1, and we denote by k one of the four indices 1, 2, 3, 4.

On omitting the pair of sides & Ly of II,, the remaining sides

F Lp, where h 7#k, 1 < h <4,

form the boundary of a hexagon, H say. This hexagon contains /74 as a
subset and is, in fact, the sumset of II, and two triangles T% and — T
symmetrical to one another in O. Let T be that triangle with its base on
Ly, and —T the triangle with its base on — L. Then

V(He) = V(1) + 2V (T%),
whence by Theorem 5,
AI)=%; V() + 4% min V(Ty.

i 1<k<+4
Therefore,

QI)y'=1%+ 4 M(II), where M(II,)= min V(L (6)
1=k=<4 V (I1,)
For an extreme octagon, M(I1,) evidently assumes its largest value.,
Theorem 9: If Il, is an extreme octagon, then
V(T,) = V(Ty) = V(T;3) = V(T,).

Proof: It suffices to show that if these equations are not all satisfied,
then there exists an octagon II§ satisfying

MI)>M). . . . .. ... @
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We may assume, without loss of generality, that T, is the triangle of
smallest area and that, say,

V) zV(T,), V(@>VT).. . . . . ()

The line L, intersects L; at the vertex Q, of I14, and it intersects — L, at

a point Ry which is a vertex of Ty. Denote by Q3 an inner point of the

line segment Q;Q,, and by R; the point on — L, near to R; for which the
triangle T7 = Q R} Qj is of equal area to T:

VITH=VT). . . . . . . . .9

Let further L} be the line through Q3 and R}, and let II; be the octagon
bounded by the sides & L,, F L; & L,, F L,. Then, firstly,

VL)<V, . . . . . . . . (10)

since II§ is contained in IT,. Next let Ti T3 T35 T3 be the triangles
analogous to T4, Ts, T';, T4 which belong to II; and assume that QJ is
chosen sufficiently near to Q. Then V(T3) differs arbitrarily little from
V(T3); further, from the construction,

V(T)>(T), V()< V(T)., V(IH=V(T) . (1)
the last formulae holding since Tj and Ty are the same triangle. On
combining (8), (9), and (11), secondly,

min V(T) = min V(TW. . . . . . . (12)
1<k=+

1=k=4

The assertion (7) follows now immediately from (6), (10), and (12).

§ 11. Determination of the extreme octagons.
We determine now the octagons I1, for which

V(T)=V(T)=V(T)=V(T), . . . . . (13)

and select from among these the extreme ones. Since M (Il,) is an affine
invariant, it suffices to consider octagons which are normed in the following
way:

Denote by Ry, Ry, R3, R, the points of intersection of — L, and L.,
Ly and L3, Ly and Ly, and L3 and — Ly, respectively, and by II{) the
parallelogram of vertices F Ry, F R, and by II? the parallelogram of
vertices F R,, F R,. Hence II{) has the sides & L,, & L4, and I1? has
the sides & L;, F L;, and Il is the intersection of II{) and II?. Apply
an affine transformation such that II{) becomes the square of vertices

Rl - (1' _1)' RS - (1’ l): —Rly "“R3.
The second parallelogram T is then subject only to the conditions that its
sides intersect those of II{) so as to form together a convex octagon II,.
Let the sides of II be, say,
L: x,=tx;—v; L;: x,—=—sx; +o0;
—L: x;=¢x,+7v; —Ls: x,=—sx,—0;
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its vertices are therefore

_ (ot ot—st (o=t otks\ oo
Rz_(s_ﬂ's+t>' R’*“(s—l—t' s—l—t)' Ro =R,

On intersecting the sides of II{) and 119, the vertices of II4 become,
—1 —1
Q= (E—t— , -—1); Q,=(l,t—1); Q;=(1,—s+o0); Q4:<o s 1 );
/
—Qp — Qs —Qs —Q,

From the construction, L; is of positive and Lz of negative gradient, and
these lines meet the coordinate axes outside /1{; hence

s>0,t>0,6>1, v>1. . . . . . . (14
The conditions that the four points Ry, Q,, Qj, Rg on L,, and the four

points R3, Q4 — Qq, — Ry on L, follow one another in this order, give
the further inequalities,
E>0, >0, £49n<<2, 2st—t&—syp>0, . . (15

where & and 5 are defined by
f=s5s—0+1, npn=ft—7+1.
The areas of the triangles T} are easily obtained; on substituting in
(13), these equations take the form,

_ 8 _ P _ (@2t (2st—ti—sy)’ _ 1
V(T ="="7= skt & st = say,

where, from (14) and (15), 4 is positive; hence
s=AE, t=12y% s+ t=A(Q2—&—n)% st(s+ t)=1(2st—té—sn)%.
From these equations, firstly
&+ n? =(2—&—n)?% hence 2—&—yp=E&+9—E&y . . (16)
and secondly,
BER (2t = 1 (2 st—ti—sy = B E? (2AEn—E—n)’,
whence, from (15),

2—b—n=F(22¢n—E&—n),

I

and so, either

A): 2ty =+ (208 —E—), z:g%,
or
(B): 2—bm=E+n—fn=—Q22n—5—y), I=1
In case (4),
_& _
s_-n, t"g’ st=1,



(701) 335

so that adjacent sides of IIQ) are perpendicular; hence II? is a rectangle.

It is even a square congruent to II{), since the distances

—4

En—&—y

VE 472

’

) 2
b=+ 1(l+A)i= (%—wl)(wg—z)

’

= Ve
of Ly and L3 from O are both equal to unity, as follows from (16). The
four triangles T« are therefore congruent and of area

(53=+a(1+sz)—§:l<§~_5+1) (1_'_%)—%'__ §n—E—y

2
V(Ty= 5, = %’?
Further
VUIL)=V{IENY—4V (TW) =4—2¢&4;
hence
_ &

is an increasing function of &#%. By (15) and (16),
£§>0, 7>0, &+n<2, (2—§2—y) =2,

and so M(Il,) attains its maximum when
E=n=2—12, &n=6-1y2, s=t=1, o=1=Y2,
that is, when Il is a regular octagon. For such an octagon,
6—4Y2 _ yJ2—1 12 M(IT,) %_1 16 =
) = - = . QU= )= =27 (3—2).
M= = s Qu= 4 0512

Next, in case (B),

whence from (15) and (16),
§n>0, &4+9<2, 25t——t£—517:%7(§;7—-§_;7):%’1(5+,7_2)>0'

which is impossible; this case therefore cannot arise.
We have thus proved 10)

Theorem 10: For every convex octagon Il, symmetrical in O,
16 5
QT =" (35— 12)
with equality if and only if Il, is affine-equivalent to the regular octagon.

10)  Dr. LEDERMANN, to whom I showed this paper, has since found a much simpler
proof of Theorem 10,
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§ 12. An upper bound for Q.
The last theorem implies that

Q=10 (3—J2)=3.624654715... "),

This result is rather surprising, since in the case of an ellipse E 12)

Q(E)= 2" = 3627598727 ... > Q..

V3

As we show now, one can construct an irreducible convex domain K for
which Q(K) is even smaller.

Let again II, be the regular octagon which is the intersection of the
square IV of vertices

R,=(1,—1),R; = (1,1), —R;, —R3,
and the square I/ of vertices
R2 = (VE’ 0)' R4 - (Oy VE), "—Rz, “"Rq.

The vertices of Il, itself are

=({2—1-1), Q=(11-Y2, Q=(V2-1) Q=(F2-11)

—Ql' —‘sz —Q3, "‘qu

and further

V) =8(/2-1). AL)=12-5. QUL)=7(E—2. 17

There are four hexagons H circumscribed to I14, namely,
the hexagon H, of vertices Ry, Q3, Qg — Ry, — Q3, —Qy;
the hexagon H, of vertices Ry, Q4 — Qi, —Rs, — Q4, Qq;
the hexagon Hj of vertices R3, —Qq, — Qo, — R3, Qq, Qq;
the hexagon H, of vertices Ry, — Qo, — Q3, — Ry, Qo, Q5.

Each hexagon Hr possesses just one critical lattice Ax, and this is also a
critical lattice of II,. On the boundary of Il,, A% has exactly six points,
say the points

F Uy, F Vi FWi
namely the midpoints of the sides of Hx. The coordinates of these points
are given in the following table:

(V%-*l,—l)' Vi=(3—Vi) Wi=(11-Y9),
Ui V,=(1,0), Wa=( y3—1),
U;=(Ly3—1), Vi=(/4 V), Wi=({yi—11),
Us=(2—1.9), V,=(0.1), Wi=(-—v2.%)

Evidently,

Uy + Wy= Vg, { Uy, WH:A(IL) (k=1,23, 4). (18)

11) [ am in great debt to Mr. D. F. FERGUSON, M. A., for the evaluation of this
constant and the two other ones.
12)  See paper B, § 1.
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Consider now two variable points
Pi=(La. P;=(p+12)
on the line segments joining V', to Wy and — U, to — V4, respectively,
and assume that the determinant of these two points has the value,

{P, Psy=AIL). . . . . . . . . (19
Then the point

Py=(x,x)=P,+P; . . . . . . . (20
describes a hyperbola arc A4 connecting Wy with — U;. Since by (19),
p—ap+Y2=12—4
and by (20),
=1+4+p4 xm=atp+72,
this hyperbola has the equation,

1 _
x2=x1—l—m+]/2. C e e (2

The arc A, touches the boundary I'y of II, at the two points — U and
W, and together with this boundary encloses a curvilinear triangle, 7,
say, which is of area,

V) =l—( =Dl 14— (2= P} -
—f(x.+ pt12dn(

=(—% +2V2)—(3—1tlog2)=2Y2—3+ Llog2.

In just the same way, each vertex & Qi of II4 can be separated from O
by means of a hyperbola arc & Ay; this arc is congruent to A, and touches
I'y, and it encloses, together with I'y, a triangle =F 74 congruent to 7.

Let now K be the convex domain obtained from II, by cutting off all
eight triangles I 74. Then every point on the boundary C of K belongs to
a lattice of determinant A(I1,) which has on C just six points F Py, FP,
F Py satisfying Py + P3 = P,, and is therefore K-admissible (Lemma 1).
Hence K is irreducible and of determinant

AK)=A(T)=Y2—14.
(Lemmas 2 and 3). On the other hand, from (17) and (22),
V(K)=V (I1)—8 V(1) = 16 — 8 J2—log 4.
By combining these two equations, we find that
32—162—4log 2
292—1
This is an upper bound for Q, and possibly even its exact value.

Q(K)=

=3.609656737 ...

Mathematics Department, Manchester University.
March 20, 1947.



