KONINKLIJKE NEDERLANDSCHE AKADEMIE VAN WETENSCHAPPEN ## On the minimum determinant and the circumscribed hexagons of a convex domain BY K. MAHLER Reprinted from Proceedings Vol. L, No. 6, 1947 Reprinted from Indagationes Mathematicae, Vol. IX, Fasc. 3, 1947 1947 NORTH-HOLLAND PUBLISHING COMPANY (N.V. Noord-Hollandsche Uitgevers Mij.) AMSTERDAM K. Mahler: On the minimum determinant and the circumscribed hexagons of a convex domain. (Communicated at the meeting of May 31, 1947.) for obtaining the critical lattices of a convex domain by means of the inscribed hexagons (see Lemma 2). I study here an analogous method based instead on the circumscribed hexagons. In the special case of a convex polygon, a simple rule for finding all critical lattices and the In his "Diophantische Approximationen", MINKOWSKI gave a simple rule minimum determinant is obtained. I also show the surprising result that the boundary of an irreducible convex domain not a parallelogram has in all points a continuous tangent. Finally the lower bound of Q(K) is evaluated for all convex octagons. § 1. Notation. ## The same notation as in earlier papers of mine is used 1). In particular, area and the minimum determinant of a domain K, and Q(K) is the absolute affine invariant $Q(K) = \frac{V(K)}{\wedge (K)}$. the determinant of a lattice Λ is called $d(\Lambda)$; V(K) and $\triangle(K)$ are the $$Q(K) = \frac{V(K)}{\triangle(K)}$$ The letter L is used for straight lines not passing through the origin O = (0, 0), and -L is then the line symmetrical to L in O. All domains K considered in this paper are assumed to be symmetrical in O; the boundary of K is called C. A convex polygon of 2n sides and symmetrical in O will be denoted by Π_n , its boundary by Γ_n . The indices of its vertices P_k and its sides L_k are always chosen in such a way that if Γ_n is described in positive direction, then the successive vertices are $Q_1, Q_2, \ldots, Q_n, Q_{n+1} = -Q_1, Q_{n+2} = -Q_2, \ldots, Q_{2n} = -Q_n$ $L_1 = Q_1 Q_2, L_2 = Q_2 Q_3, \ldots, L_n = Q_n Q_{n+1}.$ $$L_{n+1} = Q_{n+1} Q_{n+2} = -L_1, L_{n+2} = Q_{n+2} Q_{n+3} = -L_2, \ldots,$$ $$L_{2n}=Q_{2n}Q_1=-L_n.$$ ## § 2. Basic lemmas. The following lemmas are essential for our investigations. See, e.g. Proc. Kon. Ned. Akad. v. Wetensch., Amsterdam, 50, 98-107 and 108—118 (1947). These two papers will be quoted as A and B, respectively. **Lemma 1:** Let K be a convex domain; let $\mp P_1$, $\mp P_2$, $\mp P_3$ be six points on C such that $P_1 + P_3 = P_2$, and let Λ be the lattice generated by P_1 and P_2 . Then Λ is K-admissible. (693) Proof: Obvious from the convexity. **Lemma 2:** Let Λ be any critical lattice of the convex domain K. Then A contains three points P_1, P_2, P_3 on C such that, (i) P_1, P_2 is a basis of Λ , and (ii) $OP_1P_2P_3$ is a parallelogram of area $d(\Lambda) = \triangle(K)$. Conversely, if P_1, P_2, P_3 are three points on C such that $OP_1P_2P_3$ is a parallelogram, then the area of this parallelogram is not less than $\triangle(K)$, and it is equal to $\triangle(K)$ if and only if the lattice of basis P_1 , P_2 is critical P_2 . Lemma 3: The convex domain K is irreducible if and only if every **Lemma 4:** For every parallelogram Π_2 , boundary point of K belongs to a critical lattice of K^3). $$\triangle(\Pi_2) = \frac{1}{4}V(\Pi_2), \quad Q(\Pi_2) = 4.$$ Moreover, every such parallelogram is an irreducible domain 4). **Lemma 5:** For every convex hexagon Π_3 , $$\triangle(\Pi_3) = \frac{1}{4} V(\Pi_3), \quad Q(\Pi_3) = 4.$$ Moreover, every such hexagon has only one critical lattice, and this lattice has just six points on Γ_3 , viz. the midpoints of the six sides of Π_3 5). Two formulae for $\triangle(K)$. Let K be a convex domain symmetrical in O. From Lemma 2, we immediately obtain the formula (I): $$\triangle(K) = \frac{1}{3} \operatorname{fin} \inf_{h \in I_K} V(h)$$ for $\triangle(K)$; here I_K denotes the set of all hexagons h which have their six vertices $\mp P_1$, $\mp P_2$, $\mp P_3$ on the boundary C of K and for which $$P_1 + P_3 = P_2.$$ For this relation implies evidently that $$V(h) = 3V(p)$$ - See Lemmas 8 and 12 of paper A. - The first part of the assertion is equivalent to MINKOWSKI's theorem on linear - forms; for the second part see Lemma 1 of paper A. The assertion follows from the fact that the whole plane can be covered in just one way without overlapping by means of hexagons congruent to Π_3 ; see paper B, § 7. An entirely different result holds for non-convex hexagonal star domains Π_3 symmetrical in O, viz. $$\triangle (\Pi_3) = \frac{1}{4} V(\Pi_2), \quad Q(\Pi_3) > 4;$$ here Π_2 is the inscribed parallelogram of maximum area. There are an infinity of critical lattices, and every critical lattice has points only on four of the sides of Π_3 . This is Lemma 3 of paper A. 328 (694) the circumscribed hexagons. **Theorem 1:** Let K be an convex domain symmetrical in O, and let U_K be the set of all hexagons H bounded by any three pairs of tac-lines $\mp L_1$, $\mp L_2$, $\mp L_3$ of K^6). Then where p is the parallelogram $OP_1P_2P_3$. Since in (I) the lower bound is The following theorem gives a formula analogous to (I) but involving attained, it is allowed to replace "fin inf" by the sign "min". Proof: By the Lemmas 4 and 5, since K is a subset of every hexagon H, $$\triangle(K) \leq \triangle(H) = \frac{1}{4} V(H),$$ hence $\triangle(K) \leq \frac{1}{4} \inf_{H \in U_K} V(H).$ (1) Next choose any critical lattice Λ of K, and denote by $\mp P_1$, $\mp P_2$, $\mp P_3$, where $P_1 + P_3 \equiv P_2$, its points on C (Lemma 2), and by $\mp L_1$, $\mp L_2$. $\mp L_3$ three pairs of symmetrical tac-lines of K at these points. The hexagon H bounded by these tac-lines is convex; hence, by Lemma 1, Λ is H-admissible, and so by Lemmas 4 and 5, $$\triangle(K) = d(A) \ge \triangle(H) = \frac{1}{4} V(H). \quad . \quad .$$ Since H belongs to U_K , the assertion follows from (1) and (2). By this proof, the lower bound is attained also in (II); hence the sign "fin inf" may also in this formula be replaced by the sign "min". Properties of critical lattices. The two formulae (1) and (2) of the last paragraph imply that $$V(H) = 4 \triangle (K) \quad . \quad . \quad . \quad .$$ (2) (3) for every hexagon H belonging to a critical lattice. Hence we find: a parallelogram; let Λ be any critical lattice of K; and let $\mp P_1$, $\mp P_2$, \mp P_3 , where $P_1+P_3\equiv P_2$, be the points of \varLambda on C. Then, (i) there are unique tac-lines $\mp L_1$, $\mp L_2$, $\mp L_3$ of K at these points 7); (ii) no two of these tac-lines coincide; (iii) the hexagon H bounded by the tac-lines is of area $V(H)=4 \triangle (K)$; (iv) each side $\mp \bar{L}_k$ of H is bisected at the lattice **Theorem 2:** Let K be a convex domain symmetrical in O which is not point $\mp P_k$ where it meets and touches C. Proof. The notation can be chosen such that when C is described in positive direction, then the six lattice points follow one another in the sequence $$P_1, P_2, P_3, P_4 = -P_1, P_5 = -P_2, P_6 = -P_3.$$ Parallelograms are considered as limiting cases of hexagons and must be included 6) in U_K . ⁷) These tac-lines are therefore tangents of *C*. Since K is not a parallelogram, none of the six arcs and so (iv) follows at once from Lemma 5. a continuous tangent. in O such that (III): $$P_1$$ P_2 , P_2 P_3 , P_3 P_4 , P_4 P_5 , P_5 P_6 , P_6 P_1 contrary to (3). Therefore the assumption is false and (i) is true. The assertion (iii) is identical to (3); from it, Λ must be a critical lattice of H, **Theorem 3:** Let K be an irreducible convex domain symmetrical in O which is not a parallelogram. Then the boundary C of K has everywhere This theorem is rather surprising, since the boundary of non-convex Theorem 4: To every convex domain K symmetrical in O, there exist an inscribed hexagon h and a circumscribed hexagon H both symmetrical 4V(h) = 3V(H). Proof: Obvious from (I) and (II), since the bounds are attained. We deduce that if h runs over all inscribed symmetrical hexagons and 4 fin sup $V(h) \ge 3$ fin inf V(H); and here the ratio 4/3 of the constants can not be replaced by a smaller Let Π_n be a convex polygon of 2n sides $\mp L_1$, $\mp L_2$, ..., $\mp L_n$ where $n \geqslant$ 3, and let $H_{lphaeta\gamma}$ be the proper hexagon bounded by $\mp L_{lpha}$, $\mp L_{eta}$, $\mp L_{\gamma}$ where α , β , γ run over all systems of three different indices 1, 2, ..., n. $\binom{n}{3} = \frac{n(n-1)(n-2)}{6}.$ **Theorem 5:** If Π_n is a polygon of $2n \ge 6$ sides symmetrical in O, then $\triangle (\Pi_n) = \frac{1}{4} \min_{\alpha,\beta,\gamma} V(H_{\alpha\beta\gamma}).$ Every critical lattice of Π_n is also a critical lattice of at least one hexagon Theorem 4 is a special case of a more general result of L. FEJES, Compositio $H_{\alpha\beta\gamma}$; hence Π_n has at most $\binom{n}{3}$ different critical lattices. of C is a line segment 8), and so (ii) is true. Hence H is a proper hexagon, and the tac-lines L_1 at P_1 and L_3 at P_3 are not parallel or coincident. Assume there is more than one tac-line L_2 at P_2 ; then this tac-line can vary over a whole angle, and so V(H) is also variable and not constant, One consequence of Theorem 2 is of particular interest: Proof: Obvious from Lemma 3 and the last theorem. § 5. An inequality property of convex domains. H over all circumscribed symmetrical hexagons, then one, as the example of the ellipse shows 8a). § 6. The case of a polygon. The number of such hexagons is thus See paper A, Lemma 5. Mathematica 6, 456-467 (1939), § 3. irreducible star domains may have angular points. $$\widehat{P_1P_2}$$, $\widehat{P_2P_3}$, $\widehat{P_3P_4}$, $\widehat{P_4P_5}$, $\widehat{P_5P_6}$, $\widehat{P_6P_1}$ $$\widehat{P_1P_2}$$, $\widehat{P_2P_3}$, $\widehat{P_3P_4}$, $\widehat{P_4P_5}$, $\widehat{P_5P_6}$, the set of all hexagons $H_{\alpha\beta\gamma}$. The upper bound $\binom{n}{3}$ for the number of critical lattices of II_n is attained for n = 3 and n = 4, but not for larger n; it would therefore be of interest to find then the exact upper bound for this number. The constants Q and Q_n . The lower bound $$\mathbf{Q} = \mathrm{fin} \; \mathrm{inf} \; Q(K)$$ the inequalities 9) $\sqrt{12}$ < Q < $\frac{2\pi}{\sqrt{3}}$ (4) $\mathbf{O}_n = \text{fin inf } Q(\Pi_n)$ $Q_2 = Q_3 = 4$. extended over all convex domains symmetrical in O exists and satisfies Moreover, there exist convex domains for which this bound is attained; they are called extreme domains. Let, similarly, \mathbf{Q}_n denote the lower bound extended over all convex polygons Π_n of $2n \ge 4$ sides. It is evident that this limit exists and that $\mathbf{Q}_n \geq \mathbf{Q}$. From Lemmas 4 and 5. We call $$\varPi_n$$ extreme if $Q(\varPi_n) = \mathbf{Q}_n.$ The existence of extreme polygons Π_n . **Theorem 6:** If $n \ge 3$, then there exists to every given polygon Π_n of $$Q(\Pi_{n+1}) < Q(\Pi_n)$$. Proof: From Lemma 3 and any one of the Theorems 1, 3, or 5, every 2n sides a polygon Π_{n+1} of 2(n+1) sides such that polygon not a parallelogram is reducible. Hence Π_n contains a convex domain K symmetrical in O and satisfying $$V(K) < V(\Pi_n), \quad \triangle(K) = \triangle(\Pi_n).$$ At least one pair of vertices of Π_n , say the vertices $\mp Q_1$, lie outside K. Therefore there exist a pair of symmetrical tac-lines $\mp L$ of K such that Lseparates Q_1 and -L separates $-Q_1$ from O, while all the other vertices of Π_n lie between these two lines. Denote by Π_{n+1} the set of all points of " Π_n lying between L and — L. Then Π_{n+1} is a proper polygon of 2(n+1)sides, and from the construction $V(\Pi_{n+1}) < V(\Pi_n), \qquad \triangle (\Pi_{n+1}) \geqslant \triangle (\Pi_n),$ hence $Q(\Pi_{n+1}) = \frac{V(\Pi_{n+1})}{\wedge (\Pi_{n+1})} < \frac{V(\Pi_n)}{\wedge (\Pi_n)} = Q(\Pi_n),$ as asserted. See paper B, §§ 1 and 5. $p_6 = -p_3$ 331 $II_n^{(1)}$, $II_n^{(2)}$, $II_n^{(3)}$ (5) satisfying $\lim_{r\to\infty}Q\left(\Pi_n^{(r)}\right)\equiv Q_n.$ **Theorem 7:** For every $n \ge 2$, there exists a polygon Π_n such that $Q(\Pi_n) = \mathbf{Q}_n$ $$r \to \infty$$ Hese polygons may be as By affine invariance, these polygons may be assumed to satisfy the two conditions. Proof: There exists an infinite sequence of polygons (a): $$Q(\Pi_n^{(r)}) = \frac{\sqrt{3}}{2}$$ $(r = 1, 2, 3, ...)$. select an infinite subsequence and this polygon is a proper 2n-side. $$p_1 = (1, 0), \qquad p_2 = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right), \qquad {}_3 = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right).$$ $p_4 = -p_1, \quad p_5 = -p_2,$ lie on the boundary of each polygon $\Pi_{n}^{(r)}$. Denote by H the regular hexagon of vertices $p_1, ..., p_6$, and by S the figure consisting of six equilateral triangles of unit side, where each such triangle has its base on one of the sides of $$H$$, while its opposite vertex lies outside H . From (b) and from the assumed convexity, all $2n$ vertices of each polygon $\Pi_n^{(r)}$ belong to the finite set S . It is therefore possible to $\Pi_{n,1} = \Pi_n^{(r_1)}$, $\Pi_{n,2} = \Pi_n^{(r_2)}$, $\Pi_{n,3} = \Pi_n^{(r_3)}$, ... $(r_1 < r_2 < r_3 < ...)$ of (5) such that the vertices of these polygons tend to 2n limiting points, $\mp Q_1, \pm Q_2, \ldots, \mp Q_n$, say. Let Π_n be the polygon which has these points as its vertices. Then by the continuity of V and \triangle , the continuity of $$V$$ and \triangle , $$\triangle (\Pi_n) = \lim_{r \to \infty} \triangle (\Pi_{n,r}) = \lim_{r \to \infty} \triangle (\Pi_n^{(r)}) = \frac{\sqrt{3}}{2},$$ hence $$V(\Pi_n) = \lim_{r \to \infty} V(\Pi_{n,r}) = \lim_{r \to \infty} V(\Pi_n^{(r)}) = \frac{\sqrt{3}}{2} \lim_{r \to \infty} Q(\Pi_n^{(r)}) = \frac{\sqrt{3}}{2} Q_n,$$ whence $Q(\Pi_n) = \mathbf{Q}_n$. so that Π_n is an extreme polygon. This implies that Π_n is a proper 2n-side, since it would otherwise be possible, by Theorem 6, to inscribe a polygon Π_n^* of at most 2*n*-sides for which $Q(\Pi_n^*) < Q(\Pi_n) = \mathbf{Q}_n$ contrary to the definition of \mathbf{Q}_n . **Theorem 8:** The constants Q_n and Q satisfy the relations, $4 = Q_2 = Q_3 > Q_4 > Q_5 > ... > Q_6$ $$\lim_{n\to\infty} Q_n = Q.$$ (698) Proof: The inequalities $\mathbf{Q}_n > \mathbf{Q}_{n+1}$ for $n \geq 3$ follow at once from the Properties of the constants Q and Q_n . last two theorems. The further inequality $\mathbf{Q}_n > \mathbf{Q}$ holds since every polygon which is not a parallelogram is reducible. Finally, for the proof of the limit formula, denote by K any extreme convex domain, so that by $$K$$ any ex $Q(K) = \mathbf{Q}$. Given $\varepsilon > 0$, it is possible to approximate to K by a polygon Π_n of suf- ficiently large n such that $V(\Pi_n) < (1 + \varepsilon) \ V(K), \ \triangle(\Pi_n) \ge \triangle(K),$ hence $$Q(\Pi_n) < (1+\varepsilon) Q(K) = (1+\varepsilon) Q$$. On allowing ε to end to zero, the assertion becomes obvious. The triangles T_k belonging to an extreme octagon. The preceding results enable us to determine the extreme octagons Π_4 and to evaluate the constant Q_4 , as follows. Let Π_4 be a fixed extreme octagon; for its vertices and sides, we use the notation of \S 1, and we denote by k one of the four indices 1, 2, 3, 4. On omitting the pair of sides $\mp L_k$ of Π_4 , the remaining sides $\mp L_h$, where $h \neq k$, $1 \leq h \leq 4$. form the boundary of a hexagon, $$H_k$$ say. This hexagon contains Π_4 as a subset and is, in fact, the sumset of Π_4 and two triangles T_k and T_k symmetrical to one another in T_k . Let T_k be that triangle with its base on L_k , and $-T_k$ the triangle with its base on $-L_k$. Then $V(H_k) = V(\Pi_4) + 2V(T_k),$ $$\triangle (\Pi_4) = \frac{1}{4} V(\Pi_k) + \frac{1}{2} \min_{1 \leq k \leq 4} V(T_k).$$ Therefore, $Q(\Pi_4)^{-1} = \frac{1}{4} + \frac{1}{2}M(\Pi_4), \text{ where } M(\Pi_4) = \min_{1 \le k \le 4} \frac{V(T_k)}{V(\Pi_4)}.$ (6) For an extreme octagon, $M(\Pi_4)$ evidently assumes its largest value. **Theorem 9:** If Π_4 is an extreme octagon, then $$V(T_1) \equiv V(T_2) - V(T_1) - V(T_2)$$ $V(T_1) \equiv V(T_2) \equiv V(T_3) \equiv V(T_4).$ Proof: It suffices to show that if these equations are not all satisfied, then there exists an octagon Π_4^* satisfying $M(\Pi_4^*) > M(\Pi_4)$ (7) smallest area and that, say, $$V(T_1)$$ \geqslant $V(T_2)$, $V(T_3)$ $>$ $V(T_2)$ (8) The line L_2 intersects L_1 at the vertex Q_2 of Π_4 , and it intersects — L_4 at We may assume, without loss of generality, that T_2 is the triangle of a point R_1 which is a vertex of T_1 . Denote by Q_2^* an inner point of the line segment Q_1Q_2 , and by R_1^* the point on $-L_4$ near to R_1 for which the triangle $T_1^* = Q_1 R_1^* Q_2^*$ is of equal area to T_1 : bounded by the sides $$\mp L_1$$, $\mp L_2^*$, $\mp L_3$, $\mp L_4$. Then, firstly, $V(\Pi_4^*) < V(\Pi_4)$, (10) since Π_4^* is contained in Π_4 . Next let T_1^* , T_2^* , T_3^* , T_4^* be the triangles analogous to $$T_1$$, T_2 , T_3 , T_4 which belong to H_4^* , and assume that Q_2^* is chosen sufficiently near to Q_2 . Then $V(T_3^*)$ differs arbitrarily little from $V(T_3)$; further, from the construction, $$V(T_2^*)>(T_2)$$, $V(T_3^*)< V(T_3)$, $V(T_4^*)=V(T_4)$, . (11) the last formulae holding since T_4^* and T_4 are the same triangle. On combining (8), (9), and (11), secondly, $$\min_{1 \le k \le 4} V(T_k^*) \geqslant \min_{1 \le k \le 4} V(T_k). \quad . \quad . \quad . \quad . \quad (12)$$ The assertion (7) follows now immediately from (6), (10), and (12). Determination of the extreme octagons. We determine now the octagons Π_4 for which we determine now the octagons $$H_4$$ for which $$V(T_1) = V(T_2) = V(T_3) = V(T_4), \dots (13)$$ and select from among these the extreme ones. Since $M(\Pi_4)$ is an affine invariant, it suffices to consider octagons which are normed in the following way: Denote by R_1 , R_2 , R_3 , R_4 the points of intersection of $-L_4$ and L_2 , L_1 and L_3 , L_2 and L_4 , and L_3 and $-L_1$, respectively, and by $\Pi_2^{(1)}$ the parallelogram of vertices $\mp R_1$, $\mp R_3$, and by $\Pi_2^{(2)}$ the parallelogram of vertices $\mp R_2$, $\mp R_4$. Hence $\Pi_2^{(1)}$ has the sides $\mp L_2$, $\mp L_4$, and $\Pi_2^{(2)}$ has the sides $\mp L_1$, $\mp L_3$, and Π_4 is the intersection of $\Pi_2^{(1)}$ and $\Pi_2^{(2)}$. Apply an affine transformation such that $\Pi_2^{(1)}$ becomes the square of vertices $R_1 = (1, -1), R_3 = (1, 1), -R_1, -R_3.$ The second parallelogram $\Pi_2^{(2)}$ is then subject only to the conditions that its sides intersect those of $\Pi_2^{(1)}$ so as to form together a convex octagon Π_4 . Let the sides of $$\Pi_2^{(2)}$$ be, say, $L_1: x_2 = tx_1 - \tau; \quad L_3: x_2 = -sx_1 + \sigma;$ $-L_1: x_2 = tx_1 + \tau; \quad -L_3: x_2 = -sx_1 - \sigma;$ its vertices are therefore these lines meet the coordinate axes outside $\Pi_2^{(1)}$; hence $-Q_1, -Q_2, -Q_3, -Q_4$ From the construction, L_1 is of positive and L_3 of negative gradient, and $\xi = s - \sigma + 1$, $\eta = t - \tau + 1$. $2V(T_k) = \frac{\xi^2}{s} = \frac{\eta^2}{t} = \frac{(2-\xi-\eta)^2}{s+t} = \frac{(2st-t\xi-s\eta)^2}{st(s+t)}, = \frac{1}{\lambda} \text{ say,}$ $s = \lambda \xi^2$, $t = \lambda \eta^2$, $s + t = \lambda (2 - \xi - \eta)^2$, $st(s + t) = \lambda (2st - t\xi - s\eta)^2$. $\lambda^3 \xi^2 \eta^2 (2 - \xi - \eta)^2 = \lambda (2 st - t\xi - s\eta)^2 = \lambda^3 \xi^2 \eta^2 (2 \lambda \xi \eta - \xi - \eta)^2$ $2-\xi-\eta=\mp(2\lambda\xi\eta-\xi-\eta)$, $2-\xi-\eta=+(2\lambda\xi\eta-\xi-\eta), \qquad \lambda=\frac{1}{\xi\eta},$ $s=\frac{\xi}{n}$, $t=\frac{\eta}{\xi}$, st=1, $2-\xi-\eta=\xi+\eta-\xi\eta=-(2\lambda\xi\eta-\xi-\eta),$ $\xi^2 + \eta^2 = (2 - \xi - \eta)^2$, hence $2 - \xi - \eta = \xi + \eta - \xi \eta$, . (16) $\lambda = \frac{1}{2}$. The areas of the triangles T_k are easily obtained; on substituting in (700) $R_2 = \left(\frac{\sigma + \tau}{s + t}, \frac{\sigma t - s\tau}{s + t}\right), \quad R_4 = \left(\frac{\sigma - \tau}{s + t}, \frac{\sigma t + s\tau}{s + t}\right), -R_2, -R_4.$ the further inequalities, where ξ and η are defined by From these equations, firstly and secondly. and so, either In case (A), (A): or (B): whence, from (15), (13), these equations take the form, where, from (14) and (15), λ is positive; hence On intersecting the sides of $\Pi_2^{(1)}$ and $\Pi_2^{(2)}$, the vertices of Π_4 become, $$Q_{1} = \left(\frac{\tau - 1}{t}, -1\right); \quad Q_{2} = (1, t - \tau); \quad Q_{3} = (1, -s + \sigma); \quad Q_{4} = \left(\frac{\sigma - 1}{s}, 1\right);$$ s > 0, t > 0, $\sigma > 1$, $\tau > 1$ $\xi > 0$, $\eta > 0$, $\xi + \eta < 2$, $2 st - t\xi - s\eta > 0$, . . (15) The conditions that the four points R_1 , Q_2 , Q_3 , R_3 on L_2 , and the four points R_3 , Q_4 , $-Q_1$, $-R_1$ on L_4 , follow one another in this order, give It is even a square congruent to $\Pi_2^{(1)}$, since the distances is an increasing function of $\xi \eta$. By (15) and (16), and so $M(\Pi_4)$ attains its maximum when Next, in case (B), proof of Theorem 10. whence from (15) and (16), hence 335 four triangles T_k are therefore congruent and of area $V(T_k) = \frac{\xi^2}{2s} = \frac{\xi \eta}{2}$. Further $V(\Pi_4) = V(\Pi_2^{(1)}) - 4V(T_k) = 4 - 2 \varepsilon n$: $M(\Pi_4) = \frac{\xi \eta}{4(2-\xi \eta)}$ $\xi > 0$, $\eta > 0$, $\xi + \eta < 2$, $(2-\xi)(2-\eta) = 2$. $\delta_1 = +\tau(1+t^2)^{-\frac{1}{2}} = \left| \left(\frac{\eta}{\xi} - \eta + 1 \right) \left(1 + \frac{\eta^2}{\xi^2} \right)^{-\frac{1}{2}} \right| = \left| \frac{\xi \eta - \xi - \eta}{\sqrt{\xi^2 + \eta^2}} \right|,$ $\delta_3 = + \sigma (1+s^2)^{-\frac{1}{2}} = \left| \left(\frac{\xi}{\eta} - \xi + 1 \right) \left(1 + \frac{\xi^2}{\eta^2} \right)^{-\frac{1}{2}} \right| = \left| \frac{\xi \eta - \xi - \eta}{\sqrt{\xi^2 + \eta^2}} \right|,$ of L_1 and L_3 from O are both equal to unity, as follows from (16). The $$\xi = \eta = 2 - \sqrt{2}, \quad \xi \eta = 6 - 4\sqrt{2}, \quad s = t = 1, \quad \sigma = \tau = \sqrt{2},$$ that is, when Π_4 is a regular octagon. For such an octagon, $$M(\Pi_4) = \frac{6 - 4\sqrt{2}}{4(4\sqrt{2} - 4)} = \frac{\sqrt{2} - 1}{8}, \quad Q(\Pi_4) = \left\{\frac{1 + 2M(\Pi_4)}{4}\right\}^{-1} = \frac{16}{7}(3 - \sqrt{2}).$$ $s = \frac{\xi^2}{2}$, $t = \frac{\eta^2}{2}$, which is impossible; this case therefore cannot arise. We have thus proved 10) **Theorem 10:** For every convex octagon Π_4 symmetrical in O, $\xi \eta > 0$, $\xi + \eta < 2$, $2 st - t\xi - s\eta = \frac{\xi \eta}{2} (\xi \eta - \xi - \eta) = \frac{\xi \eta}{2} (\xi + \eta - 2) > 0$. $Q(\Pi_4) \geqslant \frac{16}{7}(3-\sqrt{2}),$ with equality if and only if Π_4 is affine-equivalent to the regular octagon. Dr. LEDERMANN, to whom I showed this paper, has since found a much simpler $$Q(E) = \frac{2\pi}{\sqrt{3}} = 3.627598727... > Q_4.$$ As we show now, one can construct an irreducible convex domain K for which Q(K) is even smaller. which $$Q(K)$$ is even smaller. Let again Π_4 be the regular octagon which is the intersection of the of $$\Pi_4$$ itself are $$Q_1 = (\sqrt{2} - 1, -1), \quad Q_2 = ($$ $$Q_1 = (\sqrt{2} - 1, -1), \quad Q_2 = 0$$ $$Q_1 = (\sqrt{2} - 1, -1), \quad Q_2 =$$ $Q_1 = (\sqrt{2} - 1, -1), \quad Q_2 = (1, 1 - \sqrt{2}), \quad Q_3 = (1, \sqrt{2} - 1), \quad Q_4 = (\sqrt{2} - 1, 1),$ $$Q_1 = (\sqrt{2} - 1, -1), \quad Q_2 = 0$$ and further $-Q_1, -Q_2, -Q_3, -Q_4$ $V(\Pi_4) = 8 (\sqrt{2} - 1), \quad \triangle(\Pi_4) = \sqrt{2} - \frac{1}{2}, \quad Q(\Pi_4) = \frac{16}{7} (3 - \sqrt{2}). \quad (17)$ There are four hexagons H_k circumscribed to Π_4 , namely, the hexagon H_1 of vertices R_1 , Q_3 , Q_4 , $-R_1$, $-Q_3$, $-Q_4$; the hexagon H_2 of vertices R_2 , Q_4 , Q_1 , Q_1 , Q_2 , Q_3 , Q_4 , Q_4 , Q_4 , Q_5 , the hexagon H_3 of vertices R_3 , $-Q_1$, $-Q_2$, $-R_3$, Q_1 , Q_2 ; the hexagon H_4 of vertices R_4 , $-Q_2$, $-Q_3$, $-R_4$, Q_2 , Q_3 . Each hexagon H_k possesses just one critical lattice A_k , and this is also a critical lattice of Π_4 . On the boundary of Π_4 , Λ_k has exactly six points, say the points $\mp U_k$, $\mp V_k$, $\mp W_k$. namely the midpoints of the sides of H_h . The coordinates of these points Evidently, $W_3 = (\sqrt{\frac{1}{2}} - 1, 1),$ $U_4 = (\sqrt{2} - \frac{1}{2}, \frac{1}{2}),$ $V_4 = (0, 1),$ are given in the following table: $W_4 = (\frac{1}{2} - \sqrt{2}, \frac{1}{2}).$ $W_1 = (1, 1 - \sqrt{\frac{1}{9}}).$ $W_2 = (\frac{1}{2}, \sqrt{2} - \frac{1}{2}),$ $U_k + W_k = V_k$, $\{U_k, W_k\} = \triangle (\Pi_4)$ (k = 1, 2, 3, 4). (18) I am in great debt to Mr. D. F. FERGUSON, M. A., for the evaluation of this See paper *B*, § 1. constant and the two other ones. $R_2 = (\sqrt{2}, 0), R_4 = (0, \sqrt{2}), -R_2, -R_4.$ The vertices of ${\it \Pi}_4$ itself are and the square $\Pi_2^{(2)}$ of vertices This result is rather surprising, since in the case of an ellipse E^{12}) The last theorem implies that An upper bound for Q. square $\Pi_2^{(1)}$ of vertices $R_1 = (1, -1), R_3 = (1, 1), -R_1, -R_3,$ $Q_4 = \frac{16}{7}(3 - \sqrt{2}) = 3.624654715...^{11}$ (702) describes a hyperbola arc A_4 connecting W_2 with $-U_1$. Since by (19), $\beta - \alpha\beta + \sqrt{2} = \sqrt{2} - \frac{1}{2}$ $x_1 = 1 + \beta$, $x_2 = \alpha + \beta + \sqrt{2}$. $P_2 = (x_1, x_2) = P_1 + P_3 \dots \dots$ (20) Consider now two variable points $P_1 = (1, a), \qquad P_3 = (\beta, \beta + \sqrt{2})$ this hyperbola has the equation, and by (20), W_2 , and together with this boundary encloses a curvilinear triangle, au_4 on the line segments joining V_2 to W_1 and $-U_2$ to $-V_1$, respectively, and assume that the determinant of these two points has the value, Then the point $$x_2 = x_1 + \frac{1}{2(x_1 - 1)} +$$ $x_2 = x_1 + \frac{1}{2(x_1 - 1)} + \sqrt{2}.$ (21) The arc A_4 touches the boundary Γ_4 of \varPi_4 at the two points — U_1 and say, which is of area, $V(\tau_4) = \{ [\frac{1}{2} - (1 - \sqrt{\frac{1}{2}})] \cdot 1 - \frac{1}{2} [\frac{1}{2} - (\sqrt{2} - 1)]^2 \} -$ $$-\int_{1-\sqrt{\frac{1}{2}}}^{\frac{1}{2}} \left(x_1 + \frac{1}{2(x_1 - 1)} + \sqrt{2}\right) dx_1$$ $$= \left(-\frac{2}{8} + 2\sqrt{2}\right) - \left(\frac{3}{8} - \frac{1}{4}\log 2\right) = 2\sqrt{2} - 3 + \frac{1}{4}\log 2.$$ In just the same way, each vertex $\mp Q_k$ of Π_4 can be separated from O by means of a hyperbola arc $\mp A_k$; this arc is congruent to A_4 and touches Γ_4 , and it encloses, together with Γ_4 , a triangle $\mp \tau_k$ congruent to τ_4 . Let now K be the convex domain obtained from Π_4 by cutting off all eight triangles $\mp \tau_k$. Then every point on the boundary C of K belongs to a lattice of determinant $\triangle(\Pi_4)$ which has on C just six points $\mp P_1, \mp P_2$ $_{\pm}$ P_3 satisfying $P_1+P_3\equiv P_2$, and is therefore K-admissible (Lemma 1). $\triangle (K) = \triangle (\Pi_4) = \sqrt{2} - \frac{1}{9}$ (Lemmas 2 and 3). On the other hand, from (17) and (22), $$V(K) = V(\Pi_4) - 8 \ V(\tau_4) = 16 - 8 \ \sqrt{2} - \log 4$$. By combining these two equations, we find that $Q(K) = \frac{32 - 16 \sqrt{2} - 4 \log 2}{2 \sqrt{2} - 1} = 3.609656737...$ This is an upper bound for **Q**, and possibly even its exact value. Mathematics Department, Manchester University. March 20, 1947.