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Introduction. Let
filx, ¥) = apxx + bxy + by +eyy (1=1,2)
be a pair of positive definite Hermitean forms of determinants
ay0; — biby = agc, — byby, = 1
and of simultaneous invariant
| = ayCq — byby —bby + 125;

evidently j > 2 with equality only if the two forms are identi-
cal. Also denote by M(f,, /) the smallest value of either /,(x, v)
or fy(x,y) when x and y take all integral values not both
zero in the Gaussian field K (7). The lower bound of M(fy, /5,
extended over all pairs of forms /;, f, is a function m(j) of
the invariant § only, and its evaluation forms the subject
of this paper. By means of the geometrical theory of posi-
tive definite Hermitean forms an algorithm for the evaluation
of m(j) is developed and applied to the computation of
m(j) for 2 <7 < 6. The result is analogous to that for a
pair of positive dgfml’ie quadratic forms considered by o
of us?), but the method used there was entirely different.
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CHAPTER I
THE GEOMETRICAL THEORY
The representative of a Hermitean form. Let K(z) be

1) K. MaAHLER, Lattice points in two-dimensional star domains (I1I},
Prot. London Math. Soc. {2), 49 (1946), 168—183.
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GAuss’s imaginary quadratic field, and J(7) the ring of all
integers in K(¢). When « is an arbitrary complex number,
then denote by R(a) and I(a) the real and imaginary parts
of a, and by a the conjugate complex number; if a lies in
K(7), then a is its conjugate also with respect to this qua-
dratic field.

Let I'be PicarD’s group of linear transformations 2)

X ax’ 4y Yy =yt 0y, (1
where a, B, y, 0 are elements of J(¢) of determinant
ad — By =1

Now let
[(x, y) = axx -+ bxy + bay + cyy
be a positive definite Hermitean form of determinant
ac — bb = 1
with arbitrary real coefficient a, ¢, and arbitrary complex
conjugate coefficients b, 5. The transformation (1) changes
/ into a new positive definite Hermitean form
f’(x’, yr) — ﬂ’x,j, _‘:__ bljryr _+_ b/x/yr ‘L— Cly/yl
of determinant 1; this new form is called equivalent to f, in
symbols,
f~7.
We say that f(x, y) is a reduced form if for x, v in J(i),
) __fa, when |x| -+ |y| >0,
[t 3) 2 Le, when y = 1.

The form [ is veduced if and only if

| |
()0t <
To cvery form [, there exist reduced equivalent forms. In

general, there are just fwo such reduced equivalent forms;
these are interchanged by the PIcARD transformation

O< a <c,

’

X =1x', v = —qy (4)

1) See Fricke-KrLEIN, Automorphe Functionen, Bd. 1, Leipzig 1897,
76--93 and 450-497.
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Only when at least ome sign of equality holds in (3) are
there more than two reduced forms equivalent to f.
Put
f
S:%, 77::;1;, so that a;;— b:%, c:—-«——e’bg?‘? L ; (5)

further denote by
P& n)
the point with rectangular coordinates
R(&), L&), n

in three-dimensional upper half-space P : 9 > 0. Then P is
called the representative of f. The third coordinate 7 of P is
named the keight of P; this height is a positive number, since
f is a positive definite form. The relation between a form
and its representative is a one-to-one correspondence; we
write in symbols,

P« f or f«—>P.

When /[ is changed into /’ by the Picard transformation (1),
then the representative
?! . (f,, n/)
of the new form is given by

OP(EE + n?) + dak + pyéE + pa

° T V9 (EE 4 1) + ya& + ap€ 4 ad’
, 0 (6)
T UPEE & ) + yak + apE + aa’
and further
SE Ly — 08(8& + %) + 0BE + POE + pB )
yP(EE + n?) + yaé + apé + aa

It is well known that these formulae define a conformal
point-transformation of P into itself, which changes spheres
into spheres, planes being considered as spheres of infinite
radius. In particular, spheres with their centres in the plane
iy = 0 are transformed into spheres of the same kind.
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By (3) and (5), the form / is reduced if and only if its repre-
sentative satisfies the inequalities

(R -

i

LIE | =y =1 =00 (8)

I\

We then call P a reduced point. The relation

f <P

evidently defines a one-to-one corrspondence between the
elements of the set I¥ of all reduced forms, and the elements
of the set @ of all reduced points. Corresponding to the
Picard transformation (4), the set @ is transformed into
itself by

S’ = e S’ ']7, e )]‘ (9)
For all points of @,
1
N = —, 10
1= 2 (10)
with equality only at the four vertices
F1 i 1
& = --%FA» , = (I 1)
2 V2
of @.
Let
M) = i () (12)
i@y

be the minimum of f for x, y not both zero in J(z). Then
M(f) = M(f) if [~/ (13)

When f is a reduced form, then by (2) and (5),

M(f) =a =, (14)

hence by (10),
M(f) < /2. (15)

Here equality holds if and only if the repsentative of f
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is one of the four vertices (11) of @, i.e. if f is one of the
four forms3) (¢, &' = 7 1)
f e-¢'i e—e't 1

[, y)=+/2 lxx+~—-2—xy+f——-~xy~rwj (16)

By (13), the inequality (15) remains valid for non-reduced
forms, for there are reduced forms equivalent to any given
form.

§2. The problem. From now on, we consider a system
of #wo positive definite Hermitean forms

) = apx® + by + bxy +cpyy (L= 1,2) (17)

of determinants

a6y — biby = aycy — byby = 1
and of simultaneous invariant

] = ayey — byby — biby - cia,; / (18)
say, for shortness, a pair of invariant j.

On denoting by
P&, n) with 5, >0

the representatives of these forms, j can be written as

j - .(51 — &) (5—1 — &) + (n— 72)? Lo (19)

Mns

Hence
] =2, (20)

with equality if and only if P, and P, coincide, i.e. f, and f,
are identical.

If the same Picard transformation (1) is applied to both
forms of the pair f,(x, v), f,(x, y) of invariant 7, then a new

3) These four forms are equivalent, and are interchanged by the group
of four Picarp transformations,

¥F=al, y =y x=an, Yy = e iy K=, Y = ¥ o= iy, Y = ix
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pair f,(x',y"), f,(x', ") of invariant j is obtained. We call
this new pair equivalent to the old one, and write

(fi f2) ~ (.fi’ f;)
We further say that the pair f,, f, of invariant j is reduced if
(a) fs is a reduced form;

(0) M(f) = M(fy).

Since every single form can be reduced, there always exists
a reduced pair f;, f, equivalent either to f,, f,, or to f, f;;
in the special case that M(f;) = M(f,), there exist reduced
pairs of both kinds.

Put

M(fy, f2) = min (M(fy), M(fy)), (21)
so that

M(f, 12) = M(f,, £1), (22)
M(f, f2) = M(f1, f2) i (hy f2) ~ (L, fa)- (23)

By (15), for every pair of invariant 7,

M/, fo) < V2. (24)
Hence the smallest upper bound
m(]) = u.b.M(fy, f,) (25)

extended over all pairs of invariant j, exists; it is a function

of j only, and it satisfies the inequality

m(j) < /2. (26)
A second inequality for sm(j),
mij) = 1, (27)

is an immediate consequence of
Theorem 1. For every value of | = 2, there exists a
pawr fy, [y of invariant § such that

M(flt f2) = L

21
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Proof. The two forms
hry) = (6 + yVi—2) E+FVi—2) +5
fol%, ) = x% + V¥
are positive definite, of determinants 1, and of simultaneous
invariant 7. The second form is reduced, hence M(f,) = I.
Further for x, v in J(z),
I =1, when x =1, y = 0,
h(x,v)y =x8¥ =1, when x 40, y =0,
' > vy > [, when v = 0.
Hence also M(f;) = 1, whence M(fy, f,) = 1, as was to be
proved.
The aim of this paper is to obtain a finite
algorithm for the computation of mf(j).
Since f, and f, are identical for j = 2, by § 1
m(2) = /2. (28)
Therefore let
] >2
from now on.

§3. The existence of critical pairs.

Definition: The pair f,, [, of invariant j is called
critical if

M(fy, f2) = m(]).

The following existence theorem is fundamental for all
that follows:

Theorem 2. For every value of j > 2, there exists at
least one critical pair of invariant j.

Proof. By the definition of (j), there exists an in-
finite sequence of pairs

Py, B0y (k=123 (29
of invariant j such that %)

lim M, /4) = mj). (30)

fe—»c0

%y These pairs of forms need not all be different.
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Without loss of gemerality, these pairs may be assumed to
he reduced.
Then from (30),
im M(f)) = m(j). (31)
fe—>00
Hence, to every ¢ > O there is a positive integer &y = &y(e)
such that
m(j) — e < M) < m(j) for k = k,. (32)

Denote by
P (&, gy, PR ER Yy (R=1,2,3, ....)

the representatives of the forms (29). Then P lies in @.
Hence by (27) and by the formulae in § 1,

IREY) | <3, [1EW) | <2,

11 o 1 1
P i L : - < - (33)
V2 om(j) m(j) —e  1—¢
Further
(k) ik (k) };\’ | k) __ ..UN2
N — ) @ — ) — )
U 77-(»” -
that is:
el gy (g __ EWy " T A 34
( &) (& £7) + " 5 ) T, 2 (34)
From (33) and (34)
k) 1
Ny = = >,
V2 V2
— V2 —4) g 25 g I
T (7, VI )77-, I 7L > — . (35)
2 i+ Vir—4 ] V2

The formulae (33) to (35) show that for & > &, both
P} and P lie in a bounded closed set B in P which is
independent of k2. Moreover all points in B are of height not
smaller than 1/4/2].



332

There exists therefore an infinite sequence of indices
Ry << ko< By<< ....
such that the corresponding pairs of representatives

Py Py v=1,2 3,....)

tend to limit points

lim P = P, : (&n,), lLm P& = P, : (5,),
v—>00 V—>00

where

Therefore the forms belonging to these limit points are
positive definite; they are further of determinant 1 and simul-
taneous invariant j. Also

M(fy, o) = m(7),

since the minimum of a positive definite form is a continuous
function of its coefficient. This concludes the proof 9).

§4. The equality property of a critical pair. Let fi(x,v),
fo(x,v) be a reduced pair of invariant §, and
Py Enm), Pot (S m)

the representatives of these forms. Hence P, lies in @, while
P, does not necessarily do so. Let therefore

P (&)
be the representative of a reduced form equivalent to
hix, y).
Theorem 3. If
M(f,) > M(7,), (36)

then there exists a pair [{(x,v), [3(x, V) of invariant | such that
M(fT, £3) > M(f, fo).

%) The theorem remains valid for § = 2; there are four critical pairs,
namely f, == f, must be one of the forms (16).
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1 1
Proof. Since M(f;) = —, M(f,) = —, the inequality
i M2

(36) implies
Ny << s (37)
Further, since P; lies in @,
1 1
:/2— hence 7, > —

V2’

Ny =

Therefore P, is not one of the vertices
($ 1T¢ 1 )
2 " V2
of @, and so there are points
Py (&)
of @ arbitrary near to P,, but of height
1y < 1.
To every such point P; there further exist points
P m)
such that
E — &) E—&) + of —n)*

+ 2=7,
nn

and such that P tends to P; when P} tends to P,. Let
fix,y) <Py, f3x9) <P,
and denote by
P 0

the representative of a reduced form equivalent to fi(x, y).
Then
n¥ —n, when Pf - P, and so P} - P;.

Therefore, finally, by (37), for Py — P,,

'7;:< N2 -



334

that is

; .1 1 1 -
MU f2) = min L) > =g,
My My M
as was to be proved.
Theorem 4. Foracritical pair of forms fi(x, v), [{x, v},

M(f) = M(fy).

Prooi Evident from the definition and from Theo-
rem 3.

Theorem 5. To every critical pair f,, [y of invariant |,
there exist a reduced pair |y, |, such that

(fio 12) ~ (ho 12),
and a reduced pair f,, f, such that
(1, f:;) ~ (f2 f)-

Prooi. Evident from the definition and from Theo-
rem 4.

Theorem 5 expresses the symmetry of a critical pair in its
two elements; on account of this theorem, it is sufficient in
the next paragraph to prove the assertions always only for
one form, say for the form f,.

From now on, the notation remains the same as in the
proof of Theorem 3.

§5. The boundary property of a critical pair.

Theorem 6. For a critical pair of invariant |, both
Py and P, are boundary points of ®. Moreover, they lie on
that part S of the boundary of ©@, which is defined by

L =1, |RE| <} [1(§ <L 9 >0 (3

Proof. It suffices to show the assertion for P,. We
apply the indirect method and assume that P, lies in @,
but not on S; from this a contradiction will be obtained.

We first remark that

Ny = My (39)
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since

1 . 1
—= M) </H(1,0) =a;=—.
A T

Hence by Theorem 4,

o=
Now i i
_ (6, —&) (5 — &) + (m — ,/f)i s
M e S
that 1is
(5, — &) (5 — &) + (n. —24771)2 I 4 n?
2 5 4

and radius

The lowest point of this sphere is of height
j— ViP—4 2, )
e EE— 7] e 7] < 7;. )
2 1 i+ \/7,2 4 1 2

thus of smaller height than P,.
If now, firstly, P, is an inner point of @, then there exist

P ]

points Py : (&), n3) on X, lying still in @ but of height

7 < N

Let f5(x, y) < PY. Then f,, i form a pair of invariant
7 such that

M(fy, f3) = M(fy) = M(fy, /o), but M(f3) > M(f).

Hence, by Theorem 3, there are two forms /7, /3 of invariant
7 for which
MR 1) > M, fa),

contrary to the hypothesis.
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Assume, secondly, that P, lies on the boundary of @,
but not on S; this means that P, lies on that part of the
boundary of @ which is defined by the formulae

RE =F |1 <%, &&+n2>1,17>0
or B (40}
IR | <L, I =F3 &+n>1, 135>0

The sphere ¥ passes through P, and contains points of
smaller height. If at least one of these points of smaller
height lies in @, then a contradiction is obtained as in the
first case.

Assume therefore that all points of ¥ which have smaller
height than P,, lie outside ®. Then there exists a trans-
formation

F=&4+p0=n (B=F1orf=7F1i), 4
which

a) changes P, into a point P, of equal height, also on the
boundary (40) of @;

b) changes T into a congruent sphere X’ through P,
containing at least one point P in @ arbitrarily near to P,
but of smaller height.

Let (41) further transform P, into P;, and denote by

fix, y) <= Py, ji(x, v) < Py

the forms of representatives P;, Py. Then {1, Iy form a pair
of invariant j for which

M(fy, f3) = M(f;) = M(fy) = M(fy, f»), but M(73) >M(f),

and so a contradiction is obtained as in the first case.

§ 6. The receprocity theorem.

Theorem 7. To every critical pair f,, [, of invariant
j there exists a second critical pair fy, [, of invariant | such
that f

PrEnm),  PocEnmy), P (Enom)
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are the representatives of f,, [, and of a suitable veduced form
equivalent to f,, then

‘El ’ ;] |

SEEn e TR T ey @

g; = 52: 772 = 1o, §>=° i o= L, (43)

=&, n o=, EE 4+t =1 (44)
Proof. Put

[, y) = A, — ), LA, Y) =5y, —*), (45)
so that f;, , is a pair of invariant j. Since (1. f2) ~ (F 1),
by (23),
M(fy, f2) = M1, o) = m(j);
and so f;, f, also form a critical pair. By Theorem 6,
5252 + ﬁ:: = 1.
Hence (42) and (43) follow at once from (6) and (45). Further
fi ~fi, h ~ fr, hence fr ~ 1o
and so we take f; as the reduced form equivalent to f;, i.e
P — P,

Remarks. a) The relation between f,, f, and fj, fs
is evidently reciprocal. b) If P, lies inside the unit sphere,
then P, lies outside. ¢) If P; or P, lies on one of the boun-
dary planes

R(E) = F 3 or () =T

of @, then so does P; or P,.

(&

§7. The characteristic property of a critical pair. We
now show a property of the critical pairs, by means of which
we shall be able to determine these, and so find the value
of mf(j).

Theorem 8. For a critical pair f,, [, of invariant 7,
both P, and P, lie on the circles of intersection of the unit
sphere U,

£+ 1P =
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with the four planes,

R = F 4 1) = F 1. (49)

Proof. For reasons of symmetry, it again suffices to
prove the assertion for the point P,: (&,, 7,). We apply the
indirect method and assume that P, lies on none of the planes
(46); the same is therefore also true for the point P,: (&,, 1,).
From this assumption, we shall derive a contradiction.

By Theorem 7 and the remarks to this theorem, we may
further suppose, without loss of generality, that P, is #not
an wnner point of the unit sphere. For otherwise we only
have to replace f,, /, by f,, {, as defined in the proof of the
last theorem, in order to satisfy this condition.

As we proved in § 5, P, lies on the sphere X with centre at

Q: (Elr ]2 771\) )

and of radius

Vi
0 == e T
) 2
Since by 7 > 2,

\ 9

= 7 B = 2
5151 + ('27]1) > 514‘1 -+ ny = 1,

Q lies outside the unit sphere. Denote by C the circle of
intersection of the two spheres U and E. Hence P, is the
lowest point of C. It is even the lowest point of ¥ inside @.
For if there were a point P of ¥ in @ of smaller height than
P,, then for f)(x, y) ~—— PY,

M(fy, /3) = M(fy, fo), but  M(f3) > M(fy)

and we should get a contradiction.

The line A from Q to the centre (0, 0) of U passes through
the centre of C; the plane /7 through A and P, is perpen-
dicular to the plane # = 0. Hence there is at least one point
N on /1 such that the line through N and P, is perpendicular
to n = 0.

Let K be the cone generated by the lines from N to all
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points of C. Then Q lies in that part £ of the upper hali-
space P which is bounded by K and the plane through C.
For otherwise P, would not be the lowest point in @ of the
circle of intersection of ¥ with /7, and so, even more, not
the lowest point of X in @.

Hence, if L is the line through Q perpendicular to the
plane # == O, then this line intersects U in one point R such
that R lies on the smaller arc of the greatest circle which
connects the centre of C with P,. In general, R will be of
greater height than P,, since P, is the lowest point of C,
and so of smaller height than the centre of C. By the defi-
nition of Q, P, lies on that segment of L which connects Q
with R. Hence

N = Ne

This, however, is impossible by (39), since
)y = 7y, therefore »n, < n; < #,.

There is only one exceptional case, in which R need not
be of greater height than P, but may be of equal height.
This happens when P, is the highest point (0, 1) of U, and
when, at the same time, ¥ just touches U at the point P,.
The cone K then degenerates into the line & = 0, and for
N may be taken any point of & = 0 of greater height than
P,. Now R coincides with P,; therefore 35; > 7,, with equality
only for P, = P,, that is when f; and f, are identical. But
this case had been excluded.

Hence our original assumption leads in all cases to a con-
tradiction, and so the theorem must be true.

CHAPTER 2
THE EVALUATION OF m(j)

§8. The algebraic formulation of the problem. By means
of Theorem 8, we now obtain a simple rule for finding all
reduced critical pairs fi(x,v), fo(¥,y) of invariant 7; the
non-reduced ones are easily derived from these by applying
an arbitrary Picard transformation.
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Since the pair f;, /, is reduced, the second form f, is redu-
ced; the first form f, need not be reduced. Then let

K—ax By, y=x 8, wb—fy =1, (47)
or in symbolic form,
’ 7 /aﬁ
= o,y e=(2h).
v 0

be a Picard transformation which changes f,(x,y) into a
reduced form

I, Y) = ¥’ + bFY + 0’y X eyy. (48
Denote further, as before, by
Py Enm), Poi(Gam), Py L)
the representatives of these three forms f,, f,, f/;. Then by
Theorem 3,
&,E, + 12 = 1, and either R(&) = F 1 or I(§,) = F

’

o=

£&, +n? =1, and either R(&) = F } or I(§) = F 4.
Further by (14) and Theorem 4,
Ne = N, =7 (49)
say, where by (10) and Theorem 1,
1
—= < <1 (50)

The two points P, and P; are therefore of the form,

Py (i”‘ [L, + 2‘]' ;7) P, : (i” [C —g—] n) (51)

where [ is an non-negative number such that

M4+ 2=1, ie {=+ Vi—n: (52

and where further

m=0,1,2 or3; n=0,1,2 0r3; p=F1;, v=F1
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Since f;, f5 1s a critical pair,
w7t = M(fy, /) = m()). (83)

The single condition (52) does not yet determine % and ¢;
we need a second equation for this purpose. This equation
is contained in the condition that the simultaneous invariant
of f, and f, has the value . We obtain it in a symmetric form
by applying the following method:

The Picard transformation (47) has the inverse,

(*',y) = QYx,y), where Q1= (()_ y __/z) . (54)
Hence the coefficients of
hx, y) = ax® + by + bg + (55)
are given by
ay = ;00 — byd — b0y + ¢y,
— b, = a;$6 — byad — b,fy + cay, (56)
¢ = apf —bap —bpa+ cad.
On substituting these values in
] = a0y — byby — biby -+ cia,,
we find
7 b v 0
asCy | —ash; | —bye, byb, &
j=| —abr | aa | bbby | B, (57)
—byc, byb, oy | —Cby |
boby | —baay | —eby | caty 1

where the symbol on the right-hand side stands in an obvious
manner for the quarternary Hermitean form

axcad 4+ aa BB - . ... — ah fa— abaf + .. ..
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By the results of the first' chapter

1 52 1 ‘S]
Ay = Cy = —, b2 = ; ay = (,‘,1 — - b’ | = 5 (58)
] ] Ui Y

hence (57) can also be written as
« g y o |
|| & | & | a
PP |51 &R g =B p 0188 (59)
5 GG | 1 | —&
b | —E |5 1|

say. On substituting the values

£, — (o4 L Y A NS S (60
C i 2 /, ST S 7 2 » 7 4 5 )

from (51) and (52) into (59), we obtain a quadratic equation:
I v\

(i — )] = (D(a, B,v, 0 : " (§ -+ 12;‘), " (f -+ *2‘)) (61)

for ¢, which determines ¢ as a function of

7, a, By, 0, m, n,ou, v

08 <3 (62)

By (50), this equation has a root { such that
1

When ¢ has thus been found, then &,, &,  and so the pair
i1, f» of invariant j are determined from (60). In particular,

1
Ml fo) = =
)

\/7—g”'

This result now leads to the following rule for the determi-
nation of all reduced critical pairs f;, f, of invariant j:

Rule: Solve the quadratic equations (61)
for all matrices Q = (va) in J(@#) of deter-
minant 1, and for all values of m, n=0, 1,
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-

tions which have a solution { satisfying
62)%). Finally omit all equations except
only those in which { assumes the maxi-
mum value (,,. Then the corresponding
pairs f, f, as defined above, are critical
and there are no other critical pairs;
further the maximum m(j) is given by the
equation

2, 3; u, v=+1. Retain only those equa-

1
nl(}) = ",;2._;,;:: . (63)
Vg ‘— C;;m)z
1t will be our aim in the next paragraphs to simplify this
rule and to bring it into a practicable form for the compu-
tation of m(s).

§9. The extended group I'*. The rule in § 8 can be simpli-
fied if I" is replaced by a larger group, which is also due to
P1cArD.

Denote by I'* the group of all linear transformations

v o

(v, v) = Q,y), Q= (“/3)

of determinant
| Q| = ad —yB =1,
where « = - 1 or 7~ ¢ is any unit in K(z). Hence I"is a sub-
group of I'* of index 4.
If the form /(x, y) is changed into the new form

3y 6/ 1=t

J(,y) = ax'® + &y + b5y 4 c'y'y’
by the transformation (x,y) = Q(x',y') in I'*, then { and
/" are called I'-equivalent; we write in symbols,
T

By the relation f <— P, I"* induces in the upper half-space
%) We shall see in the next paragraphs that only a iinite number of

cquations are of this kind.
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P a group of transformations. These transformations are
given by the same formulae (6), (7), as those of I', except
that now «d — fy may be any unit in K(z).

To every form, there exist four ['*-equivalent reduced
forms; these are interchanged by the group of four elements

X = x’, y = iyy’ (g = On 1) 2r 3) (64)

of I'*, In P, the induced automorphisms of the reduced
space take the form,

g =1 g =q (g=0,1,23). (65)

Hence to every form f there exists a ['*-equivalent form

/" such that
o' b
0 < R(T} s 0 < I(";)
a’ \a

The analogous formulae for the representative P’: (&', n’)
of f are

[

L o<a <c  (66)

i/l\
AN

0<RE) <) 0<I(E) <) &&+n2=1 5 >0 (67)

Forms or points satisfying these inequalities are called
strongly reduced. There is in general just one strongly reduced
form I*-equivalent to every given form; if, however, at
least one equality sign holds in (66), then there is more than
one form of this kind.

Theorem 9. LetO <( < 3,9 =092+ 2 =7{ Then
the erght veduced points

/ l-l \
(z‘l l + 717277 ,n) (1=0,1,23;4i=F 1)

are 1™-equivalent.
Proof. By the four transformations (65), the eight
points are [™-equivalent to the two points

e+, AR
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Since (& + i) = 1 4+ ¢(C + 7/2), these two points are also
{™*-equivalent.

The determinant of one positive definite Hermitean form,
and the simultaneous invariant of fwo such forms, are un-
changed when transformations in I'* are applied; also the
equations (56) remain valid for transformations (x, y) =
= Q(x', ¥') in ['*. Hence the other formulae in § 8 also hold
under this more general assumption.

We may therefore change the method, so far used, in the
following manner:

We assume, in agreement with the Theorems 8 and 9,
that the critical pair f;, f, of invariant j has been chosen such
that the representatives P,, P, coincide in the same point
’PQ::‘P{:‘P:(C—}— ; ) n), where 0 < & <4, >0, p2-+-2=1; (68)
on the other hand, we allow the transformation (x,y) =
= 0(x’, ') which changes f, into f,, to be an element of I'*.
Then we obtain the new

Rule: Solve the quadratic equations

G—mi=o(wprs thg it l] (@)
! 2 2

for all matrices Q = (4% in J@ of de
terminant v=F1 or = T4 Retain only

those equations which have a root { in
the interval 0<¢ <} and of these equa-
tions omit all except those whose root
{ assumes the maximum value {,,,. Then
the corresponding pairs f,f, of invariant
jand obtained from the representatives
(68) are critical, and there are no other
critical pairs; further the maximum m())
is given by (63).

§ 10.  Propeities of D(a, B, 7, 0| &, &). In order to discuss
the equations (69), it is useful to study the general quarter-
22
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nary Hermitean form

a i) y é
L =& | =& | &
D(a, B, v, 0| &, &) = | —& 1 &y —&
'—52 EZSI 1 _EI

& | =& | —& | 1

Q

ol |

(70)

p

It is not difficult to verify that this form has the following

symmetry properties:

Theorem 10. The function @(a, B, y, 0| &, &) vemains

unchanged when its six arguments

a: :81 % 6: 52: EI

are, in this order, replaced by ")

(l, ‘/V: ﬂ; 6: 5[)

139

3
or s a, 9, Y, &,, ;é[;
oy ﬁ, 5, a, v, 51, szz,
or ¥, a, 0, B, ;1, &as
or Y, 0, a, B, &, g%
or d, B, Vs a, &y &2;
or 0, ¥, B, a, &, & .

A further important property of @ is given by
Theorem 11. If|&|<]1, |&|< ], then @(a, B,y,0|&, &)

1S a positive definile Hermitean form of a, f, y, o

?) The variables may be changed in many other ways so as to leave

@ invariant; we may, for instance, replace

a, B v d, & &
by a B ¥ s & %
or ia, B, y —id i&y —i&y;
or ia, B, y g, &y, &1

In all these cases, ad—py is only multiplied by a unit in K().
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Proof. The assertion follows immediately from the
identity,
@ = |a—Ef—&y + EEOP + (1—&F) [B—&0 P+
-+ (1 — &8 i?’—‘fla I+ (1 —&5) (1 "‘5‘;51) [o%. (71)
From Theorem 11, we can now deduce that only a finite
number of equations (69) is solvable in the interval

0<C <y
Theorem 12. Assuine that the equation

3 __ 2 _—;(D( “A)ﬂ ,Z,’é‘_l_i)
(4 (’)7 ‘(]7/)7/(§c+2 12/

has a solution in the interval O < ¢ g . Then
max (|al, [#] [7] [0]) < V2. (72)
Proof. From (71),

(aﬁ/,tﬁ é—i— ) +i>>_*

2
=l g)(e—5) rere=c—mar

hence by Theorem 10,

/ i 7
¢(\a)ﬁ77)5|:+w§, :+~é_>”>—
>E—2max (a3 [B15 [vI5 619 (73)
Therefore, if 0 < ¢ < {,, then (69) implies
l'\
o(apro12+ .t )
=
= G—ymax(af, 6P 7108 =
= fmax (o B |75 101
and the assertion follows at once.

By means of Theorem 12, we may now express the rule for
the determination of (j) in the following final form:




Rule H: Solve the quadratic equations

L= (e b0 Loeet)
(G—271 \aﬁy !é-f—2 ey

for all matrices .Q:—(;ﬁ‘i) in J(#) of deter-
minant t=F1or =757 and with elements

satisfying

max (Jal|, [B1, [7] [0]) < V2
Retainonly those equations whichhave
asolution {in0<¢<})of maximum value

Then

o
5 maxr”

k

m(]) = (;’_C:’)uu) 5
and all critical pairs are found from

their representatives (68).

§ 11. The numerical value of m(j). We first show that
the equation (69) does not reduce to an identity. For other-
wise we should have

—j=ad+ ad + py + By,
0= @B+ (@+9 + (B+ 79 (a+ 0+ 1By — By,
and %7’=ad+ﬂ5+?7+55+

{(ﬁ—'r)( +0)—(B—7)(a+0)}+ | (ad-+a0—py—py).
Hence
3(ad+ad+p7-+ fy) + 4ad-+ff+yp+00) + 26(p—y)(a+0)—
— 2i(f—7) (a+0)+ ad + ad—py— By =0. (74)
Now put '
a = a, + 1a,, B = b + by,
‘yzcl-{—icz, 0 = d; + id,,
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so that (74) takes the form
(4 + ) + (a + o) + § (ay— b)® + § (b, — &) +
(e — )+ L (e —do)? + ) 2
 Magt ) 4 L by o)+ L (B
+ g F B F g =0 (76)
Since a,, ay, by, by, ¢, ¢y, d;, d, are all rational integers

(hence real), all terms in (76) vanish, and so finally, a;, a,,
by, by, €1, o, dy, dy are all zero, contrary to the condition

lad— fy | = 1.

Further computation according to Rule H is simplified
by observing that the function @(a, f,y,0| + :;, 4+ ;)
remains unchanged when

a, B, v, 4,

in this order are replaced by

-, ——.ﬂ; “‘}/ ) “6 ;

or ia, P, iy, 10,

or 4, B, Y, a,

or a, 7, B, d.

Also the equation (69) can be written as
V(& @ By, 0) =1, (77)

where
P, B,7,01E+ 5 L+ 3)
¢—a) '

Using the result of Theorem 11, it is easily seen that ¢
is positive for 0 < ¢ < 3.

We consider only the interval 2 <<j < 6 for . We have
to find all matrices Q= ( 2) in J@) of determinant
t= =1or¢= 4, wheremax (e[, |f], |¥] |9 < V2,
for which ¢ assumes values between 2 and 6 for suitable values
of { satisfying 0 < < 3. A discussion which is somewhat
laborious and in which more than three hundred matrices
have to be considered leads to the following table:

W& a By, 0) =
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wz4+z |tz g+l |t itz |2 4T 3 2291 + 20€ — ¥1
4z hz—z e+ ¢ je+z |1z |iz+1 z z 1 itz | 2k1 S8+ %81 — 01
z+1 |tz | et 1§tz z 1 1 e | i—1 |1tz 1)
—z 1|tz | € |1z petr |l o _
59 + 291 — /61
Z+z 1 izt 1 fiz+1 |t |k 11 |tz I L A
¢ |z—1 |iz+1 Z € |1 141 I V . . )
9 + z1 —zis!
17—1 z |1+t RS 1| itz 1 z ] 1 1 & er—e
141 ¢ o 1 |2 1| +1 V . .
3 + 201 — £
£ pz—1 | 1+l 1 Jiz+1 IS 1 1|t 1 1 ¥ T 40
Z+z | —C ? 1 o 4 ,
A T l.w ——Z/ 1
Z | itz : 1 | itz 1 1 0 1 z 0 () T AETEE
etz | e el %o
71— 141 @ 1 liztez 1 2 04 t+1 7 I o/ - 7
1z—1 1—| =2 | +1 | . . ‘
_ il — 2y — ¢l
21 | i 74 11— ? 1 I 1z 1+ i1— 1S vt
=1zl R S Il 1— to v <ot
w—1  |g—1—| t+1 1 jiz+1— I +1— 1 —| t+i— I I o AC T
I ? z ? 0 1 e : I ~
wZ+1 —1 : I [— | 1 ? 4 1 I A 22—
—z 1— I 0 | 1 ¢ 1 0 z 1 . 0
t—]  |ig—]— . 1 he+1 piz—1 ¢ 1 ﬂ
11— I 1| ih1—] I— 1 ]— 0 |1 1]y 22C —TL
1— 0 |1 1|tz — ? 0 I 1— I 0 J
z t— ? I .
y vT \m.
1 0 iz 1 1 0 0 1 1 ¢ ¢ 0 v il T
! 0 1—| 1] o L
I — 1= 1 | 1—| 0 0 1 7 ol/f A
1
9 4 g o | 9 ¢ g |» o | 4 g | o letgminis e @

(u0)) 9 S £ Sz o4 { INTISTYITY HOIHM A SNOILLONAA TIV 10 FT1dV.L
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z | —z |tz z |tz Z |e+1 |tz ¥l + Qv —72/iz
1z + 1 4 1z |1tz | tte 1 jiz+1 |+ V .
1+z | —z |+l z )tz z |1 I z 1 |1tz I 328 T 2918
1+1 | 1+2 v+ f itz |2 1 |tz it 1 |+l NV
9 + 321 —2/e1
itz |t | 1+1 1| it 1|+ 1 I 1 z 1 w9 + 321 —ele
1+1 | —C ? z d
z |iz—1 |rz+1 zZivtz | —1 iz+1 1 jiz+1 1 iz 1 _ 2C + 28—2/11
Z+1 z ? 1 ? ¢t 1 z I 1 0
t+z | T RN A .
.J ..T —
bz | =1 | 1 1| et 1 liz+1 1| 241 1 1 11 w2p + 288
1 | ¢ ? 1|tz | 1 (4 I ,
- 1— ? ? ! 7z I ? I z |iz—1 ? I _ b e 4
? z 0 1 1 0 | t+1 I I ? I 0|
t+1 T jig+1—| 2+1 | etz | 1 ? A
b Jru —
' 1| e+ I 1 1 0 1|1 1 1 olJ s+ 2y et
1+ I [— I ¥ — ¢
! — v 1 ? T | e+1— 1 v | =1 1— ﬁ.
1 — (4 1| 1— 0 2 I ]— 0 I I _ 22C —2/S
11 1 1— 0 1z I— I 0 0 — I 0
. 0 | tti1— 1 v z
21 — ? ] I 1 : 0 I 1— ? 0
I 0 . 1 0 I I 0 22 + zi¢ ¥
11 1 v |t I —1 I I @2y + 29 —¢
141 I v 1 V ,
+ 2y —2/s
1| —1 | 1 | ] 0 |1 I 1 I i 0 2+ 2
— 0 1 10 R
z—¢
1| v 1| 1 ! 0 0 2 1 ot/ “
1 0 0 i I 1 ? 0 P A AL z
¢ A g | = e | A g e e a1y o g kg e h Gy —p/e)|(B)h

9 5L Sz H0d [ INASTUATY HOIHAM & SNOLLONNA T1V A0 HTIdV.L
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This table has been arranged according to increasing
values of a};(%) For ecach such value {(}) it was moreover
possible to arrange the rows according to increa&ing values of
(2~—— £)2 ¢ for all values of {in0 < ¢ < 2, e.g. in the first set

8207 <220 <) —40 22 <3—6L 442 if 07 <4

Hence for a given value of j in 2 <7 < 6, the maximum
belongs to one of those five equations

"p(é‘mu:t) = 7 (78)
3

where the function (; — (%) ¢ is either at the beginning or
at the end of one of the three sets of rows of the table ).
For given j with 2 < § < 6, there is no difficulty in deciding

o
> T Hmar

which equation (78) has the root {,,,,. The result is contained
in the following table, together with the value of m(j) =
3

= (j— %) ! and the terms a, §, y, 0 of the matrix 2
belonging to it. (See next page).
In this table, the numbers o, are defined by

6y = 2, 6; = 4, 6, = 6,

and the numbers j, by
49(46 + 454/50)

= A6 =2.44. ..., J,= —— 1 =498 . ...
N1 v T2 3582

In the intervals No. 1—4, the functions ..
behave in the following manner:
Cmae @and m(j) are both steadily decreasing in the intervals
No. 1 and 3;
Coae and m(j) are both steadily increasing in the intervals
No. 2 and 4.

and #m(y)

Further

Cmas = 3 , mlf) = v2=1.41.... for j=a, 6y, 6y,
Conar =027...., m(j) =1.17.... for 7 =74,

and

Coae = 0.4...., m(j) =1.3.... for § = f,.

) The first poynomial 3/, — 2&2 of the table can be omitted, because
for it y = 2 identically in (.
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2 0 1 — 1 _
— I — lz . - o
L it L ek f8—ole) — (1 — D2} : 2+ z s ISty
: = 2 0 _ z— 3+ [a—¢le)
0 |? ? 0
t— iz — o)zl -+ Uz + 2)e} W1+ Dz . o
¢ 4 4 v bl +ovz-zhig|Us =T ¢
¢+ z |tttz + 4 glel —ale) — e o
1 0 2 IR [ £ [+ D\ o e 1
pevney A B Sy . 2 t+ele o=Ii=M¢
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By the table, the graph of the function m(j) is a saw-like
curve for 2 < § < 6. There would be no difficulty in extend-
ing this table to values of 7 beyond ¢, = 6; but this work
would be increasingly laborious.

The analogy between our result for two Hermitean forms
and that for two quadratic forms 9) is remarkable.

(Ingekomen 22-8-746).

%) Cf. K. MAHLER, ,,Lattice Points in Two-dimensional Star Domains
II1”, 1.c 1.



