Mathematics. - On the minimum determinant of a special point set. By K. Mahler (Manchester). (Communicated by Prof. J. G. van der Corput.) *)
(Communicated at the meeting of April 23, 1949.)
In a preceding paper ${ }^{1}$) C. A. Rogers proves the inequality

$$
\lambda_{1} \lambda_{2} \ldots \lambda_{n} \Delta(K) \leqslant 2^{\frac{n-1}{2}} d(\Lambda)
$$

for the successive minima $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of an arbitrary point set K for a lattice Λ. In the present paper, I shall construct a point set for which this formula holds with the equality sign. I prove, moreover, that there exist bounded star bodies for which the quotient of the two sides of Rogers's inequality approaches arbitrarily near to 1 . The constant $2^{\frac{n-1}{2}}$ of Rogers is therefore best-possible, even in the very specialized case of a bounded star body.

1) Let R_{n} be the n-dimensional Euclidean space of all points

$$
X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

with real coordinates. For $k=1,2, \ldots, n$, denote by Γ_{k} the set of all points

$$
\left(g_{1}, g_{2}, \ldots, g_{k}, 0, \ldots, 0\right)
$$

with integral coordinates satisfying ${ }^{2}$)

$$
g_{k} \neq 0, \quad \operatorname{gcd}\left(g_{1}, g_{2}, \ldots, g_{k}\right)=1
$$

and by C_{k} the set of all points

$$
X=t P, \text { where } t \geq 2^{\frac{n-k}{n}} \text { and } P_{\varepsilon} \Gamma_{k} .
$$

Further write

$$
C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}
$$

for the union of $C_{1}, C_{2}, \ldots, C_{n}$, and

$$
K=R_{n}-C
$$

for the set of all points in R_{n} which do not belong to C.
Although K is not a bounded set, it is of the finite type. For the lattice Λ_{0} consisting of the points

$$
\left(2 g_{1}, 2 g_{2}, \ldots, 2 g_{n-1}, g_{n}\right),
$$

[^0]where $g_{1}, g_{2}, \ldots, g_{n}$ run over all integers, is evidently K-admissible, and so
\[

$$
\begin{equation*}
\triangle(K) \leqslant d(\Lambda)=2^{n-1} \tag{1}
\end{equation*}
$$

\]

Our aim is to find the exact value of $\Delta(K)$.
2) The origin $O=(0,0, \ldots, 0)$ is an inner point of K, and K is of the finite type; therefore ${ }^{3}$) K possesses at least one critical lattice, the lattice Λ say. By (1),

$$
\begin{equation*}
d(\Lambda) \leqslant 2^{n-1} \tag{2}
\end{equation*}
$$

For $k=1,2, \ldots, n$, let Π_{k} be the parallelepiped

$$
\left|x_{h}\right|\left\{\begin{array}{l}
<1 \text { if } 1 \leqslant h \leqslant n, h \neq k ; \\
\leqslant 2^{n-1} \text { if } h=k .
\end{array}\right.
$$

By (2) and by Minkowski's theorem on linear forms, each parallelepiped Π_{k} contains a point $Q_{k} \neq \mathrm{O}$ of Λ. Since Λ is K-admissible, and from the definition of K, this point belongs to C; hence only the k-th coordinate of Q_{k}, η_{k} say, is different from zero and may be assumed positive:

$$
\begin{equation*}
\mathbf{Q}_{k}=\left(0, \ldots, \eta_{k}, \ldots, 0\right), \quad \text { where } \eta_{k}>0 \tag{3}
\end{equation*}
$$

The point

$$
Q=Q_{1}+Q_{2}+\ldots+Q_{n}=\left(\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right)
$$

also belongs to Λ and therefore to C. Since $\eta_{n}>0, Q$ necessarily lies in C_{n}. From the definition of this set, there exist then a positive number η and n positive integers $q_{1}, q_{2}, \ldots, q_{n}$ such that

$$
\begin{equation*}
\eta_{k}=\eta q_{k} \quad(k=1,2, \ldots, n) . \tag{4}
\end{equation*}
$$

3) The n lattice points

$$
Q_{1}, Q_{2}, \ldots, Q_{n}
$$

do not necessarily form a basis of Λ; they are, however, linearly independent, and so they generate a sublattice of Λ. Hence there exists a fixed positive integer, q say, such that every point P of Λ can be written in the form
$P=\frac{1}{q}\left\{p_{1} Q_{1}+p_{2} Q_{2}+\ldots+p_{n} Q_{n}\right\}=\left(\frac{\eta}{q} p_{1} q_{1}, \frac{\eta}{q} p_{2} q_{2}, \ldots \frac{\eta}{q} p_{n} q_{n}\right)$ with integral coefficients $p_{1}, p_{2}, \ldots, p_{n}$ depending on P. For shortness, put

$$
\begin{equation*}
\xi=\frac{\eta}{q}, \text { so that } \xi>0 \tag{5}
\end{equation*}
$$

By Minkowski's method of reduction 4), we can now select a basis

$$
P_{1}, P_{2}, \ldots, P_{n}
$$

[^1]of Λ such that each basis point P_{k}, where $k=1,2, \ldots, n$, is a linear combination of $Q_{1}, Q_{2}, \ldots, Q_{k}$, hence of the form
\[

$$
\begin{equation*}
P_{k}=\left(\xi p_{k 1}, \xi p_{k 2}, \ldots, \xi p_{k k}, 0, \ldots, 0\right) \tag{6}
\end{equation*}
$$

\]

where

$$
\begin{equation*}
p_{k 1}, p_{k 2}, \ldots, p_{k k} \text { are integers, and } p_{k k}>0 \tag{7}
\end{equation*}
$$

It may, moreover, be assumed that
$0 \leqslant p_{k l}<p_{l l}$ for all pairs of indices k, l satisfying $1 \leqslant k<l \leqslant n$. (8)
4) Lemma: Let

$$
L_{h}(x)=\sum_{k=1}^{n} a_{h k} x_{k} \quad(h=1,2, \ldots, m)
$$

be m linear forms in n variables $x_{1}, x_{2}, \ldots, x_{n}$, with integral coefficients $a_{h k}$ not all zero. Denote by

$$
a=g c d a_{h k}
$$

the greatest common divisor of these coefficients, and by

$$
L(x)=\operatorname{gcd} L_{h}(x)
$$

the greatest common divisor of the numbers $L_{h}(x)$, where $h=1,2, \ldots, m$. Then there exist integers $x_{1}, x_{2}, \ldots, x_{n}$ such that

$$
L(x)=a
$$

Proof: By the theory of elementary divisors ${ }^{5}$), two integral unimodular square matrices

$$
\left(b_{g h}\right) \text { and }\left(c_{k l}\right)
$$

of m^{2} and n^{2} elements, respectively, can be found such that the product matrix

$$
\left(b_{g h}\right)\left(a_{h k}\right)\left(c_{k l}\right), \quad=\left(d_{g l}\right) \text { say }
$$

of $m n$ elements is a diagonal matrix, viz.

$$
d_{g l}=0 \text { if } g \neq l
$$

Put

$$
r=\min (m, n)
$$

and

$$
x_{k}=\sum_{l=1}^{n} c_{k l} x_{l}^{\prime}, \quad L_{g}\left(x^{\prime}\right)=\sum_{h=1}^{m} b_{g h} L_{h}(x)
$$

so that

$$
L_{g}\left(x^{\prime}\right)=\left\{\begin{array}{cl}
d_{g g} x_{g}^{\prime} & \text { if } g \leqslant r \\
0 & \text { if } g>r
\end{array}\right.
$$

Then evidently

$$
a=\operatorname{gcd}\left(d_{11}, d_{22}, \ldots, d_{r_{r}}\right)
$$

${ }^{5}$) See e.g. B. L. van der Waerden, Moderne Algebra, Vol. 2 (1931), § 106.
and

$$
L(x)=\operatorname{gcd} L_{g}\left(x^{\prime}\right)=\operatorname{gcd}\left(d_{11} x_{1}^{\prime}, d_{22} x_{2}^{\prime}, \ldots, d_{r r} x_{r}^{\prime}\right),
$$

and the assertion follows on putting

$$
x_{1}^{\prime}=x_{2}^{\prime}=\ldots=x_{r}^{\prime}=1
$$

5) Every point P of Λ can be written as

$$
P=x_{1} P_{1}+x_{2} P_{2}+\ldots+x_{n} P_{n}
$$

with integral coefficients $x_{1}, x_{2}, \ldots, x_{n}$. Therefore P has the coordinates

$$
\begin{equation*}
P=\left(\xi L_{1}(x), \xi L_{2}(x), \ldots, \xi L_{n}(x)\right) \tag{9}
\end{equation*}
$$

where, for shortness,

$$
\begin{equation*}
L_{h}(x)=\sum_{g=h}^{n} p_{g h} x_{g} \quad(h=1,2, \ldots, n) \tag{10}
\end{equation*}
$$

Let now d_{k}, for $k=1,2, \ldots, n$, be the greatest common divisor of the coefficients

$$
p_{g h} \text { with } 1 \leq h \leq g \leq k
$$

From this definition, it is obvious that

$$
\begin{equation*}
d_{k} \text { is divisible by } d_{k+1} \text { for } k=1,2, \ldots, n-1 \ldots \tag{11}
\end{equation*}
$$

Since the matrix of the n forms $L_{1}(x), L_{2}(x), \ldots, L_{n}(x)$ is triangular, d_{k} may also be defined as the greatest common divisor of the coefficients of

$$
x_{1}, x_{2}, \ldots, x_{k}
$$

in the forms

$$
L_{1}(x), L_{2}(x), \ldots, L_{k}(x)
$$

It follows therefore, for $k=1,2, \ldots, n$, from the lemma in 4) that there exist integers

$$
x_{k 1}, x_{k 2}, \ldots, x_{k k}
$$

not all zero such that the greatest common divisor of the k numbers
is equal to d_{k}.
The point

$$
\begin{equation*}
R_{k}=x_{k 1} P_{1}+x_{k 2} P_{2}+\ldots+x_{k k} P_{k} \neq 0 \tag{12}
\end{equation*}
$$

belongs to Λ and has the coordinates

$$
\begin{equation*}
R_{k}=\left(\xi g_{1 k}, \xi g_{2 k}, \ldots, \xi g_{k k}, 0, \ldots, 0\right) \tag{13}
\end{equation*}
$$

which are not all zero and satisfy the equation

$$
\begin{equation*}
\operatorname{gcd}\left(g_{1 k}, g_{2 k}, \ldots, g_{k k}\right)=d_{k} \tag{14}
\end{equation*}
$$

Since R_{k} is not an inner point of K, it belongs to one of the sets $C_{1}, C_{2}, \ldots, C_{k}$. We conclude therefore, from the definition of these sets, that

$$
\begin{equation*}
\xi d_{k} \geqslant 2^{\frac{n-k}{n}} \quad(k=1,2, \ldots, n) \tag{15}
\end{equation*}
$$

6) Next let ζ be the positive real number for which

$$
\begin{equation*}
\zeta \min _{k=1,2, \ldots, n} 2^{-\frac{n-k}{n}} d_{k}=1, \text { whence } 0<\zeta \leqslant \xi \tag{16}
\end{equation*}
$$

There is then an index x with $1 \leq x \leq n$ such that

$$
\zeta d_{k}\left\{\begin{array}{l}
\geqslant 2^{\frac{n-k}{n}} \text { for } k=1,2, \ldots, n, \tag{17}\\
=2^{\frac{n-x}{n}} \text { for } k=\varkappa .
\end{array}\right\}
$$

From these formulae (17):

$$
d_{k} \geqslant \zeta^{-1} \cdot 2^{\frac{n-k}{n}}=2^{\frac{\eta-k}{n}} d_{k} \quad(k=1,2, \ldots, n)
$$

Hence, if $k<x$, then

$$
d_{k} \geqslant 2^{\frac{1}{n}} d_{k}
$$

whence, by (11),

$$
\begin{equation*}
d_{k} \geqslant 2 d_{x} \quad \text { for } k=1,2, \ldots, x-1 \tag{18}
\end{equation*}
$$

If, however, $k \geq x$, then

$$
d_{k} \geqslant 2^{\frac{x-n}{n}} d_{x}>\frac{1}{2} d_{x}
$$

and (11) implies now that

$$
\begin{equation*}
d_{k}=d_{x} \quad \text { for } k=x, x+1, \ldots, n \tag{19}
\end{equation*}
$$

On combining (18) and (19), we obtain the further inequality,

$$
\begin{equation*}
\xi^{n} d_{1} d_{2} \ldots d_{n} \geqslant \zeta^{n} d_{1} d_{2} \ldots d_{n} \geqslant 2^{x-1}\left(\zeta d_{x}\right)^{n}=2^{n-1} \tag{20}
\end{equation*}
$$

7) The critical lattice Λ we have been considering, has the basis $P_{1}, P_{2}, \ldots, P_{n}$ of the form (6). Its determinant is therefore

$$
\begin{equation*}
d(\Lambda)=\xi^{n} p_{11} p_{22} \ldots p_{n n} \tag{21}
\end{equation*}
$$

since all factors on the right-hand side of this equation are positive. From the definition of d_{k},

$$
\begin{equation*}
p_{k k} \text { is divisible by } d_{k} \quad \text { for } k=1,2, \ldots, n . . . \tag{22}
\end{equation*}
$$

Hence by (20) and (21),

$$
d(\Lambda) \geqslant \xi^{n} d_{1} d_{2} \ldots d_{n} \geqslant 2^{n-1}
$$

whence

$$
\begin{equation*}
\triangle(K) \geqslant 2^{n-1} \tag{23}
\end{equation*}
$$

The same right-hand side was, by (1), also a lower bound of $\triangle(K)$; hence the final result

$$
\begin{equation*}
\triangle(K)=2^{n-1} \tag{A}
\end{equation*}
$$

is obtained.
8) By means of the last formulae, all critical lattices of K can be obtained as follows.

It is clear, from the previous discussion, that to any critical lattice Λ, there is a unique index x with $1 \leq x \leq n$ such that

$$
d_{k}=\left\{\begin{array}{r}
2 d_{x} \text { for } k=1,2, \ldots, x-1, \tag{24}\\
d_{x} \text { for } k=x, x+1, \ldots, n
\end{array}\right\}
$$

and that further

$$
\begin{gather*}
\zeta=\xi, \ldots \tag{25}\\
p_{11}=d_{1}, p_{22}=d_{2}, \ldots, p_{n n}=d_{n} ; \tag{26}
\end{gather*}
$$

for otherwise $d(\Lambda)$ would be larger than 2^{n-1}. Since we may, if necessary, replace ξ by $d_{x} \xi$, there is no loss of generality in assuming that

$$
\begin{equation*}
d_{x}=1, \tag{27}
\end{equation*}
$$

whence, by (17):

$$
\begin{equation*}
\xi=2^{\frac{n-x}{n}} . \tag{28}
\end{equation*}
$$

The basis points $P_{1}, P_{2}, \ldots, P_{n}$ become,

$$
P_{k}=\left(2^{\frac{n-x}{n}} p_{k 1}, 2^{\frac{n-x}{n}} p_{k 2}, \ldots, 2^{\frac{n-k}{n}} p_{k k}, 0, \ldots, 0\right)
$$

with integral $p_{k l}$. By (7), (8), and (24)-(28), moreover

$$
p_{k k}=\left\{\begin{array}{l}
2 \text { if } k=1,2, \ldots, x-1, \tag{29}\\
1 \text { if } k=x, x+1, \ldots, n_{1}
\end{array}\right\} .
$$

and

$$
p_{k l}=\left\{\begin{array}{ll}
0 & \text { if } 1 \leqslant l<k \leqslant x-1 \tag{30}\\
0 & \text { if } x \leqslant l<k \leqslant n \\
0 \text { or } 1 & \text { if } x \leqslant k \leqslant n, 1 \leqslant l \leqslant x-1
\end{array}\right\}
$$

It is also clear that different choices of x and of the integers $p_{k l}$ lead to different critical lattices. Since for exactly

$$
(x-1)(n-x+1)
$$

coefficients $p_{k l}$ there is the alternative $p_{k l}=0$ or 1 , there are then for each x just

$$
2^{(x-1)(n-x+1)}
$$

different critical lattices. We find therefore, on summing over x, that the total number $N(n)$ of different critical lattices of K is given by the formula

$$
\begin{equation*}
N(n)=\sum_{x=1}^{n} 2^{(x-1)(n-x+1)} \tag{B}
\end{equation*}
$$

Thus $N(n)=3,9,33,161,1089, \ldots$ for $n=2,3,4,5,6, \ldots$
9) We next determine the successive minima

$$
\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}
$$

of K in the lattice Λ_{1} of all points with integral coordinates.
Denote by λK, for $\lambda>0$, the set of all points λX where X belongs to K. The first minimum λ_{1} of K for Λ_{1} is defined as the lower bound of all $\lambda>0$ such that λK contains a point of Λ_{1} different from O; if further $k=2,3, \ldots, n$, then the n-th minimum λ_{k} of K for Λ_{1} is defined as the lower bound of all $\lambda>0$ such that λK contains k linearly independent points of Λ_{n}. We find these minima as follows.

Consider an arbitrary point

$$
P=\left(g_{1}, g_{2}, \ldots, g_{n}\right) \neq 0
$$

of Λ_{1}; here $g_{1}, g_{2}, \ldots, g_{n}$ are integers. Put

$$
d=\operatorname{gcd}\left(g_{1}, g_{2}, \ldots, g_{n}\right), \text { so that } d \geq 1
$$

and assume, say, that

$$
g_{k} \neq 0, \text { but } g_{k+1}=\ldots=g_{n}=0
$$

for some integer k with $1 \leq k \leq n$. Then P / d belongs to Γ_{k}, and $t P$ belongs to C_{k} if and only if

$$
t \geqslant 2^{\frac{n-k}{n}} d^{-1}
$$

Therefore λK, for $\lambda>0$, contains P if, and only if,

$$
\lambda>2^{-\frac{n-k}{n}} d
$$

We deduce that if

$$
\lambda \leqslant 2^{-\frac{n-1}{n}}
$$

then λK contains no lattice point except O; if, however,

$$
\begin{equation*}
2^{-\frac{n-k}{n}}<\lambda \leqslant 2^{-\frac{n-k-1}{n}} \tag{31}
\end{equation*}
$$

where $k=1,2, \ldots, n$, then λK contains just the points of the k sets

$$
\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{k}
$$

Hence, if (31) holds, then λK contains k, and not more, linearly independent points of Λ_{1}. The successive minima of K for Λ_{1} are therefore given by the equations,

$$
\begin{equation*}
\lambda_{k}=2^{-\frac{n-k}{n}} \quad(k=1,2, \ldots, n) \tag{32}
\end{equation*}
$$

By (A), this implies that

$$
\begin{equation*}
\lambda_{1} \lambda_{2} \ldots \lambda_{n} \triangle(K)=2^{-\sum_{k=1}^{n} \frac{n-k}{n}} 2^{n-1}=2^{\frac{n-1}{2}}=2^{\frac{n-1}{2}} d\left(\Lambda_{1}\right) \tag{C}
\end{equation*}
$$

We have thus proved that in the special case of the point set K and the
lattice Λ_{1}, the sign of equality holds in Rogers's inequality for the sucalessive minima of a point set ${ }^{6}$).
10) The point set K is neither bounded nor a star body. It can, however, be approximated by a bounded star body of nearly the same minimum determinant and with the same successive minima, as follows.

Let ε be a small positive number. If X is any point different from O, then denote by $S_{\varepsilon}(X)$ the open set consisting of all points

$$
t X+\varepsilon(t-1) Y
$$

where t runs over all numbers with

$$
t>1,
$$

and Y runs over all points of the open unit sphere

$$
|Y|<1
$$

evidently $S_{\varepsilon}(X)$ is a cone open towards infinity with vertex at X and axis on the line through O and X. Let further S_{ε} be the closed sphere of radius $1 / \varepsilon$ which consists of all points Z satisfying

$$
|Z| \leq 1 / \varepsilon
$$

We now define K_{ε} as the set of all those points of K which belong to S_{ε}, but to none of the cones

$$
S_{\varepsilon}\left(2^{\frac{n-k}{n}} X\right), \text { where } X \varepsilon \Gamma_{k} \text { and } k=1,2, \ldots, n
$$

Since only a finite number of the cones contains points of S_{ε}, it is clear that K_{ε} is a bounded star body.

Let $\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots, \lambda_{n}^{\prime}$ be the successive minima of K_{ε} for Λ. Since K_{ε} is a subset of K, necessarily

$$
\lambda_{k}^{\prime} \geqslant \lambda_{k} \quad(k=1,2, \ldots, n)
$$

We can in the present case replace these inequalities immediately by the equations

$$
\begin{equation*}
\lambda_{k}^{\prime}=\lambda_{k} \quad(k=1,2, \ldots, n) \tag{33}
\end{equation*}
$$

because the n boundary points

$$
\left(2^{\frac{n-1}{n}}, 0, \ldots, 0\right),\left(0,2^{\frac{n-2}{n}}, \ldots, 0\right), \ldots,(0,0, \ldots, 1)
$$

in which the successive minima of K for Λ_{1} are attained, are still boundary points of K_{ε} provided ε is sufficiently small.
11) We further show that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \triangle\left(K_{\varepsilon}\right)=\triangle(K) \tag{34}
\end{equation*}
$$

[^2]Let this equation be false. There exists then a sequence of positive numbers

$$
\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \ldots \quad\left(\dot{\varepsilon_{1}}>\varepsilon_{2}>\varepsilon_{3}>\ldots>0\right)
$$

tending to zero such that

$$
\lim _{r \rightarrow \infty} \triangle\left(K_{\varepsilon_{r}}\right)
$$

exists, but is different from $\Delta(K)$. But then

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \Delta\left(K_{\varepsilon_{r}}\right)<\Delta(K), \quad . \quad . \quad . \quad . \quad . \tag{35}
\end{equation*}
$$

since each $K_{\varepsilon_{r}}$ is a subset of K. As a bounded star body, each $K_{\varepsilon_{r}}$ possesses at least one critical lattice, Λ_{r} say; by the last formula, it may be assumed that

$$
d\left(\Lambda_{r}\right)=\Delta\left(K_{\varepsilon_{r}}\right) \leqslant \Delta(K) \quad(r=1,2,3, \ldots)
$$

Moreover, all sets $K_{\varepsilon_{r}}$ contain a fixed neighbourhood of the origin O as subset. The sequence of lattices

$$
\Lambda_{1}, \Lambda_{2}, \Lambda_{3}, \ldots
$$

is therefore bounded, and so, on possibly replacing this sequence by a suitable infinite subsequence, we may assume that the lattices Λ_{r} tend to a limiting lattice, Λ say. By (35),

$$
\begin{equation*}
d(\Lambda)=\lim _{r \rightarrow \infty} d\left(\Lambda_{r}\right)=\lim _{r \rightarrow \infty} \triangle\left(K_{\varepsilon_{r}}\right)<\triangle(K), \ldots . \tag{36}
\end{equation*}
$$

and therefore Λ cannot be K-admissible. Hence there exists a point $P \neq 0$ of Λ which is an inner point of K. This means that P, for sufficiently small $\varepsilon>0$, is also an inner point of K_{ε}.

We can now select in each lattice Λ_{r} a point $P_{r} \neq O$ such that the sequence of points

$$
P_{1}, P_{2}, P_{3}, \ldots
$$

tends to P. Hence, for any fixed sufficiently small $\varepsilon>0$, all but a finite number of these points are inner points of K. Now, since

$$
\varepsilon_{r}>\varepsilon_{r+1},
$$

each star body $K_{\varepsilon_{r}}$ is contained in all the following bodies

$$
K_{\varepsilon_{r+1}}, K_{\varepsilon_{r+2}}, K_{\varepsilon_{r+3}}, \ldots
$$

Therefore, when r is sufficiently large, then the point P_{r} is an inner point of $K_{\varepsilon_{r}}$, contrary to the hypothesis that Λ_{r} is a critical, hence also an admissible lattice of $K_{\varepsilon_{r}}$. This concludes the proof of (34).
12) The two formulae (33) and (34) imply that

$$
\lim _{z \rightarrow 0} \lambda_{1}^{\prime} \lambda_{2}^{\prime} \ldots \lambda_{n}^{\prime} \triangle\left(K_{z}\right)=2^{\frac{n-1}{2}} d\left(\Lambda_{1}\right)
$$

Hence if $\delta>0$ is an arbitrarily small number, then there exists a positive
number ε such that the successive minima $\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots, \lambda_{n}^{\prime}$ of K_{ε} satisfy the inequality,

$$
\lambda_{1}^{\prime} \lambda_{2}^{\prime} \ldots \lambda_{n}^{\prime} \Delta\left(K_{\varepsilon}\right)>(1-\delta) 2^{\frac{n-1}{2}} d\left(\Lambda_{1}\right)
$$

where Λ_{1} is the lattice of all points with integral coordinates.
We have therefore proved that the constant $2^{\frac{n-1}{2}}$ in Rogers's inequality is best-possible even for bounded star bodies. This is very surprising as this inequality applies to general sets.

Mathematics Department, Manchester University.
December 15, 1948.

Postscript (May 16, 1949): In a note in the C.R. de l'Academie des Sciences (Paris), 228 (March 7, 1949), 796-797, Ch. Chabauty announces the main result of this paper, but does not give a detailed proof.

[^0]: *) This article has been sent to J. G. VAN DER Corput on February 12, 1949.

 1) C. A. Rogers, The product of the minima and the determinant of a set. These Proceedings 52, 256-263 (1949).
 $\left.{ }^{2}\right) \operatorname{gcd}\left(g_{1}, g_{2}, \ldots, g_{k}\right)$ means the greatest common divisor of $g_{1}, g_{2}, \ldots, g_{k}$, and similarly in other cases.
[^1]: ${ }^{3}$) See my paper, On the critical lattices of an arbitrary point set, Canadian Journal of Mathematics, I (1949), 78-87.
 ${ }^{4}$) Geometrie der Zahlen (1910), § 46.

[^2]: $\left.{ }^{6}\right)$ See 1.c. ${ }^{1}$).

