Mathematics. — On the minimum determinant of a special point set. By K. MAHLER (Manchester). (Communicated by Prof. J. G. VAN DER CORPUT.) *)

(Communicated at the meeting of April 23, 1949.)

In a preceding paper 1) C. A. ROGERS proves the inequality

$$\lambda_1 \lambda_2 \ldots \lambda_n \bigtriangleup (K) \leqslant 2^{\frac{n-1}{2}} d(\Lambda)$$

for the successive minima $\lambda_1, \lambda_2, ..., \lambda_n$ of an arbitrary point set K for a lattice Λ . In the present paper, I shall construct a point set for which this formula holds with the equality sign. I prove, moreover, that there exist bounded star bodies for which the quotient of the two sides of ROGERS's $\frac{n-1}{2}$

inequality approaches arbitrarily near to 1. The constant $2^{\frac{n-1}{2}}$ of ROGERS is therefore best-possible, even in the very specialized case of a bounded star body.

1) Let \mathcal{R}_n be the *n*-dimensional Euclidean space of all points

$$X = (x_1, x_2, ..., x_n)$$

with real coordinates. For k = 1, 2, ..., n, denote by Γ_k the set of all points

$$(g_1, g_2, \ldots, g_k, 0, \ldots, 0)$$

with integral coordinates satisfying ²)

$$g_k \neq 0$$
, $gcd(g_1, g_2, ..., g_k) = 1$,

and by C_k the set of all points

$$X = tP$$
, where $t \ge 2^{\frac{n-k}{n}}$ and $P \varepsilon \Gamma_k$.

Further write

$$C = C_1 \cup C_2 \cup \dots \cup C_n$$

for the union of $C_1, C_2, ..., C_n$, and

$$K = \mathcal{R}_n - C$$

for the set of all points in \mathbb{R}_n which do not belong to C.

Although K is not a bounded set, it is of the finite type. For the lattice Λ_0 consisting of the points

$$(2g_1, 2g_2, \ldots, 2g_{n-1}, g_n),$$

^{*)} This article has been sent to J. G. VAN DER CORPUT on February 12, 1949.

¹) C. A. ROGERS, The product of the minima and the determinant of a set. These Proceedings 52, 256-263 (1949).

²) $gcd(g_1, g_2, ..., g_k)$ means the greatest common divisor of $g_1, g_2, ..., g_k$, and similarly in other cases.

where $g_1, g_2, ..., g_n$ run over all integers, is evidently K-admissible, and so

Our aim is to find the exact value of $\triangle(K)$.

2) The origin O = (0, 0, ..., 0) is an inner point of K, and K is of the finite type; therefore ³) K possesses at least one critical lattice, the lattice Λ say. By (1),

$$d(\Lambda) \leqslant 2^{n-1} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots (2)$$

For k = 1, 2, ..., n, let Π_k be the parallelepiped

$$|x_h| \begin{cases} <1 \text{ if } 1 \leq h \leq n, \ h \neq k; \\ \leq 2^{n-1} \text{ if } h = k. \end{cases}$$

By (2) and by MINKOWSKI's theorem on linear forms, each parallelepiped Π_k contains a point $Q_k \neq O$ of Λ . Since Λ is K-admissible, and from the definition of K, this point belongs to C; hence only the k-th coordinate of Q_k , η_k say, is different from zero and may be assumed positive:

$$Q_k = (0, ..., \eta_k, ..., 0), \quad \text{where } \eta_k > 0. ... (3)$$

The point

 $Q = Q_1 + Q_2 + ... + Q_n = (\eta_1, \eta_2, ..., \eta_n)$

also belongs to Λ and therefore to C. Since $\eta_n > 0$, Q necessarily lies in C_n . From the definition of this set, there exist then a positive number η and n positive integers $q_1, q_2, ..., q_n$ such that

$$\eta_k = \eta q_k$$
 (k = 1, 2, ..., n). (4)

3) The *n* lattice points

 $Q_1, Q_2, ..., Q_n$

do not necessarily form a basis of Λ ; they are, however, linearly independent, and so they generate a sublattice of Λ . Hence there exists a fixed positive integer, q say, such that every point P of Λ can be written in the form

$$P = \frac{1}{q} \{ p_1 Q_1 + p_2 Q_2 + \ldots + p_n Q_n \} = \left(\frac{\eta}{q} p_1 q_1, \frac{\eta}{q} p_2 q_2, \ldots, \frac{\eta}{q} p_n q_n \right)$$

with integral coefficients $p_1, p_2, ..., p_n$ depending on P. For shortness, put

$$\xi = \frac{\eta}{q}$$
, so that $\xi > 0$ (5)

By MINKOWSKI's method of reduction 4), we can now select a basis

 $P_1, P_2, ..., P_n$

³) See my paper, On the critical lattices of an arbitrary point set, Canadian Journal of Mathematics, I (1949), 78-87.

⁴⁾ Geometrie der Zahlen (1910), § 46.

of Λ such that each basis point P_k , where k = 1, 2, ..., n, is a linear combination of $Q_1, Q_2, ..., Q_k$, hence of the form

$$P_k = (\xi p_{k1}, \xi p_{k2}, \dots, \xi p_{kk}, 0, \dots, 0) \quad . \quad . \quad . \quad . \quad (6)$$

where

 $p_{k1}, p_{k2}, \ldots, p_{kk}$ are integers, and $p_{kk} > 0$. . . (7)

It may, moreover, be assumed that

 $0 \leq p_{kl} < p_{ll}$ for all pairs of indices k, l satisfying $1 \leq k < l \leq n$. (8)

4) Lemma: Let

$$L_h(x) = \sum_{k=1}^n a_{hk} x_k \qquad (h = 1, 2, ..., m)$$

be m linear forms in n variables $x_1, x_2, ..., x_n$, with integral coefficients a_{hk} not all zero. Denote by

$$a \equiv gcd a_{hk}$$

the greatest common divisor of these coefficients, and by

$$L(x) \equiv \gcd L_h(x)$$

the greatest common divisor of the numbers $L_h(x)$, where h = 1, 2, ..., m. Then there exist integers $x_1, x_2, ..., x_n$ such that

$$L(x) \equiv a$$

Proof: By the theory of elementary divisors 5), two integral unimodular square matrices

$$(b_{gh})$$
 and (c_{kl})

of m^2 and n^2 elements, respectively, can be found such that the product matrix

$$(b_{gh})(a_{hk})(c_{kl}), = (d_{gl})$$
 say,

of mn elements is a diagonal matrix, viz.

$$d_{gl} = 0$$
 if $g \neq l$.

Put

$$r = \min(m, n)$$

and

$$x_k = \sum_{l=1}^{n} c_{kl} x'_l, \qquad L_g(x') = \sum_{h=1}^{m} b_{gh} L_h(x),$$

so that

$$L_g(x') = \begin{cases} d_{gg} x'_g & \text{if } g \leq r, \\ 0 & \text{if } g > r. \end{cases}$$

Then evidently

$$a = gcd (d_{11}, d_{22}, ..., d_{rr})$$

⁵⁾ See e.g. B. L. VAN DER WAERDEN, Moderne Algebra, Vol. 2 (1931), § 106.

and

$$L(x) = gcd L_g(x') = gcd (d_{11} x'_1, d_{22} x'_2, \ldots, d_{rr} x'_r),$$

and the assertion follows on putting

$$x_1' = x_2' = \ldots = x_r' = 1.$$

5) Every point P of Λ can be written as

$$P = x_1 P_1 + x_2 P_2 + \ldots + x_n P_n$$

with integral coefficients $x_1, x_2, ..., x_n$. Therefore P has the coordinates

$$P = (\xi L_1(x), \xi L_2(x), \dots, \xi L_n(x)), \quad . \quad . \quad . \quad . \quad (9)$$

where, for shortness,

$$L_h(x) = \sum_{g=h}^n p_{gh} x_g \qquad (h = 1, 2, ..., n). \qquad . \qquad . \qquad (10)$$

Let now d_k , for k = 1, 2, ..., n, be the greatest common divisor of the coefficients

$$p_{gh}$$
 with $1 \leq h \leq g \leq k$.

From this definition, it is obvious that

 d_k is divisible by d_{k+1} for k = 1, 2, ..., n-1. . . (11)

Since the matrix of the *n* forms $L_1(x), L_2(x), ..., L_n(x)$ is triangular, d_k may also be defined as the greatest common divisor of the coefficients of

$$x_1, x_2, ..., x_k$$

in the forms

 $L_1(x), L_2(x), ..., L_k(x).$

It follows therefore, for k = 1, 2, ..., n, from the lemma in 4) that there exist integers

 $x_{k1}, x_{k2}, \ldots, x_{kk}$

not all zero such that the greatest common divisor of the k numbers

$$g_{hk} = \sum_{g=h}^{k} p_{gh} x_{kg}$$
 (h = 1, 2, ..., k)

is equal to d_k .

The point

$$R_{k} = x_{k1} P_{1} + x_{k2} P_{2} + \ldots + x_{kk} P_{k} \neq O \quad . \quad . \quad (12)$$

belongs to Λ and has the coordinates

which are not all zero and satisfy the equation

$$gcd(g_{1k}, g_{2k}, \ldots, g_{kk}) = d_k.$$
 (14)

Since R_k is not an inner point of K, it belongs to one of the sets $C_1, C_2, ..., C_k$. We conclude therefore, from the definition of these sets, that

$$\xi d_k \ge 2^{\frac{n-k}{n}}$$
 (k = 1, 2, ..., n). (15)

6) Next let ζ be the positive real number for which

$$\zeta \min_{k=1,2,...,n} 2^{-\frac{n-k}{n}} d_k = 1$$
, whence $0 < \zeta \leq \xi$ (16)

There is then an index \varkappa with $1 \le \varkappa \le n$ such that

$$\zeta d_k \begin{cases} \geqslant 2^{\frac{n-k}{n}} \text{ for } k = 1, 2, \dots, n, \\ = 2^{\frac{n-\kappa}{n}} \text{ for } k = \kappa. \end{cases} \qquad (17)$$

From these formulae (17):

$$d_k \ge \zeta^{-1} \cdot 2^{\frac{n-k}{n}} = 2^{\frac{x-k}{n}} d_x$$
 $(k = 1, 2, ..., n).$

Hence, if $k < \varkappa$, then

$$d_k \geqslant 2^{\frac{1}{n}} d_z$$
,

whence, by (11),

$$d_k \ge 2 d_x$$
 for $k = 1, 2, ..., n - 1$ (18)

If, however, $k \geq \varkappa$, then

$$d_k \geqslant 2^{\frac{x-n}{n}} d_z > \frac{1}{2} d_z$$

and (11) implies now that

$$d_k = d_x$$
 for $k = x, x + 1, ..., n.$ (19)

On combining (18) and (19), we obtain the further inequality,

$$\xi^n d_1 d_2 \dots d_n \geqslant \zeta^n d_1 d_2 \dots d_n \geqslant 2^{n-1} (\zeta d_n)^n = 2^{n-1}$$
., (20)

7) The critical lattice Λ we have been considering, has the basis $P_1, P_2, ..., P_n$ of the form (6). Its determinant is therefore

$$d(\Lambda) = \xi^n \, p_{11} \, p_{22} \dots p_{nn}, \, \ldots \, \ldots \, \ldots \, (21)$$

since all factors on the right-hand side of this equation are positive. From the definition of d_k ,

 p_{kk} is divisible by d_k for k = 1, 2, ..., n. (22) Hence by (20) and (21),

 $d(\Lambda) \geqslant \xi^n d_1 d_2 \dots d_n \geqslant 2^{n-1}$

whence

$$\triangle (K) \geqslant 2^{n-1} \ldots \ldots \ldots \ldots \ldots \ldots (23)$$

The same right-hand side was, by (1), also a lower bound of $\triangle(K)$; hence the final result

$$\triangle (K) = 2^{n-1} \ldots \ldots \ldots \ldots \ldots \ldots (A)$$

is obtained.

8) By means of the last formulae, all critical lattices of K can be obtained as follows.

It is clear, from the previous discussion, that to any critical lattice Λ , there is a unique index \varkappa with $1 \le \varkappa \le n$ such that

$$d_{k} = \begin{cases} 2 d_{x} \text{ for } k = 1, 2, \dots, x - 1, \\ d_{x} \text{ for } k = x, x + 1, \dots, n, \end{cases} \quad . \quad . \quad . \quad (24)$$

and that further

$$\zeta = \xi, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots (25)$$

for otherwise $d(\Lambda)$ would be larger than 2^{n-1} . Since we may, if necessary, replace ξ by $d_x\xi$, there is no loss of generality in assuming that

$$d_x = 1, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots (27)$$

whence, by (17):

The basis points $P_1, P_2, ..., P_n$ become,

$$P_{k} = \left(2^{\frac{n-x}{n}} p_{k1}, 2^{\frac{n-x}{n}} p_{k2}, \dots, 2^{\frac{n-x}{n}} p_{kk}, 0, \dots, 0\right)$$

with integral p_{kl} . By (7), (8), and (24)-(28), moreover

$$p_{kk} = \begin{cases} 2 \text{ if } k = 1, 2, \dots, n-1, \\ 1 \text{ if } k = n, n+1, \dots, n, \end{cases} \quad \dots \quad (29)$$

and

$$p_{kl} = \begin{cases} 0 & \text{if } 1 \leq l < k \leq x - 1, \\ 0 & \text{if } x \leq l < k \leq n, \\ 0 & \text{or } 1 & \text{if } x \leq k \leq n, 1 \leq l \leq x - 1. \end{cases}$$
(30)

It is also clear that different choices of \varkappa and of the integers p_{kl} lead to different critical lattices. Since for exactly

(x-1)(n-x+1)

coefficients p_{kl} there is the alternative $p_{kl} = 0$ or 1, there are then for each \varkappa just

$$2^{(x-1)(n-x+1)}$$

different critical lattices. We find therefore, on summing over \varkappa , that the total number N(n) of different critical lattices of K is given by the formula

$$N(n) = \sum_{x=1}^{n} 2^{(x-1)(n-x+1)} \dots \dots \dots \dots \dots \dots (B)$$

Thus $N(n) = 3, 9, 33, 161, 1089, \dots$ for $n = 2, 3, 4, 5, 6, \dots$

9) We next determine the successive minima

 $\lambda_1, \lambda_2, \ldots, \lambda_n$

of K in the lattice Λ_1 of all points with integral coordinates.

Denote by λK , for $\lambda > 0$, the set of all points λX where X belongs to K. The first minimum λ_1 of K for Λ_1 is defined as the lower bound of all $\lambda > 0$ such that λK contains a point of Λ_1 different from O; if further k = 2, 3, ..., n, then the *n*-th minimum λ_k of K for Λ_1 is defined as the lower bound of all $\lambda > 0$ such that λK contains k linearly independent points of Λ_n . We find these minima as follows.

Consider an arbitrary point

$$P = (g_1, g_2, ..., g_n) \neq O$$

of Λ_1 ; here $g_1, g_2, ..., g_n$ are integers. Put

$$d = gcd (g_1, g_2, ..., g_n)$$
, so that $d \ge 1$,

and assume, say, that

$$g_k \neq 0$$
, but $g_{k+1} = \ldots = g_n = 0$,

for some integer k with $1 \le k \le n$. Then P/d belongs to Γ_k , and tP belongs to C_k if and only if

$$t \geqslant 2^{\frac{n-k}{n}} d^{-1}.$$

Therefore λK , for $\lambda > 0$, contains P if, and only if,

$$\lambda > 2^{-\frac{n-k}{n}} d.$$

We deduce that if

$$\lambda \leqslant 2^{-\frac{n-1}{n}}$$

then λK contains no lattice point except O; if, however,

$$2^{-\frac{n-k}{n}} < \lambda \leqslant 2^{-\frac{n-k-1}{n}}, \ldots \ldots \ldots (31)$$

where k = 1, 2, ..., n, then λK contains just the points of the k sets

 $\Gamma_1, \Gamma_2, \ldots, \Gamma_k.$

Hence, if (31) holds, then λK contains k, and not more, linearly independent points of Λ_1 . The successive minima of K for Λ_1 are therefore given by the equations,

$$\lambda_k = 2^{-\frac{n-k}{n}}$$
 (k = 1, 2, ..., n). (32)

By (A), this implies that

$$\lambda_1 \lambda_2 \dots \lambda_n \bigtriangleup (K) = 2^{-\frac{n}{k} \sum_{k=1}^{n} \frac{n-k}{n}} 2^{n-1} = 2^{\frac{n-1}{2}} = 2^{\frac{n-1}{2}} d(\Lambda_1) \dots (C)$$

We have thus proved that in the special case of the point set K and the

lattice Λ_1 , the sign of equality holds in ROGERS's inequality for the successive minima of a point set ⁶).

10) The point set K is neither bounded nor a star body. It can, however, be approximated by a bounded star body of nearly the same minimum determinant and with the same successive minima, as follows.

Let ε be a small positive number. If X is any point different from O, then denote by $S_{\varepsilon}(X)$ the open set consisting of all points

$$tX + \varepsilon(t-1)Y$$

where t runs over all numbers with

t > 1,

and Y runs over all points of the open unit sphere

evidently $S_{\varepsilon}(X)$ is a cone open towards infinity with vertex at X and axis on the line through O and X. Let further S_{ε} be the closed sphere of radius $1/\varepsilon$ which consists of all points Z satisfying

$$|Z| \leq 1/\varepsilon.$$

We now define K_{ε} as the set of all those points of K which belong to S_{ε} , but to none of the cones

$$S_{\varepsilon}\left(2^{\frac{n-k}{n}}X\right)$$
, where $X \in \Gamma_k$ and $k=1, 2, \ldots, n$.

Since only a finite number of the cones contains points of S_{ε} , it is clear that K_{ε} is a bounded star body.

Let $\lambda'_1, \lambda'_2, \ldots, \lambda'_n$ be the successive minima of K_{ε} for Λ . Since K_{ε} is a subset of K, necessarily

$$\lambda'_k \geq \lambda_k$$
 $(k = 1, 2, \ldots, n).$

We can in the present case replace these inequalities immediately by the equations

$$\lambda'_k = \lambda_k$$
 $(k = 1, 2, ..., n)$ (33)

because the *n* boundary points

$$\left(2^{\frac{n-1}{n}}, 0, \ldots, 0\right), \left(0, 2^{\frac{n-2}{n}}, \ldots, 0\right), \ldots, (0, 0, \ldots, 1),$$

in which the successive minima of K for Λ_1 are attained, are still boundary points of K_{ε} provided ε is sufficiently small.

11) We further show that

⁶) See l.c. ¹).

Let this equation be false. There exists then a sequence of positive numbers

$$\varepsilon_1, \varepsilon_2, \varepsilon_3, \ldots \quad (\varepsilon_1 > \varepsilon_2 > \varepsilon_3 > \ldots > 0)$$

tending to zero such that

$$\lim_{r\to\infty} \triangle (K_{\varepsilon_r})$$

exists, but is different from $\triangle(K)$. But then

$$\lim_{r\to\infty} \triangle (K_{\epsilon_r}) < \triangle (K), \quad \ldots \quad \ldots \quad \ldots \quad (35)$$

since each K_{ε_r} is a subset of K. As a bounded star body, each K_{ε_r} possesses at least one critical lattice, Λ_r say; by the last formula, it may be assumed that

$$d(\Lambda_r) = \triangle(K_{\varepsilon_r}) \leq \triangle(K) \qquad (r = 1, 2, 3, \ldots).$$

Moreover, all sets K_{ε_r} contain a fixed neighbourhood of the origin O as subset. The sequence of lattices

$$arLambda_1$$
, $arLambda_2$, $arLambda_3$, \ldots

is therefore bounded, and so, on possibly replacing this sequence by a suitable infinite subsequence, we may assume that the lattices Λ_r tend to a limiting lattice, Λ say. By (35),

$$d(\Lambda) = \lim_{r \to \infty} d(\Lambda_r) = \lim_{r \to \infty} \triangle(K_{\varepsilon_r}) < \triangle(K), \quad . \quad . \quad . \quad (36)$$

and therefore Λ cannot be K-admissible. Hence there exists a point $P \neq O$ of Λ which is an inner point of K. This means that P, for sufficiently small $\varepsilon > 0$, is also an inner point of K_{ε} .

We can now select in each lattice Λ_r a point $P_r \neq O$ such that the sequence of points

$$P_1, P_2, P_3, \dots$$

tends to P. Hence, for any fixed sufficiently small $\varepsilon > 0$, all but a finite number of these points are inner points of K. Now, since

$$\varepsilon_r > \varepsilon_{r+1}$$
,

each star body K_{ε_r} is contained in all the following bodies

$$K_{\varepsilon_{r+1}}, K_{\varepsilon_{r+2}}, K_{\varepsilon_{r+3}}, \ldots$$

Therefore, when r is sufficiently large, then the point P_r is an inner point of K_{ε_r} , contrary to the hypothesis that Λ_r is a critical, hence also an admissible lattice of K_{ε_r} . This concludes the proof of (34).

12) The two formulae (33) and (34) imply that

$$\lim_{\varepsilon \to 0} \lambda'_1 \lambda'_2 \dots \lambda'_n \bigtriangleup (K_{\varepsilon}) = 2^{\frac{n-1}{2}} d(\Lambda_1).$$

Hence if $\delta > 0$ is an arbitrarily small number, then there exists a positive

number ε such that the successive minima $\lambda'_1, \lambda'_2, \ldots, \lambda'_n$ of K_{ε} satisfy the inequality,

$$\lambda'_1 \lambda'_2 \ldots \lambda'_n \bigtriangleup (K_{\epsilon}) > (1-\delta) 2^{\frac{n-1}{2}} d(\Lambda_1),$$

where Λ_1 is the lattice of all points with integral coordinates.

We have therefore proved that the constant $2^{\frac{n-1}{2}}$ in ROGERS's inequality is best-possible even for bounded star bodies. This is very surprising as this inequality applies to general sets.

Mathematics Department, Manchester University.

December 15, 1948.

Postscript (May 16, 1949): In a note in the C.R. de l'Academie des Sciences (Paris), 228 (March 7, 1949), 796-797, Ch. Chabauty announces the main result of this paper, but does not give a detailed proof.