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In a preceding paper 1) C. A. ROG ERS proves the inequality 

n-1 
11 12 ••• 1n 6 (K) ~ 2-2 d (A) 

for the successive minima 21, 22 , •••• 2n of an arbitrary point set K for a 
lattice A. In the present paper. I shall construct a point set for which this 
formula holds with the equality siun. I prove. moreover. that there exist 
bounded star bodies for which the quotient of the two sides of ROGERS's 

n-I 

inequality approaches arbitrarily near to 1. The constant 2-2- of ROGERS 
is therefore best~possible. eV,en in th.e very specialized case of a bounded 
star body. 

1 ) Let ~n be the n~dimensional Euclidean space of all points 

X = (xl' X2 • •••• Xn) 

with rea 1 coordinates. For k = 1. 2 ..... n. denote by Tk the set of all points 

(UI. U2 . .... Uk. O •...• 0) 

with integral coordinates satisfying 2) 

Uk ~O. 

and by Ck the set of all points 
n-k 

X = tP. wh ere t :> 2-n- and PeTk. 

Further write 

C = Cl U C2 U ... U C n 

for the union of Cl' C2 • •••• Cn• and 

K=~n-C 

for the set of all points in ~n which do not belong to C. 
AlthouUh K is not a bounded set. it is of the finite type. For the lattice 

..10 consisting of the points 

(2U1' 2U2 . .... 2Un-1' Un). 

*) This article has been sent to J. G. VAN DER CORPUT on February 12. 1949. 
1) C. A. ROOERS. The product of the minima and the determinant of a set. These 

Proceedings 52. 256-263 (1949). 
2) gcd(gl. g2 • ... . Bd means the greatest comman divisor of gl. B2 . .... Bk. and similarly 

in other cases. 
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where UI' U2 • ...• Un run over all integers. is evidently K~admissible. and so 

l::J. (K) ~ d(A ,) = 2n- 1 • 

OUt' aim is to find the exact value of L. (K). 

• (1) 

2) The origin 0 = (0. O ..... 0) is an inner point of K. and K is of the 
fini te type; therefore 3) K possesses at least one critical lattice; the lattice 
A say. By (1). 

d(A) ~ 2n- l • • (2) 

For k = 1. 2 ..... n. let fl k be the parallelepiped 

~ < 1 if 1 ~ h ~ n. h ~ k: 
I Xh I ( ~ 2n-1 if h = k. 

By (2) and by MINKOWSKl'S theorem on linear forms. each parallelepiped 
flk contains a point Qk =!= 0 of A. Since A is K~admissible. and from the 
definition of K. this point belongs to C; hence only the k~th coordinate of 
Qt. 'YJk say. is different from zero and may be assumed positive: 

Qk = (0 •.•.• 'Y/k • .•.• 0). where 'YJk > O. . . (3) 

The point 

Q = QI + Q2 + ... + Qn = ('YJI' 'YJ2 • .... 'YJn) 

also belongs to A and therefore to C. Since 'YJn > O. Q necessarily lies in 
Cn. From the definition of this set. there exist th en a positive number 'YJ 
and n positive integers ql. q2 • .... qn such that 

'Y/k='YJqk 

3) The n lattice points 

(k = 1.2 •...• n). • • 

QI' Q2 • .... Qn 

(4) 

do not necessarily form a basis of A; they are. however. linearly in~ 
dependent. and so they generate a sublattice of A. Hence there exists a 
fixed positive integer. q say. such that every point P of A can be written 
in the form 

P=! Ipl al + Pl al + .. . + pn ani = (!L PI ql.!L P2 q2 ••••• !L pn qn) q q q q 

with integral coefficients Pl' P2 • ...• pn depending on P. For shortness. put 

~ = !L. 50 that ~ > 0 . 
q 

. (5) 

By MINKOWSKI' s method of reduction 4). we can now select a basis 

Pl' P2 • .... Pn 

3) See my paper. On the critical lattices of an arbitrary point set. Canadian Journal 
of Mathematics. I (1949). 78-87. 

4) Geometrie der Zahlen (1910). § 46. 
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of A sueh that eaeh basis point Pk. where k = 1. 2 ..... n. is a linear 
combination of Q1' Q2 • ...• Qk. henee of the form 

Pk = (~Pkl. ~Pk2 ••••• ~Pkk. 0 •...• 0) 
wh ere 

Pkl. Pk2 • •••• Pkk are integers. and Pkk > 0 

It may. moreover. be assumed that 

(6) 

(7) 

0::::; Pkl < Pil for all pairs of indices k. I satisfying 1::::; k < I ~ n. (8) 

4) Lemma: Let 
n 

Lh (x) = .2 ahk Xk (h = 1. 2 •...• m) 
k=1 

be m linear farms in n variables Xl' X2' .... Xn. with integral coefficients 
aH not all z·era. Denate by 

a = gcd ahk 

the greatest cam man divisar of these coefficients. and by 

L(x) = gcd Lh(X) 

the greatJest comman divisar of the numbers Lh (x). wh~re h = 1. 2 ..... m. 
Th'e,n thereexist intefJ.ers Xl' X2' .... Xn such that 

L(x) = a. 

Pro of: By the theory of elementary divisors 5). two integral uni~ 
modular square matrices 

(bgh) and (Ckt) 

of m 2 and n2 elements. respectively. can be found su eh that the product 
matrix 

= (dgL) say. 

of mn elements is a diagonal matrix. viz. 

Put 

and 

sa that 

Then eVidently 

dgl = 0 if g::j= l. 

r = min (m. n) 

n m 

Xk= .2CkIXt. 
1=1 

Lg (x') = .2 bgh Lh (x). 
h=1 

a = gcd (dH' d 22 • .. . . d,,) 

5) See e.g. B. L. VAN DER WAERDEN . Moderne Algebra. Vol. 2 (1931). § 106. 
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and 

L (x) = gcd Lg (x') = gcd(dll X;. d22 X; •. .•• d rr x~). 

and the assertion follows on putting 

x; =x; = .. . =x~= 1. 

5) Every point P of A can be written as 

P = XlPl + X2P2 + ... + XnPn 

with integral coefficients Xl' X2 • •..• Xn. Therefore P has the coordinates 

P = (~ Ldx). ~ L2 (x) • •••• ~ Ln (x)). • • • • • (9) 

where. for shortness. 
n 

Lh (x) = I Pgh Xg (h = 1. 2 •...• n). . . • . (10) 
g=h 

Let now dt. for k = 1. 2 ..... n. be the greatest common divisor of the 
coefficients 

pgh with 1::= h <: g <: k. 

From this definition. it is obvious that 

dk is divisible by dk+l for k = 1. 2 •...• n-1.. . . (11) 

Since the matrix of the n forms Ldx). L2 (x) . .... Ln(x) is triangular. 
dt mayalso be defined as the greatest common divisor of the coefficients of 

in the forms 
Ldx). L2 (x) • .... Lt(x). 

It follows therefore. for k = 1. 2 ....• n. from the lemma in -4) that there 
exist integers 

Xkl. Xk2 • ...• Xkk 
not all zero such th at the greatest common divisor of the k numbers 

is equal to dk. 
The point 

k 

ghk = I Pgh Xkg 
g=h 

(h = 1. 2 •...• k) 

Rk = Xkl PI + Xk2 P 2 + ... + Xkk Pk =f 0 
belongs to A and has the coordinates 

Rk = (~glk. ~ g2k • ...• ~ gkk. O •..•• 0) • 

which are not all zero and satisfy the equation 

gcd (glk. g2k • .•.• gkk) = dk. • • 

(12) 

(13) 

(14) 

Since Rt is not an inner point of K. it belongs to one of the sets 
Cl' C2 • .... Ct. We conclude therefore. from the definition of these sets. 
that 

(k = 1. 2 ..... n). . . . • • (15) 
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6) Next let 1; be the positive real number for which 

n-k 

1; min 2- -n- dk = 1. whence 0 < 1; ~~. • • • (16) 
k=1,2, . .. ,n 

There is then an index" with 1 -< " -< n such that 

l n-k for k = 1, 2 ....• n, ! 
>-2 n 

1; dk :::.-
n - )I. 

= 2-n- for k = ". 
From these formulae (17) : 

n-k ~- k 

dk :;:: 1;-1 • 2 n = 2 n dx (k = 1. 2 •...• n). 

Hence. if k < ". th en 

whence. by (11). 

. • • (17) 

dk:;:: 2 dx 

H. however. k :> ". then 

for k=1.2 ..... x-l . .. . . (18) 

'Y., - n 

dk :;:: 2 n d~ > -Ir d, 

and (11) implies now that 

for k = x. x + 1. .... n.. . . . . (19) 

On combining (18) and (19) . we obtain the further inequality. 

~n dl d2 ••• dn :;:: 1;n dl d2 ••• dn :;:: 2' -1 (?;dx)n = 2n- l • , • (20) 

7) The critical lattice A we have been considering . has the basis 
Pl' P2 • •••• Pn of the form (6). lts determinant is therefore 

d (A) = ~n PIl P22 •.• pnn.. • . • . . (21) 

since all factors on the right-hand side of this equation are positive. 
Fram the definition of dk. 

Pkk is divisible by dk 

Hence by (20) and (21). 

for k = I, 2, ... , n. . . . (22) 

d (A) :;:: ~n dl d 2 ••• dn :;:: 2n- 1 

whence 

II (K):;:: 2n - l • • • • . • • • • (23) 

The same right-hand si de was. by (1). also a lower bound of f::. (K) ; hence 
the final result 

II (K) = 2n- l • . . • • • . • • (A) 

is obtained. 
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8) By means of the last formulae. all critical lattices of K can be 
obtained as follows. 

It is clear. from the previous discussion. that to any critical lattice A. 
there is a unique index x with 1 <: x :::::; n such that 

and th at further 

~ 2 d. for k = 1. 2 •...• x-I. ~ 
dk= 

dx for k = x. x + 1. ...• n. 

c=~ . .... . 
Pil = dl' P22 = d2 ••••• pnn = dn ; 

. . . . (21) 

(25) 

(26) 

for otherwise d(A) would be larger than 2n - l . Since we may. if necessary. 
replace ~ by d,,~. there is no loss of generality in assuming that 

dx = 1.. . . . . . . . . . (27) 

whence. by (17): 
n-~ 

~ = 2 n. • • • • • • • • • (28) 

The basis points Pl' P2 • .... Pn become. 

Pk = (2n~< Pkl. 2n~x Pk2 ..... 2n~, Pkk. 0 ..... 0) 
with integral pkl. By (7). (8). and (21)-(28). moreover 

~ 2 if k = 1. 2 ..... x-I. ~ 
Pkk = 1 'f k - + 1 • . . • • (29) 1 - >e, ~ , ••• t n, 

and 

l 
0 if 1 ::::;; 1 < k ::::;; " - 1. l 

Pkl = 0 if ,,::::;; 1 < k::::;; n. . 

o or 1 if ,,::::;; k ::::;; n. 1 ::::;; 1 ::::;; ,,- 1. 

. . . (30) 

It is also clear that different choices of " and of the integers pkl lead to 
different critical lattices. Since for exactly 

(x-I) (n-x + 1) 

coefficients pkl there is the alternative pkl = 0 or 1. there are then for 
each x just 

2(X-1) (n-x+l) 

different critical lattices. We find therefore. on summing over x. that the 
total number N (n) of different critical lattices of K is given by the formula 

n 
N (n) = :2 2(H) (n-<+l). • • • • • • • (8) 

x=l 

Thus N(n) = 3.9.33.161.1089 .... for n = 2.3. 1.5.6 ..... 
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9) We next det;ermine the successive minima 

)'1' )'2' ...• )'n 

of K in the lattice Al of all points with integral coordinates . 
Denote by )K. for ). > O. the set of all points ),X where X belongs to K. 

The first minimum )'1 of K for Al is defined as the lower bound of all 
l> 0 sueh that lK eontains a point of Al different from 0; if further 
k = 2. 3 ..... n. th en the n~th minimum )'k of K for Al is defined as the 
lower bound of all ), > 0 su eh that )X eontains k linearly independent 
points of An. We find these minima as follows . 

Consider an arbitrary point 

P = (g1' g2' .... gn) ~ 0 

of Al; here g1. g2 . .... gn are integers. Put 

d = gcd (gl . g"2' .... gn). so that d:> 1. 

and assume. say. th at 

gk =f O. but gk+t = ... = gn = O. 

for some integer k with 1 <: k <: n. Then Pld belongs to Tk. and tP 
belongs to Ck if and only if 

n-k 
t~ 2- n- d- t • 

Therefore )K. for ). > O. eontains P if. and only if. 

We deduee that if 
n-t 

--l:::;; 2 n 

then A.K eontains no lattiee point exeept 0 ; if. however. 

n-k n-k-t 
2- - n- < l:::;; 2- -n- (31) 

where k = 1. 2 ....• n. then )X eontains just the points of the k sets 

Tl' T 2 • ••.• Tk. 

Hence. if (31) holds. then J.K eontains k. and not more. linearly inde~ 
pendent points of Al' The sueeessive minima of K for Al are therefore 
given by the equations. 

n-k - -
lk=2 n (k = 1.2 ....• n). • (32) 

By (A). this implies that 

_ ,; n-k n-t n-t 

J. t J.2 ... l n 6(K)=2 k=t n 2n-t=2 2 =2
2 d(A t).. (C) 

We have thus proved that in the special case of the point set K and the 
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lattice Al' the sign of equality holds in ROGERS's inequality [or the 
suc~ssive minima of a point set 6). 

10) The point setK is neither bounded nor a star body. It can, however, 
be approximated by a bounded star body of nearly the same minimum 
determinant and with the same successive minima, as follows. 

Let e be a small positive number. IE X is any point different from 0, 
then denote by S.(X) the open set consisting of all points 

tX + e(t-I)Y 

where t runs over all numbers with 

t> 1, 

and Y runs over all points of the open unit sphere 

IYI<I; 
evidently S.(X) is a cone open towards infinity with vertex at X and axis 
on the line through ° and X. Let further S. be the closed sphere of radius 
1/ e which consists of all points Z satisfying 

I Z I:::: I/e. 

We now define K. as the set of all those points of K which belong to 
S •. but to none of the cones 

( 
n-k ) 

St 2-n- X. wh ere Xerk and k = 1.2 •. . •• n. 

Since only a finite number of the cones contains points of S •. it is clear 
that K. is a bounded star body. 

Let À;. À2 •.••• À~ be the successive minima of K. for A . Since K. is a 
subset of K. necessarily 

(k = 1. 2 •.... n). 

We can in the present case replace these inequalities immediately by the 
equations 

À"=).k 

because the n boundary points 

(k = 1. 2 ..... n) • 

( 
n- l ) (n-2 ) 

i/I. O ..... 0. O. i/I . .... 0 ..... (0. 0 ..... 1). 

(33) 

in which the successive minima of K for Al are attained. are still boundary 
points of K. provided e is sufficiently small. 

11 ) We further show that 

lim 6. (K.) = 6. (K). (34) 
.~o 

6) Sec l.c. 1) . 
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Let this equation be false. There exists then a sequence of positive numbers 

tending to zero such that 

exists. but is different from 6. (K). But then 

lim 6 (Kt r) < 6 (K), 
r-+ a> 

. (35) 

sin ce each K. r is a subset of K. As a bounded star body. each K. r possesses 
at least one critical lattice. Ar say; by the last formula . it may be assumed 
that 

(r = 1. 2, 3, . . . ). 

Moreover, all sets K. r contain a fixed neighbourhood of the origin 0 as 
subset. The sequence of lattices 

Al' A 2 • A3, .. . 

is therefore bounded. and so. on possibly replacing this sequence by a 
suitable infinite subsequence. we may assume that the lattices Ar tend to 
a limiting lattice, A say. By (35), 

d (A) = lim d (Ar) = lim 6 (Ker) < 6 (K), . 
r-+a> r-+a> 

. (36) 

and therefore A cannot be K-admissible. Hence there exists a point P =j:- 0 
of A which is an inner point of K. This means that p, for sufficiently small 
E> O. is also an inner point of K •. 

We can now select in each lattice Ar a point Pr =j:- 0 such that the 
sequence of points 

Pl ' P 2 • P3 • • .• 

tends to P. Hence. for any fixed sufficiently small E> O. all but a fini te 
number of these points are inner points of K. Now. since 

Er > Er+I, 

each star body K. r is contained in all the following bodies 

K ' r+1' K ' r+2' K ' r+3' . .• . 

Therefore. when ris sufficiently large. then the point Pr is an inner point 
of K. r' contrary to the hypothesis that Ar is a critical. hence also an 
admissible lattice of K Er' This concludes the proof of (34). 

12) The two formulae (33) and (34) imply that 

n -1 

lim ).'1 ),~, • • À~ 6 (K,) = 2 2 d (Al) ' 
e -+ 0 

Hence if d> 0 is an arbitrarily small number, th en there exists a positive 
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number E such that the successive minima 1; .l; ..... 1~ of K. satisfy the 
inequality. 

n-I 

1; 12 ••• 1~ 6. (K.) > (1-<5) 22 d(A.). 

where Al is the lattice of all points with integral coordinates. 
n-. 

We have therefore proved that the constant 2-2- in ROGERS's in-
equality is best-possible even lor bounded star bodies. This is very sur
prising as this inequality applies to general sets. 

Mathematics Department, Manchester University. 

December 15, 1948. 

Postscript (May 16, 1949): In a no te in the c.R. de l' Academie des 
Sciences (Paris), 228 (March 7,1949),796-797, Ch. Chabauty announces 
the main result of this paper, but does not give a detailed proof. 


