ON ALGEBRAIC RELATIONS BETWEEN TWO UNITS

OF AN ALGEBRAIC FIELD

K. MAHLER.
(Manchester.)

In this paper, I determine all irreducible algebraic
equations F(z, y) = 0 which admit infinitely many diffe-
rent solutions x=£&, y =1y in units & 5 of a finite
algebraic field ; here F(=, y)=40 is a polynomial in  and y
with algebraic coefficients irreducible over the complex
field. The result takes the simple form that F(z, y) must
consist of exactly two terms.

For the proof, I more generally study equations
F(z, y) = 0 with an infinity of solutions in integers x, y
of a finite algebraic field for which y allows only a given
finite set of prime ideal factors.

The investigation depends essentially on Siegel’s theo-
rem on the integral solutions of Diophantine equations (1).
For the special case of the rational field, I published
already a similar proof in an earlier paper, and I apply
here the same ideas (@),

I. A lemma on irreducible polynomials.

[1] Let & be the field of all complex numbers, F(x)
the field of all rational functions of & with coeflicients in §,
and §(, y] the ring of all polynomials in y with coeffi-
cients in §(z). Such a polynomial is called normed if
the highest occurring power of y has the coefficient 1.

Denote by '

1) S y) =y Fal@y+ . o)

a normed element of [z, y] which is irreducible over
§(x) and is of exact degree n=1in y. This expression
can be factorized in the form

e y)= 11 (y-@u(=)

h=1

M) C. L. Stecer. — Preuss. Akad. d. Wissensch., Phys.-Math. Kl.,
1929, Nr. 1.

@) K. Mauver, Journ. of the Lond. Math. Soc. 13 (1938), p. 173-
171.

where

®) @y(@); @yf)s - - - Pu(2)

are algebraic functions of . We exclude the special case
when

n=1, @, (r)=constant;

then none of the functions (3) is a constant, as follows
immediately from the irreducibility of f (z, y).

[2] We assume from now on that there exist a number
a0 and a prime number N=2 such that the new
polynomial

/(2 ay¥)
Then the simpler polynomial
/@, yY)

is likewise reducible and so can be written as a product

4) S(=, yN) =glx, y) h(z, )

where g(z, y) and k(z, y) are elements of §(x, y] of posi-
tive degree in y. Without loss of generality, let from
now on g(z,y) be normed and irreducible over §(z)

is reducible over §(z).

[3 ] f(x, ™) remains unchanged if y is replaced by ey
where ¢ is a primitive Nth root of unity. Hence Sz, yY)
is divisible by all N polynomials.

(5) gz, ey) (k=0,1,...,N—1).
These polynomials are also irreducible over () since
gz, y) 1s so.

[4] If G(z,y) is any element of F(z, y] of positive

degree less than n in g, then G(z, y") cannot divide
S, y¥). Forthen G(w, y) evidently would divide f(z, y),
contrary to the irreducibility of f(x, y).
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[5] The last result implies that we cannot have

(6) glz, y) =gz, ey) =g(=z, &y) = . . . =g(x, ).
identically in y. For then
N—1
g(@, )=% Y ez e*y)
k=o

remains unchanged if y is replaced by ey, and so g(z, y)

1s of the form
g, y)="G(z, y%)

where G(z, y) is an element of §(z, y] of positive degree
less than = in This is, however, impossible since

G(z, yN) divides /(m, yN).

[6] We can further say that no two of the polynomials
(5) have a common factor in §(=, y] which is of positive
degree in y.

For, by hypothesis, f(x, y) =0 has no solution y
= constant; therefore the term a,(z) of f(z, y) does not
vanish identically in #. Since g(z, y) divides f(z, y¥),
its constant term g(x, o) is then likewise not identically
zero.

Suppose now, say, that the two polynomials

g(x, e'y) and g(z, e*y)

where 0 <k <<x <™,
have a common factor in §(x, y] which is of positive
degree in y. Since both polynomials are irreducible,
they differ only by a factor @(z) == 0 in §(x) :

g(w, ') = @(z) glz, ey).

On putiing y =0, this identity shows that @(z) is
identically 1, hence that

glx, e'y) =gz, ey),

whence
(1) gz, y)=glx, e y)=g (@, Ny = ..
= g(_x, e +1) (%~ k)y),

Since N is a prime and 0 <<k <x <<N-1, x — k is prime
to N; the integers

o,x—k, 200 —k), ... (N—1)(x—Fk)
form therefore a complete system of residues (mod N).

This means that the 1dentities (7) are the same as the

dentites (6), except for the order; and the identities (6)
have already been shown to be impossible.

[7] Since any two of the functions (5) are relatively
prime, and since each of these functions divides f{(z, y¥),
their product :

(8) Yz, )=

N—1

I &= €y)

k=o

likewise divides f(x, y¥). Now y(x, y) remains unchan-
ged if y is replaced by ey; therefore y(x, y) is of the

form
Y@, y) =Gz, y")

where G(z, y) is an element of §(w, y] of positive degree
iny. By [4], this implies that

G(z, y) =@ (z)f(=, )

where @(z)is an element of §(«) which is not identically

zero, and so by (8),

N—1

9) I s, ey)=

k=o

¢(=)/(, y).

This equation shows that g(, y) is of exact degree n
in y; as g(«, y) is normed, it 1s then of the form

8@, y) =y + b @y + . . . +bu(a),
where b)(z), by(x), ..., b(r) are elements of F(z).
Therefore '
g(a,ety) =emy" 4 . .. 4 b(z)
and
N—1 N — 1
H gz, ey) =e Z kny"N+
k=o k=o
A b@) N =y N b, (@)Y,
while

@(=)/ (@, y) =@y + . . . + @(x)ar(=).

We see then that @(z) = 1 the relation between f(z, y)
and g(z, y) takes thus the 51mple form ,

N-—

(10) ng ay)—/(x yY)-

k=o

[8] By (2), /(= 4™
CONVCRY

) can be factorized as follows :
n N—-1

—T1 1 o2

h=1k=0

On comparing with (10), we find that

12 o )= [0 — P

=1
where

(hl’ kl)’ (h2’ k2)’ ] (hru kn) .
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are n different pairs of allowed indices. Since g(z,7y)
belongs to (x, y), every symmetrical function of

s (T, Bf@) T, ., ey (@)

and so also every symmetrical function of

@n(2); Prg(@)s - - -, Bu()
belongs to &(z). The polynomial .

Sy =] - o)

l=1

in y has therefore coefficients in §(x) and belongs itself
to F(z,y). Now [*(x, y) has at least one zero @y,(z) in
common with f(z, y), and it is moreover normed and of
the same degree in y as f(z, y). Hence

[z, y) =f(=, y)

by the irreducibility of f(x,y). This relation implies
that Ay, hy, ..., h, form a permutation of the indices
1,2, ..., n. Hence, on defining the Nth roots

@y@)' N, Qo) N, ., @ufa)' N
suitably, the formula (12) takes the simpler form

n

gz, =11 — e

h=1

[9] In (13), the zero ?,(z) off(xz y) is an algebraic

function of x, and 1t is by hypothesis not a constant;

hence @,(«) vanishes for at least one value z =& of .
If we choose the prime N sufficiently large, then @,(x)!/N
has at # = & a branch pointat least of degree N, and so it
assumes at least N different values in suitable points
x = &* near to £ = &. All these values

7= (E)
satisfy the equation
g(&, n")=0,

so that a contradiction arises as soon as N is greater
than n.

[10] We can now prove the following result. ‘

Iemma 1 : Let F (x, y) 50 be a polynominal in x
and y with coefficients in §, wich is irreducible over
8 and not of the form

Flx. y)=ax+b

where a=~0and barein §. If N is a sufficiently large
prime, any if « =~ o is any element of &, then the
polynomial F(z, ayN) is likewise irreducible over .

J. Z. 031939.

Proof : Write
F(x,y) =Ag@)y" -+ Ay '+ ... 4 Au(@)

where

(14) Afz)=£ 0, Ay(2), ..

are polynomials in & with coefficients in §.  Assume that
N is a very large prime number, and that F(z, ay¥),
hence also F (=, y¥), is reducible over §. Then

F(z, y¥) = G(=, y)H(x, y)

where both G(z, y) and H(z, y) are non-constant polyno-
mials in « and y. Both these polynomials contain the
variable y.  For if for instance G(z, y) is a polynomial in
x alone, then G(z, y) divides all polynomials (14), and so
it also divides F(z, %), contrary to hypothesis.

The normed element

o Au()

f(x’ yN)z Ajfx)

of §(z, y] is therefore reducible over §(z). By what we
have proved in [2]-[9], this requires that also

Flzx, 1
S =1

is reducible over §(z). But then, by a well-known theo-
rem (D, f(x, y) is reducible over &, contrary to the hypo-
thesis.

I1. Numbers divistble by only a finite number of prime ideals.
[11] Let & be a field of finite degree over the field of

all rational numbers, and let

§B= gpp pgv R mg

be any finite set of prime ideals in & We denote by <$B>
the set of all integers a =4 0 in & which are divisible by
no prime ideals except those in PB. We need the
following well-known result.

Lemma 2 : Let N be an arbitrary positive integer.
Then every element « of <> can be written as

a=a,a’N
where a; is one of a finite number of elements
L

of <>, and o* also belongs to <B>.

(M) B. L. van der Waernex, Moderne Algebra, 2nd ed.; 23.
4
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[12] For the proof, select a system of units
€1y €y + v vy &
of & such that every unit e in this field is of the form
E=¢8"18", ... g%

with rational integral exponents e, ey,
such exponent can be written as

eo=/oN+gp p=12....57)

where £, f,, ..., J, are arbitrary integers, while g, g,,
.5 g belong to the set of integers

0,1,2, ..., N-1.

..., e,. Each

On puttirg

ety O=chet, .. g9,

S—cfiefh, .
¢ takes the form
e=S4,

where & is an arbitrary 1nit, while 6 is a unit which can
assume only a finite number of values, say the values

9=0, 6, ... 0

[13] If a belongs to <B>, the principal ideal (a) may
be written in the form

(o) = pupte, .., p%

where, a), ay, ..., a, are non-negative integers. On
dividing these exponents by AN, where h is the class
number of &, we get '

ag=bshN ¢4 (e=1,2, ...,5)

where b, b,, ..., b, are non-negative integers, while ¢, ¢y,
..., ¢, belong to the set of integers
0,1,2, ..., AN-1
Put
b= (vlb,vg”*vs"’)h- ¢= plc%cwsc‘
so that
(&) = bNe.

As the h-th power of an ideal, b = (@) is principal, hence

also ¢ as it lies in the inverse ideal class :
o
¢=(y) where y = p_N;

here both 8 and y are integers in &. Since ¢ is one of a
finite number of ideals, 3 can be chosen so as to assume
only a finite number of values, the values

Y=Y+ s Vv

in R, say
[14] Since (a) = (BVy), we have
a=Nye

where ¢ is a unitin & By [12], this unit may be writ-
ten in the form .

e=35N
where & is an arbitrary unit, and § is one of the finite set
of units

0=0, 0, ..., 6

Put now

and denote by
Ay Oy oy O

the numbers

¥l (e=1,2, ..., 05 x=1.2, ..., u
in an arbitrary order. Then
o —aa’N

as asserted.

III. The mamn theorems.

[15] Let F(x,y) 4 0 be a polynomial with algebraic
coeflicients which 1s irreducible over the field § of all
complex numbers (),

Denote by &, as before, any field of finite degree over
the field of all rational numbers, and give to P and <B>
the same meaning as in [11].

We assume that the equation

F(z, y)=0
admits an infinite set 2 of solutions (x, y) in integers
T = E, y=n

in & such that y belongs to <B>.
The equations

r—a=10

where « is an integer in &, and
y—B=0

both have these properties. In order to exclude such
trivial cases, we assume from now on that F(z, y) contains
both variables « and y to at least the first power. Then
both x and y assume infinitely many different values for
the elements of =. '

(1) One shows easily that this condition is satisfied if F(z, y)

~ is irreducible over the field of all algebraic numbers.
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We make the further assumption that all coeflicients of
F(x, y) are contained in & This leads to no loss of gene-
rality, because if the hypothesis is satisfied for &, then
1t also holds for any finite extention of &.

[16] Denote by N a sufficiently large prime number,
so that, by Lemma 1, F(z, ay®) is irreducible over § for
every a=~0 in & (or even 1n §). By Lemma 2, the
second coordinate » of every element

.’L‘=E,

can be written in the form

y=n

K
n=a;a’N
where a; is one of a finite number of elements
oy, Qyy ey 0y

of <PB>, and a* likewise belongs to this set and so also to
the integers of 8. Now = is an infinite set, and every
infinite subset has the same properties. We may there-
fore assume, without loss of generality, that

ar=a,=0

retains one fixed value a, for all points (z, y) of =.

[17] We have thus obtained the result that not ounly
the curve

C:Flz,y)=0,
but also every curve
Cx(a) :

contains infinitely many points with coordinates integral
in & ; here Nis an arbitrarily large prime, and & = ay=£0
1s an integer in & which depends on N.

F(x,ay™) =0,

[18] Now Siegel’s theorem states 1) :

«Let the irreductible equation F(z,y)=0 with
coefficients in & have infinitely many solutions in
integers of &. Then the equation can be satisfied
identically in a parameter z by two expressions,

2=P@)=a,2"+an_1z" " 'F.. . Fa_,
y=Q(2)=buz" 4 bp_12" 1. . . b,

where P(z) and Q(z) are not both constants. More-
over, the parameter z can be chosen as a rational
function of x and y.»

On applying this theroem to the two curves G and
Cx (2), we obtain the following representations.

) See note (), page 47.

(a) The coordinates x, y of a point on G : F(z, y)=0

may be written as

(15) o=P@) = adh, y—Q@)= Y b,

where both rational functions on the right-hand side are non-
constant because G does not contain any line parallel to either
coordinate axis. Further

(16)

is a rational function of x and y.

Since a similar representation is obtained on replacing
2by 1/z, and since Q(2) is not a constant, there is no loss
of generality in assuming that at least one coefficient o,
with £ > 0 is different from zero.

Analogous formulae hold for the coordinates z, Y on
the curve

z=r(c,y)

Cx(2) : F(z, aYN)=0.

Therefore, on putting y =YY, we obtain the following
parameter representation of G :

(b) If N'is a sufficiently large prime, then the coordinates
of a pont (x, y) on G : F(z, y) = 0 may also be written as

+ my
(17) a=Py(Z)= > a2,
e h=—my
+my
y‘/N=QN(Z) _ E b(:)zh’
h=—my

(where neither of the rational functions Px(Z), Qx(Z) is a

constant, and where the parameter Z s a rational Junction
18) L=ry(x,y/N)
of x and y'/N.

As above, there is no loss of generality in assuming
that at least one coeflicient 4™ with A = 0 does not
vanish.

' [19] Since z is a rational function of 2 and y, and
since x and y are rational functions of Z, the parameter z
1s a rational function
(19) 2 =Ty (Z)

of Z; this function is evidently not a constant.
From

(20) y=Q(t)=Qx(2)"

we obtain the identity

(21) Q (T (Z)) = Qx(Z)".

By (17), Qn(Z) has poles at most at Z = 0 and Z = co,
Since further ;=40 for at least one index A=~ 0,
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Q(z) has a pole at z=co. Hence Ty(Z) may have poles

only at Z =0 and Z = oo, and so is of the form
(22) Tn(Z)=17" Nx(Z),

where gy is a rational integer, and IIy(Z) is a polynomia1
in Z satisfying

23) Iy (0) £ 0.

[20] By hypothesis, there is at least one positive index
h for which b, -~ 0. Suppose now that Q(z) is not a po-
lynomial, hence that there exists also at least one negative
index A’ satisfying by %= 0. This means that Q(z) has a
pole at z = 0. Hence, by (21), Ty(Z) may now vanish
only for Z = 0 and Z = oo, and so, by (23), is of the
form

Ta(l) — o 2"

where py 5= 0 1s a constant, while gy is now an integer
different from zero since Ty(Z) is not a constant.

Since (z) consists of at least two terms, there exists a
finite value z = z; == 0 such that

Q(z,) = 0.
Determine a number Z, by
N —

this number is likewise finite and different from zero.
Therefore the derivative

. dPy (Z
TN(Z)= 2;)

does not vanish at Z = Z,.

On putting Z = Z, in the identity (21), the left-hand
side
Q(Tx(2)))=0Q ()

vanishes, hence also the righlt-hand side
Qn(Z)N.

As the Nth power of a regular function, the function
Qn(Z)N has then a zero at least of order NatZ =7,
and therefore all its derivatives up to the (N—1)st
order vanish at this point. Since T'x(Z,) 0, this im-
plies that the derivatives

= pgy 2!

d"Q(2)

(r=0,1,2,...,N—1)

a2’

are likewise all zero at z = z;; Q(z) vanishes therefore
at least to the order N at this point.” But

+m
Q)= ¥ biahtn

h=—m

is ‘a polynomial of degree not greater than 2m and does

not vanih identically. Hence our hypothesis leads to a
contradiction if the prime N is greater than 2m.

This we assume from now on; we know then that
Q(z) is a non-constant polynomial in z.

[21] Factorize this polynomial in the form

(24) 0@ =t [ e—8

where b =4 0 is a constant,

SR SRS S
are the different zeros of Q(z), and
dy,dy,...,d,

are positive integers. Then
r
Q(Tx(@)—=b | | 1Tx @24
1=1

must be the Nth power of the rational function Qn(Z).
We distinguish two cases, according as to whether
Tx(Z) is a polynomial, or has a pole at Z = 0.
[22] If Tx(Z) is a polynomial, then Qy(Z)is likewise
one. In the identity

Q@)= [T IT5@)— 44— (@,
=1

no two of the polynomials
Tx(Z)— & (I=12,...,p

have a zero in common. Hence, if N is chosen greater
than the largest of the exponents d;, there exist p poly-
nomials

(25) P, (Z) (I=12,...,p
such that ‘

(26) Tx(Z) — § = P(Z)N (I=12,...,p
identically in Z.  Moreover, none of the polynomials (25)

can be a constant because Tn(Z) is not one.

[23] If Tx(Z) is not a polynomial, then the expo-
nent gy in (22) can be written as
N = — hy

where hy is a positive integer. The identity (21) takes
now the form

P

p
@y b L i@ — gz 1=z = 4 Q.
=1 4
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Here none of the polynomials
Oy(Z) — %2 (1=1,2,. . .,p)

vanishes at Z = 0, and no two of them have a zero in
common. Henee there exist p polynomials

(28) P(Z) (I=1,2,...,p)
such that
29) IN(Z)—& 2+ =P 2N  (=1,2,...,p)

identically in Z.
The left-hand side of (27), hence also the right-hand

side, is a polynomial ; the exponent

N
by Y dy
=1

of Z is therefore a multiple of N. Hence, if we assume
now that the prime N is larger than

N
Z di’
=1

then hy is divisible by N, thus of the form
(30) : by = Njx

where jy is a positive integer. Since Tn(Z) is not a
constant, none of the rational functions

;TN(Z)—Z,;UNZEZJ(__NZ) (1=1,2,...,p)

can be a constant.

[24] We next show that Q(z) cannot be divisible by
two or more different linear factors z — g;.

For assume that p = 2. Then, according as to whe-
ther Py(Z) is, or is not, a polynomial, we have by (26),
or by (29) and (30), the identities

Tn () = § =P (@), Tn(@)—&=P,@)"

) Ty(Z) — &, — (Péfﬂz) )N, Py(2) — ¢— ('P ;fz) >N,

Hence, on putting in the first case
u=Py(Z), uy="Py(Z),
and in the second case

P, (Z) e —
Tin 2

respectively.

P, (2)
Zix

-

we obtain a solution of the equation
N =8y,

J. Z. 031939.

in rational, non-constant functions of a parameter Z.
But this curve has no singular points because {, — ¢, 0
and is therefore of positive genus if N= 3. The assump-
tion that p = 2 leads therefore to a contradiction as soon
as N is sufficiently large. '

[25] We have thus found that Q(z) is of the form
Q) — ba— )t

where b =~ 0 and ¢ are complex numbers and d is a
ositive 1nteger.
Denote by B~ 0 an arbitrary complex number, and
introduce the new parameter

N =

and the new rational function

. ’ d b
@) =\/} 150 €.
Then Q(z) is transformed into the simpler function
0(z) = Q*(=") = £

while the parameters z* and Z are now connected by the

relation
Z* == T*N(Z)

Let us now again omit the asterisk ). We have then
the following parameter representation of the curve

C:F(x,y)=0.
The coordinates « and y are given by the formulae,

+m

a1 szp(z)z >

?y=Q(Z)=}Ez—dT

where 8 =~ 0 may be any complex number, while d is a
fixed positive integer. Moreover, P(z) is not a constant.

[26] By hypothesis, there exists an infinite set = of
different points (z, y) on G for which z is an integer
in &, and y lies in <PB>.  For these points, the coordi-
nate y may, by Lemma 2, be written in the form

y=azn’

where both «_ and » belong to <>, and where a_ has
only a finite number of possible values. As we may, if
necessary, replace = by an infinite subset, there is no
loss of generality in assuming that a_ has a fixed value

ar =a=0

() That this is permitted when P (z) is a polynomial is obviovs.
If P (2) has a pole at z = 0, then a proof similar to that in [30]
may be used to show that { = 0.

4 a
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for all points (x, y) in 2. For the same reason, we may
restrict the discussion to the following two cases :

(i) For all elements (z,y) of 2, 9 has the form
y =an'
where 5 is a unit in K.
(i1) For all elements (z, y) of 2, y has the form
y=on'

where the norm of # is not bounded.
In either case, identify the constant 8 in (31) with
the new constant «, and put

z=1.

Then z has an infinity of integral values in &, and for
all these values the number & = P(2) is an integer in &.
Hence, in case (i), the coefficients a; are elements of &,
not necessarily integral. In case (ii), these coeflicients
are likewise in & ; but now P(z) is a polynomial

P(z):Z ah
h=0

in z. For suppose, on the contrary, that P(z) contains

with @, =% 0 and hy < 0. We may then

a term 2ho
choose this index in such a way that
7P (2) =P, (2)

is a polynomial with the constant term Sio =~ 0. Since
the norm of » is not bounded in =, » is divisible by
an arbitrarily large power of one of the primes in %,
say the prime ideal y,. But then P(z) is divisible at
most by the highest power of y, which divides the nume-
rator of a;,, and therefore the denominator of P(z) is
divisible by arbitrarily high powers of p,, contrary to
the assumption that # — P(z) is an integer in & for all

the points (z, y) of =.
[27] The long discussion has led us to the following

result :

Theorem 1 : Let & be a field of finite degree over the
rational field, and let F(z,y) be a polynomial with
coefficients in & which is irreducible over the field
of all complex numbers. Assume that the curve

C:F (z,y)—0

is not a line parallel to either of the coordinate
axes.

(A) It there are infinitely many points (z,y) on G
for which z is an integer and y a unit in &, then the
curve may be expressed parametrically in the form,

+m
z=P ()= E a2,

h=—m

y="Q() =&

where m and d are two positive integers, all coeffi-
cients a, and 8-40 are in &, and’ where P (z) is not
a constant.

(B) If there are infinitely many points (z,y) on G
such that z and y are intergers in &, the norm of y
is unbounded, and y is divisible only by a finite set

53———“31,332,-0-313:;

of prime ideals, then the curve can be expressed pa-
rametrically in the form

o=P ()= Y wd, y=Q(2)=8

where m and d are two positive integers, all coeffi-
cients a; and 3-40 are in &, and P(z) is not a con-
stant.

[28] As an application of Theorem 1, let now G
satisfy the more rigorous condition that both coordi-
nates « and y belong to P when (z, y) runs over 2.
We can then express the coordinates of a point (z, y)
on C in two ways parametrically, namely,

+m
r—a = E a2,

h=—m

+m
y= 2 bzt = Bz'¢;

h=—m

here a =~ 0, a;, b, and 3 = 0 are elements of &8,

¢ and d are positive integers, and neither of the rational
“+m

functions
+m
Z az®  and 2 b2t

h=—m h=—m

(32)

is a constant. Further both parameters z and 2z’ are
rational functions of « and y, hence also of one another.
This means that there are four constants A, B, A’, B’

with AB’ — A’B =4 0 such that
v Az + B o 2 — B
Az LB AL A

On substituting in (32), we obtain the identities

B — Bye '
al— ) = a2t
<A’z’ T A> E, '
and
| Ae BN <
z
) = by2t.
8 (A’z T B’> Em '
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Since the right-hand sides have poles only at 0 and oo,
at least one of the two numbers A and A’, and at least
one of the two numbers A’ and B/, must be zero. Hence

either A—=B’' =0 and A’=£0, B=£0, or A’=0

[29] In the first case, the relation between z and 2’
becomes

and the curve C has therefore the parameter form

(33)

z = az’, Y=z

d
where @ =~ 0 and y=p <£_> =~ 0 are elements of &,

and ¢ and d are positive integers. This case evidently
arises only when the norms of z and y are bounded for
all points (z, y) in =, this, for instance, when x and
y are units in K. '

[30] In the less simple second case when A" = 0, the
relation between z and 2z’ may be written in the form

(34)

where A = 0. Hence the curve C now allows a repre-
sentation

(35) y = B(Az + B)"
where a =4 0, B =4 0, A=£ 0, and B, are elements of &,

while ¢ and d are positive integers. The parameter 2
may still be replaced by 7z where 7 5~ 0 is an arbitrary
constant. It may therefore be assumed, without loss of
generality, that A, B, and z, are integers in &, and
that z belongs to <B>. The coefficient 8 £ 0 lies like-
wise in &, but may be fractional. Since y belongs to
B>, Az -+ B necessarily belongs to <$*>, where $* is
obtained from $ by jomning to this set all the different
prime ideals dividing the numerator of 3.

Hence both z and Az 4- B belong to <>, and z assumes
infinitely many different values when the point (z, y)
runs over =. Select now an arbitrarily large positive
integer N. By Lemma 2, we have then

:=U_EY  Az-}B=VH¥

c

2'=Az+B

x = az’,

where Us and V_ each have only a finite number of
possible values in <$*>, while & and H both assume

infinitely many different values in this set. We. can
again assume that U_ and V, have fixed values

U,=U=£0, V. =V£0
for the points of . Therefore, finally, the relation
AUENA4B = VH¥

has an infinity of different solutions in integers 2. H
of & If now B were different from zero. the curve

AUXN + B = VY¥

would be of positive genus for N= 3, and so we should
obtain a contradiction to Siegel’s theorem. Therefore
B < 0. and the representation (35) of G has the simpler
form

(36)  z—azr, y—Ppt (B,—PFAA0)

where 8,40 and a=~0 are elements of &, and ¢
and d are positive integers. The result is thus quite
similar to that in [29].

[31] Let us now combine the results in the last two
sections. We have found that the curve G is either of

the form (33) when
xdycz adyc,

or of the form (36) when
! Blcyc: adxd.
The proof assumed, however, that G was not a line

r=a Or

y=Db.

Hence our final result may be stated in the following
form :

Theorem 2 : Let & be a field of finite degree over the
rational field, and letF(z, y) be a polynomial with
coefficients in & which is irreducible over the com-
plex field. Let the ourve

C: Fz,y) =0

contain an infinite set of points (z, y) where x and y
are units in &, or where, more generally, both r
and y are divisible only by a finite set of given prime
ideals y,p,,. - -, in &. Then the polynomial F(z.y)
consists of exactly two non-vanishing terms.



