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EXAMPLES OF FAREY SECTIONS 

An important tool in the study of the approximation to real numbers by rational numbers is pro- 
vided by the theory of Farey sections. We develop in this paper an analogous theory for Farey 
fractions whose numerators and denominators are integers in the quadratic field k(i) or in the 
quadratic field k(p), where p2 +p +1 = O0. This leads us to results on approximation to a complex 
number by numbers of k(i) or k(p). In particular, we obtain new proofs of two theorems of 
Minkowski (theorems XIV and XV), which it is hoped are more transparent than those given 
by Minkowski himself and by Hlawka. 

1. INTRODUCTION 

Throughout this paper R, k, Q will denote respectively the ring of rational integers, the field 
of rational numbers and the field of complex numbers. We put 

-l+i/3 27i i-=/(-1), p= = exp 2 3 
In the usual way R(i), R(p), k(i), k(p) will denote the extensions of R and k by i and p. It is 
well known that R(i) and R(p) are the rings of integers in k(i) and k(p) respectively, and that 
all ideals in R(i) and R(p) are principal ideals.t 

In part I of this paper we extend the notion of Farey section to k(i) and k(p) and study its 
properties; in part II we use the theory of part I to discuss the approximation of complex 
numbers by numbers of k(i) and k(p) and the related problem of the minimum of 

max {I o+fl+ , I y| Y6+ } 
for 6, EE R(i) or E R(p), where o, fi, y, 8E Q are given. Finally, in part III we discuss further 

t Indeed, the Euclidean algorithm holds in both. 
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J. W. S. CASSELS, W. LEDERMANN AND K. MAHLER ON 
certain regions of the Gauss plane related to Farey section which are introduced in part I. 
Apart from the definitions, part III is practically independent of parts I and II. 

This paper may be regarded as carrying out in detail a programme sketched by Hurwitz 
(I89I, ? 8) but apparently not carried out either by himself or others. The thesis of Made 
(I903) claims to generalize Farey section to k(i), but the generalization is on quite different 
lines from that adopted here and is rather artificial. 

2. PRELIMINARY DISCUSSION 

If N> 1 is a positive number we denote by * the set of all rational fractions which, when 
expressed in their lowest terms, have denominators not exceeding N. For example, g)3 
consists of the infinite sequence of fractions 

4 _-1 2 1 0, 1 1 2 1 "'* 3~ 3 3 2~ 3f 3 2 3, .:.. 

We also denote by 5)N the set of all rational fractions which, when expressed in their lowest 
terms, have both numerators and denominators not exceeding N. Thus S'3 consists of the 
fifteen fractions 

-3 -2 --1 2 _1 i O, 1 i 2 1, 3 2, 3, 2- -3 2 3 3, 2, , , , 

together with the improper fraction oo =. Since 't has period 1, we may speak of *e and 
ON as the periodic and non-periodic Farey sections respectively. We may consider *N and 
g as represented by points on the x-axis. 

-1 -x x-l -x x -x 1 + 

32 -1 -_2 0 1 3 
02 2 2 22 

OQ -+ -- , - ,-x , .~_00 -2 - 

FIGURE 1 

Clearly, * is mapped into itself by the two sets of symmetries 

Xn-fl ' -X-+nf, 

where n is any integer. Hence all of g can be derived from the stretch between 0 and -by 
translation and/or taking mirror images as in figure 1 a. 

The only symmetries of N are the two following: 
x' -x, x' = llx. 

Further, clearly 'N and N* coincide in the interval Ix <1. Hence again ON can be built 
up from the stretch between 0 and ? as in figure lb. 

The Farey sections S* were introduced to study the approximation of irrationals by 
rationals. It is convenient to define for each irreducible fraction a/b of * the set 9 * (a, b) 
of x for which a/b is the best approximation in the sense that I bx-a I b'x-a' I for any 
other irreducible fraction a'/b' in .N. We have the following known theorems: 
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THE FAREY SECTION IN k(i) AND k(p) 
THEOREM A*. Let a'/b', a/b, a"/b" be three consecutive reducedfractions of g^, where b, b', b" > 0. 

Then St* (a, b) is the line segment 
-_^ _ a'+a a +a 

xei*(a,b) . :. <.x- /^ 
a + a' The fractions of the type b I+b" where a'/b', alb are consecutive, play an important part 

in the theory and are called the 'medians'. 
THEOREM B*. The necessary and sufficient condition that the reduced fractions a/b, a'/b' of S* be 

consecutive (b, b' > 0), is that simultaneously 
(i) I ab -a'b =1. 

a'+ a. 
(ii) the median b is not in N. b' b N' 

The condition (ii) is clearly necessary since b'+ b lies between a'/b' and a/b. 
a'+a THEOREM C*. All terms of j*+l which are not already in S*, are medians b-.b of consecutive 

terms a'/b', alb of N. 
For example, the successive medians of * are 

0+1_ 1 1 + 3 = 4 between 0 and - 1 + 3 4 3, 
1+1 2 1 1 
3+2 = 5 between 3and 3q_+2 5 3 2' 
1+2_ 3 1 2 
2+3 = 5 between and 2 -3 3 5 2 3' 

etc. Of these only - belongs to e*. Hence 4' is 
?t ..~ 9I 0 1 1 4C 2 3 

Finally, we have a theorem on approximation: 
THEOREM D*. If xe S*(a,b), then bx-a I 1/N. 
This may be proved by observing that the worst x in the interval * (a, b) to approximate 

are those at the ends, i.e. the medians. It may then be verified that the medians do in fact 
satisfy the required inequality. 

From Theorem D* we may derive a more general theorem on linear forms: 
THEOREM E. Let a, b, c, d be real numbers, ad-bc+ 0. Then there are integers (x, y) + (0, O0) such 

that simultaneously ax+by 1 ^/1 ad-bec , 
I cx+dy { <A/ ad-bce . 

Of course, theorem E is a direct consequence of Minkowski's theorem on convex regions; 
but the generalizations to k(i) and k(p), which we shall discuss later, are not. 

In a precisely similar way, if a/b is a reduced fraction of )N, we may define the region 
R (a, b) to be the set ofx for which | bx -a b'x - a' for any other a'/b' in SNy. The analogues, 
theorems A, B, and C, of theorems A*, B*, and C* hold: 

THEOREMS A, B and C. Theorems A*, B* and C* still hold if SN and 1 (a, b) are readfor SQ and 
9*(a, b). 

t In this preliminary discussion theorems and lemmas are denoted by letters. In the main work the 
theorems will be reformulated more precisely and be denoted by numbers. 
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588 J. W. S. CASSELS, W. LEDERMANN AND K. MAHLER ON 
Now let us generalize SN and S* to R(i). We define t$(i) to be the set of all reduced 

fractions a/f with numerators and denominators in R(i) and fP2 <N. Similarly, .N(i) is 
defined to be the set of s/,8 with I o 12 N, 12< N. We regard ( 'Ji), gN(i) as points on the 
complex plane closed with a single point at infinity. 

2i 

i-iz \ 
i-iz ^ \ / ~ z 

i1+; -V 

z l+z X l+z \ 

oo o - O 1 1 2 2 
FIGURE 2t 

Clearly, v(i) is invariant under the mappings 
z- z, (2.1) 
z-+ikz+v (k-0,1,2,3; veR(i)). (2.2) 

Hence all of *(i) is obtainable from the portion in O0<z?1, O?0Jz<? z by translations 
and rotations.: A diagram of this portion of &)*(i) is given at the end of the paper for 
N=- 25. 

Similarly, )N(i) is invariant under the mappings (2.1) and 
z- ikz (k 0,1,2,3), (2.3) 

and z-> ik/z (k = 0, 1, 2, 3). (2-4) 
Further, N((i) and &*(i) coincide in the circle I z j < 1. Hence all of gN(i) is obtainable from 
the portion in 0<?z?<, 0?<Jfz< as shown in figure 2 (we give only one quadrant). 
Similarly ON(i) may be obtained from the portion in the first quadrant outside the circles 
1 z- 1 1 =l , I z-i |=1. Diagrams of S^(i) are given for N - 5, 10 at the end of the paper. 

We now define S * c,,fl) for a//e ic (i) to be the set of ZEQ such that /I z-ca I < f?'z-ca' 
for any a'/fl' in 0 (i). Clearly, the boundary of r * (a, f) consists of arcs of circles 

I flz- I -= I ,z-a' I 
for different a'//?' in &*(i). We now define ac//, ac'//' to be adjacent if 9* (a,l) and 9*(a',fl') 

t An entry (e.g. 1 + iz) in a region means that all points of bN(i) in it can be obtained from those in the 
fundamental region 0 < ?z < 2, 0 < .fz < 1 by the appropriate transformation z' = 1 + iz. 

+ Indeed, because of (2-1) we need only the portion with say 0 < J z < Wz < -. Ined,2 



THE FAREY SECTION IN k(i) AND k(p) 589 
have a common point. Clearly, the set of regions R * (a, f) have the same symmetries (2-1), 
(2-2) as *(). 

Similarly, we may define 91 (a, f) for fractions a/flE N(iz). The set of regions %9 (a, f) has the 
same symmetries (2-3), (2-4) as 'N(i). This is obvious for (2-3). As for (2-4), if ze 9(a,fl) 
we have -fi < -f' for any a'/fl' in $)(i). Since f/a, f'/a' are in 'N(i) if a/fl, '/fl' are, 
it follows that 1/ze 9 (f?, a), i.e. 91 (a, f) is obtained from 9 (f, a) by inversion. We have the 
further result: 

LEMMA A (i). If I a/ll < 1, then ~9 (a, fl) lies entirely in the circle I z I < 1. 
We give the simple proof. If a/fE ~N(i), then clearly also fl/a E (i). IfzE 9 (a,f), then 

flz--a =m min Ifl'z-a'lla z-/71, 
a,//~ 6 4N 

i.e. | z I < 1 if I c/fl I < 1, as may easily be verified. 
We should remark that the set of regions 1 (a, f) does not necessarily have the extra partial 

2+i 1 cc 
symmetries given by figure 1. For example, - = (say) has the seven neighbours 5 2-i ~-ft in 9,(i) (taken clockwise) 

1 3+ii _ i 1 -i 1 1 +i 1 +i 1 0 1 
2' 5 2+i' 2 1-i' 3 ' 4 2-2i' 1' (235) 

+,io 4+2i 2 
but1+i 4 + 2i 2 has only the six neighbours butl-= ~5 2-i 

2+i 4-3i 1+2i 1+i 1 2+i 3+i 1+2i 1 
2 ' 5 2+i ' 2 1-i' 3 ' 4 2+2i' 1' 

There is no neighbour 1 +-i= 3 corresponding to 3 in (2 5), since 1 3+i 2 = 10> 9and 
3 +i so 3 ?~9(i). 

In this paper, we extend to k(i) the theorems given above for k. More precisely, we shall 
prove: 

THEOREM A* (i). 1 * (a, f) is a star domain about a/fl. 
THEOREM A (i). ~9 (a, f) is a star domain about c/flfor f 0 and suficiently large N. 
There is little doubt that theorem A (i) holds for all N, but we have not constructed a proof. 
The analogues of the medians in the rational case are the four numbers a+ ef' where 

flP+efl 
c/fl, a'/fl'E *(i) and e is a unit, i.e. e = ? 1 or ? i. Clearly, all four medians lie on the circle 
|I Z -ac I = I z-c '. 

THEOREM B* (i). The necessary and sufficient condition that the reducedfractions a/l, ac'/fl'E (i) 
be adjacent, is that simultaneously 

(i) I fl'-a'fl = 1 or 2. 

(ii) At least one of the medians - 6, is not in *(i). 
fl+ePfl 

N 

THEOREM C* (i). All terms of w+h(i) which are not already in 9*(i), are medians efi' of 
adjacent terms a/fl, a'/l' of SQ(i). 
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THEOREMS B (i) and C (i). Theorems B* (i) and C" (i) hold i'f N(i) is readfor * (i). 
THEOREM D* (i). JIfZE 9*(c a,/), then I fz- a < K/Ni, where K = /2/(3 -3). 
From theorem D* (i) we derive 
THEOREM E (i). Let a, /, y, dE Q, oS--y f 0. Then there are 6, E R(i), (6, q) + (0, O) such that 

simultaneously I I+l | KA| J /_-/?fy I, 
I r$+ 6v |1 A C/| fl_aB7y I1 

where K is defined in theorem D* (i). 
This theorem and the corresponding theorem for k(p) are due to Minkowski (I907, 

chap. 6). A further proof has recently been given by Hlawka (I941). Both these proofs are 
somewhat complicated. The present investigation originated in an attempt to find a more 
natural approach. 

We define a node of S*(i) or xN(i) to be a point where three or more regions * z(az, ) or 
9Q (a, f) respectively meet. It is obvious from the diagram that there are only a few kinds of 
nodes. Indeed we have 

THEOREMS F* (i) and F (i). At mostfour regions *Q(a, /) or 9 Q(a, /) respectively meet at a node. 

Iffour such regions meet, they subtend equal angles 1rT at the node. If only three regions meet at a node, 
they subtend either 27T, 2r, I or 27T, o, 7T. 

We also generalize Farey section to k(p). We define !*(p), ~N(P) analogously to S*(i), 
)N(i) and then define s*(a,/?), 1 (a, ?) for a/fle *(p), N(P) respectively. 

Clearly, g(p) is invariant under the mappings 
--> z, 

z->pkZ+v, z--pkz+v (k=0,1,-2, ER(p)). 
Hence &*N(p) has a 'hexagonal' symmetry and it is enough to know *(p) for 

0?< z 2, 0< arg z <1r. 

Similarly, gN(p) has a 'hexagonal' symmetry analogous to that of N(i). 
As the proof of theorems A (i) and A* (i) is laborious, we do not attempt to prove the 

analogues for k(p), but there is no doubt they hold. We have the following analogues of the 

remaining theorems. The 'medians' of a//?, '/fl' in k(p) are, of course, the six numbers 

fl+ ef" where e is a unit, i.e. e = ? 1 or ?p or +p2. 

THEOREM B* (p). The necessary and sufficient condition that the reduced fractions ca/l, a'//' of 
* ((p) be adjacent, is that simultaneously 

(i) -a' - 1 or 3, 
(ii) at least one of the medians Z+ef, is not in &*(p), where if I afl'-' =- 31 , we consider 

only e such that o +e - l c'-+ fl' -- (1 -p). 
THEOREM B (p). Theorem B* (p) continues to hold if N(P) is readfor 8*(p). 
THEOREMS C* (p), C (p), D* (p) and E (p). Theorems C* (i), C (i), D* (i) and E (i) hold in 

k(p) when K 1 is read in theorems D* (p), E (p). 
THEOREMS F* (P) and F (p). At mostfour regions 9 (a,fl), i (a,/) respectively meet at a node. 

Iffour regions meet at a node, they subtend angles lir , ir, 7r , jrn. If three regions meet at a node, they 
subtend either Ir, 3T, n7T or -I-T, T, -ir. 3 ) 3 ~ 3 3'01 



THE FAREY SECTION IN k(i) AND k(p) 
In part I we prove and discuss more precise versions of theorems B (i), C (i) and F (i) and 

outline proofs of theorems B (p), C (p) and F (p). Since the proofs of the corresponding 
* theorems are parallel but easier we do not give them. In part II we prove theorems 
D* (i), D* (p), E (i) and E (p). Finally, in part III we prove theorems A* (i) and A (i). The 
treatment throughout is independent of this preliminary discussion. 

PART I 

3. INTRODUCTION 

In ? 4 we give an account of the properties of the ordinary Farey section in k which we 
intend to generalize. As the standard proofs of these properties do not generalize, we will 
give new proofs depending on the ideas which will be useful later. In this way, the main 
linest of the proof will appear without the detail required in k(i) and k(p). 

In ? 5 we shall discuss the problem in k(i) in general terms. ?? 6 to 8 carry out the programme 
in detail. In ? 9 we discuss more briefly the analogous results for k(p). The theory of ? 8 is 
practically independent of the rest of the paper. 

4. FAREY SECTION IN k 

If N> 1 is a positive number,+ we denote by SN the set of all fractions r - a/b, where a, b 
are integers not exceeding N in absolute value: ? 

re N .=. r=-a/b; a,bER; lal, lbI<N. 
The improper fraction oo = - is included in SN. For many purposes it is more convenient 
to consider the set SN of pairs (a, b) of numerators and denominators of fractions of SN in 
their lowest terms: 1 

(a,b) EN . a. a, bR; jal, lbl<N; gcd(a,b) =1. 

Finally, we shall denote by 6N the set of all pairs (a, b) of numerators and denominators of 
fractions of N, not necessarily in their lowest terms: 

(a, b) E (N .E. a, beR; a/bE gN. 
We shall say that two elements of ~N or of (N are equivalent, if they correspond to the same 
fraction of N. For most purposes equivalent elements will be regarded as the same. 

For (a, b) E rN, we denote by St (a, b) the set of all real numbers x for which a/b gives the 
best approximation in the sense that 

xE $(a,b) ._. Ibx-aI- min Idx-cl. (4.1) 
(c, d)E@ N 

If (c, d) E N, say c ef, d = eg, (f,g) E ;N, then cx-d I > | gx-f i, so we may also write this as 
xe? (a,b) ._. Ibx-a\= min dx-c . (4.2) 

(c, d)e E ? 

Clearly, t (a, b) = (a', b') if (a, b) and (a', b') are equivalent elements of N. 

t The k(i) and k(p) proofs are of course complete without reference to the proofs in k. 
+ Note that we do not insist that N is an integer. 
? As explained in the introduction, there is another type of Farey section in which the condition I a I < N 

is omitted. However, the Farey section defined above is the one whose properties are more difficult to prove, 
so we discuss it in part I. 

11 As the symbol (a, b) is required to denote the ordered number pair, we use gcd (a, b) to denote the 
greatest common divisor of a and b. 
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We say that (a, b) and (c, d) are adjacent if 1 (a, b) and 1 (c, d) abut, i.e. if there is an x' 
such that [ bx'-a = | dx'-c = min Ifx'-e 1. (4-3) 

(e,) e?y 
We first prove 

THEOREM I. The necessary and sufficient condition that (a, b) and (c, d) E aN be adjacent, is that 
simultaneously 

(i) lad-bc = 1. 
(ii) (a ?c, b d) ?O Nfor at least one of the two signs ?. 

The proof is in two parts. 
If(i) and (ii) are true, (a, b) and (c, d) are adjacent. If(a?c, b ? d) ON we putx' = (a+ rc)(b + d). 

Then I bx'-a I = I dx'-c I = ad-bc i/ b d = rb-d and, if (e,f) is any element of N, 

Ifx'-e I lf(a?c)--e(b?d) I> 1 
Ifxel - lb?dl I ) b d l ' 

a+c e since |f(a+c) -e(b?d) J = 0 would imply -ac =)E ON, contrary to (ii). Hence 

lbx'-aI = ldx'-cl= min ffx'-el, 
(e, f) ?E 

as required. 
If (a, b) and (c, d) are adjacent then (i) and (ii) hold. We suppose that (4-3) holds for some x'. 

Then bx'-a = ? (dx'-c) 
for some choice of sign and so (b T d) x' - (a c) = O. If (a T c, b T d) E oN this is a contradic- 
tion with (4-3). Hence (ii) holds. To prove (i) we require the following lemma: 

LEMMA 1. Suppose a, b, c, de R and A = | ad- bc I > 1. Then there arep, qe R such that 

ap+cq- 0 (A)4 (44) 

bp+dq_ 0 (A),J 
and 0<lp+[ q [<A. (4.5) 
The last sign of equality is required only when A= 2, p = q 1=, and then p 1, q = - 1 also 
satisfies (4-4) and (4.5). 

We note first that the points (p, q) for which (4-4) holds form a lattice A. On putting 
ap+cq = rA, bp+dq = sA, we have ?p = dr-cs, Tq = br-as, where r, s are any integers, 
and so the determinant d(A) of A is I ad-bc = A. The convex region defined by 

IPl+lql<A 
has area 2A2 and the existence of p, q follows now at once from Minkowski's convex body 
theorem if A> 2. If A= 2 and a-b _ 0 (2) take p = 1, q = 0, and if c_ d-O (2) take p = 0, 
q = 1. Otherwise, since I ad- bc = 2, we have a c, b- d (2) andp = q = 1 andp = -q = 1 
do what is required. 

Suppose now that (4 3) holds and that I ad-be c = A> 1. Let p, q be thep, q of the lemma 
and put ap +cq = rA, bp + dq = sA, as before. Then 

Irl =ap cq P+lIq N<N, 

|sl N, 

592 



THE FAREY SECTION IN k(i) AND k(p) 
so that (r, s) E (N' 

Further, rx'-s = p(bx -a) +q(dx'-c) 

< I +q Imax{ bx'-al, dx'- c}, 

and hence, by lemma 1, if A> 2, 
I rx'-s I <max{I bx'-a I, dx'-c I}, 

contrary to (4-3). Similarly, we reach a contradiction if | p I + - q I <A = 2. If 

IPl+lql =A=2 
then bothp = q = 1 andp -q = 1 satisfy (4 4) and (4 5) and then 

bx ? - a) ? (dx'- c) I , I <bx'-a) dx'-c) bx '-a dx'-c 
2 

for at least one choice of sign, again a contradiction. This concludes the proof of the theorem. 
In order not to make the point oo - I exceptional, we complete the infinite line by a single 

point at infinity and so make it topologically equivalent to a circle. With this convention 
we have the 

THEOREM II. The 1 (a, b) are intervals. 
It is enough to prove that the 9 (a, b) are simply-connected. This is a topologically in- 

variant property and so invariant under the transformation 
dx-c ay-c 

Y-bx-a' x by-d' 
where c, d are any integers such that ad-bc = 1 

[they exist since gcd (a, b) 1]. The inequality (41) with this transformation and after 
multiplication by I by - d becomes 

1 = min (af-be)y- (cf- de) . 
(e, f) EFx 

By the preceding theorem, the only neighbours (e,f) to (a, b) have af- be | = 1, and hence, 
by writing (-e, -f) for e, f, if necessary, it will be enough to prove that the region 

1< min Iy-(cf--de) (4-6) 
(e, f) Ec 
af -be= 1 

is simply-connected. Put h = cf-de, and (4-6) becomes 
l<min ly-h[ (4.7) 

taken over all h such that simultaneously 
el = Ic-ahl<N, If =l d-bhl IN. (4.8) 

Clearly, (4 8) will be satisfied only for some consecutive set h1 < h h2 of values of h. Hence 
(4-7) is true if, and only if, 

y<hl-1 or y>h2 +l or y=oo. 
This is a simply-connected region, and so the theorem is proved. 

The foregoing account is, of course, unduly complcated as an account of ou Farey sections 
in k, since then the numbers a/bE gN may be arranged in order of magnitude. Theorems I 

VO.23. A.7 
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and II show that 9 (a, b) is an interval about the fraction a/b. Hence the two pairs (a, b) and 
(c, d) are adjacent in our sense if, and only if, a/b and c/d are consecutive elements of Tg in 
magnitude. However, in k(i) and k(p) there will be no analogue of the linear order of N, 
and we are driven to the definition of adjacency in terms of the regions 91 (a, b), S9 (c, d). 

If Nis an integer and SN is known, there is a simple rule by which aN?1 may be generated, 
which runs as follows: 

THEOREM III. If (e,f) E! N 1 but (e,f) faN, then there are two adjacent pairs (a, b), (c, d) E cN 
such that (e,f) (a + c, b+d). 

This means that the Farey sections may be constructed for increasing N by a simple 
algorithm. We prove the theorem for N> 3; it can be verified directly for NS 3. The proof 
depends on the following lemma: 

LEMMA 2. Let e, f R, gcd (e,f) 1, and max (I e 1, If ) > 2. Then there are a', b'c R such that 
ayf-b'e 1 (4.9) 

and la'l<ile, lIb' fl (4.10) 
We first note that I ef I + 0 and I e J + f I; so, by symmetry, we may assume that 

lel>lfl[>l, le1>2. 
Since e,f are coprime, there are certainly a", b"E R such that 

a'f-b"e 1. 
Then a' a + he, b' b" +hf, 
where he R, is also a solution of (4 9). We now choose h such that 

la'f |l2el. 
Then, by (4 

Then, by (4.9), l2b' zI )/+e <'II If+ < |+el1. e I e Iff I,li1 

Hence j 2b' I< f 1, since [ 2b' and If are integers. This proves the lemma. 
COROLLARY. We may choose e = 1 such that 

le-ea' l<lel, If- |b' Ilfl, 
where the first sign of equality is required only if J e I =1 and the second only if I f I - 1. 

Suppose first that a'b' + O. Then, by (4.9) 
sgn (af) = sgn (b'e) 

and so sgn (a'e) =sgn (bf) -- e (say). 
Then e does what is required. Further, a' - 0 is possible only if j e I = 1, and then we may take 
e = sgn (bf). Similarly, for b' = O. This concludes the proof. 

The proof of theorem III is now immediate. We take for (a, b), the (ca', eb') of lemma 2 
and put c-e-a, d=f-b, 
so that 
Then 
and 

(4.11) 

(4-12) 

(e,f)= (a+ c,b +d). 
I af-be = I ad-be I -= I cf-de = 1 

max{ b m axax{l e |, If a} = N-+i, 

max{I c l, I dl}<max{l-e l, il} N+-. 
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Since Ne R and since, by (4.12), 

gcd (a, b) = gcd (c, d) = 1, 
we have (a, b) e N, (c, d) E N. 

It remains only to prove that (a, b) and (c, d) are neighbours. This, however, follows at 
once from theorem I. Condition (i) of the theorem is true by (4.12) and condition (ii) is 
true by (4-11), since (e,f) ? ( by hypothesis. 

5. THE GENERALIZATION TO k(i) 

For simplicity, we shall deal in this and the succeeding paragraphs primarily with k(i). 
The situation in k(p) is very similar and an account of it will be deferred to the end of this 
part I (? 9). 

We denote by g)N(i), or by gN if the omission of the (i) causes no ambiguity, the set of all 
fractions oa/f: a /fle N .. a,flE R(i), X (a), A (fl) N, 
where X (6) = 2 is the norm of . The improper fraction co = 1 is included in g N. Simi- 
larly, ^N and oN will be the set of all pairs (a,fl), a, /e R(i) such that al/?e N, and the 
(a,/?)E N will have the further property that the fraction a//J is in its lowest terms,t i.e. 
gcd (a,) = 1. Two elements (a,fl) and (a',/?') of SN or ON will be called equivalent if 
a/fl = a'//I'. For most purposes equivalent elements will be regarded as the same. 

For (a, f) E ;N, we define S (Qa, f) to be the set of ze Q for which a/y gives the best approxi- 
mation in the sense that 

ze ?(a,) .-. I fz-a - min Sz-y1, (5.1) 
(y, 8) eaN 

and, as in the real case, this is equivalent to 
zE (a,x f,) .. I,fz-a = min |3z-y-. (5-2) 

(y, 8) E N 

Two pairs (a, f), (y, d) E cN will be called adjacent if 9 (os, ), 91(y, a) have a point z' in common, 
i.e.if /lz'- a = iz'-y i= min |Oz'-q [, (5.3) 

(,, 0) e N 

or, what is the same thing, 
flz'-oclI = 16z'-Y min Ozf'-1 (5.4) 

(y, 0) e 6N 

The condition that (a, f) and (y, 8) be adjacent is later shown to be a natural generalization 
of theorem I (theorem IV). 

The regions S9(a,/f) can be considered as regions on the Gauss plane completed with a 
single point at infinity. Some diagrams of the set of regions belonging to ~N for various N 
are given at the end of the paper. Clearly each 91 (a, /) is bounded by a finite set of arcs of 
the circles I z-a I |z-y , 
where (y, a) runs through all the neighbours of (a, f). A rather long, though elementary, 
argument shows that all the 91 (a, ) are star domains (part III), but otherwise they appear 
to have no simple properties as regions. 

The points which belong to three or more regions are called nodes. It is remarkable that 
all nodes are of only three distinct types (theorem V), and that no more than four regions 

t All ideals in both R(i) and R(p) are principal ideals, i.e. every fraction in k(i) or k(p) does have a repre- 
sentation in lowest terms. 
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meet at a node. Since all regions meeting at a node are adjacent, the properties of nodes 
may be investigated using the properties of adjacent regions. 

Finally, it is shown that the aN may be built up successively by a process analogous to 
that of theorem III (theorem VI). 

6. ADJACENT REGIONS 

In this section we shall prove the following theorem: 
THEOREM IV (cf. theorem I). The necessary and sufficient condition that (a, E), (7, S)E N be 

adjacent, is that simultaneously 
(i) I S-py I = 1 or 22, 

(ii) (a+e7,/?+ e) ? e for some choice of e- 1 or i. 
The proof of this theorem depends on two lemmas: 
LEMMA 3. Suppose a, /1, y, SE R(i), gcd (a,/) = gcd (y, S) = 1, and | oS-fy - 2. Then 

oE-y (1+i), /,- ( +Z). 
Clearly | ocS3-y - 2i implies 

ay - (l+i). 
The lemma now follows at once by enumeration of cases, since each of , f, y, , is congruent 
either to 0 or to 1 modulo 1 + i, and aoc -S 0 or y -S= O is excluded by the proviso that a, ,/ 
and y, 3 are coprime respectively. 

LEMMA 4 (cf. lemma 1). Suppose a, /?, y, 8E R(i) and A= aS-fly, X (A)> 2; then there are 

E, /e R(i) such that 6- l--F-/+s-o 0 (A), (6o1) 
o< f + I I<A1. (6-2) 

The last sign of equality is required only when | I = 2 or I A l = 2b, but then < , < A < AI 
and X, l may be so chosen that 5, ? y is a solutionfor both signs. 

As in the proof of lemma 1, the values of 6, q which satisfy (6-1) form a two-dimensional 
complex lattice of determinant A. Hence if we put x + iy, - = u+ iv where x, y, u, v are 
real, the values of x, y, u, v form a four-dimensional lattice A of determinant 

d(A) a (A) = A 12. 
We have to show the existence of a lattice-point other than (0, 0, 0, 0) in the convex region : 

(x,y,u, v)E E .*. (x2+y2)1+ (u2+ v2)< ln Al, 
defined by (6-2). An elementary calculation shows that S has volume 

Y(?g)= \ff A7r(l A r)2d(7mT2) 7221A 14 
Jr=0 6 

Hence, by Minkowski's convex body theorem, there is certainly a point of A other than 
(0, 0,0, 0) in the interior of provided 

f- (S) > 24d(A), 

i.e. provided 17Tr21A 14> 24 1 2, 12 1 A2> 2 6 

This proves the lemma for I A 12> 10, since 96/T2 < 10. 
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To complete the proof of the lemma we verify it for the remaining values of A individually. 

Since i A2 > 2 by hypothesis, the remaining values of A are 
A= (l+i)2, e(l+i)3, e(2+i), 3e (e= 1 or i). (6-3) 

By the general theory of determinants there is certainly a solution 60, 0o of (6*1) with 
gcd (o60,, A) 1; and so, since (6-3) are all prime powers, either gcd (0, A) 1 or 
gcd (0, A) 1 (or both). By symmetry, we may assume that gcd (6, A) = 1. If we now 
choose i1 such that 0=-60S 1 (A), there is a solution 6 = 1, q = 1i of (6-1). Further, 6 = 1, 
I = 2 is a solution if =2= vI (A). We prove the lemma for A = e(2 ? i), 3e by showing that we 
may choose a complete set of residues l2 modulo A such that 1 + 1 12 1 < I A I. Indeed, we have 

A= 3e: 2:= 0, ?1, ?i, ?l?ii; 1+q2l 1 +2<3= 1A1, 
A = (2?i): 2= 0, ? 1, i; 1+[Iq2 < 2<5 = [I A (independent signs). 

There remain only A = e(1l -i)2 = 2ie, A = (1 +i)3. If I=0 (A), there is nothing to 
prove. If I-l0 (l+i) but i-0 (A), we may choose 0 such that 0<I01<IAl and 
tj10=-0 (A). Then =6, = 0 is a solution of (6.1) and of (6.2) with <. Hence we may 
assume gcd (r1, A) =1. If A e(1 + i)2 = 2ie we have now 

1i1-E1-1 (2) or i- -i (2); 
so either (6, 1) - (1, ? 1) or, (6, 1) = (1, ?i) 

satisfy both (6 1) and (6 2). If A = (1 + i)3 = 2is(1 + i), we have again 
I- 1-_-1 (2) or 11_i -i (2), 

and (,1)-(l+i, (l1+i)) or (1+i, ?i( +i)) 
satisfy (6-1) and (6-2). 

This concludes the proof of the lemma.t 
We now complete the proof of the theorem. There are parts corresponding to the necessity 

and sufficiency of the criteria. 
If (i) and (ii) are true, (a, f), (y, S) are adjacent. By (ii) we may choose e such that 

(a + 6, fl+ E) ? N, 
and we put z' = (a + ey) / (+ ) . Then 

Al Il/z'-a I I8Z'-Y = I#+ I 1 
Further, if (4?, 0) E N, we have 

i1 ' -L: I 0(+ CY) - (/l+ E) i I 7z I I 

Now i 0(a +ey) -1(f+e8) | 4-0, since 1/0e ~N but i+6e? gNby hypothesis. Hence 

I 0(a +y) - (/?+E ) I > 1. 

t Alternatively, if 6, 1 run through all values satisfying (6.1) it may be shown that 16 1 
2 + j 12 runs through 

all the values taken by a certain binary Hermitian form for variables in R(i). We may then make use of the 
known estimate for the minimum of such forms to show that 1 612 + 12 < l IA 12 for some permissible 6, if 
1A 2 > 8. Hence, by Cauchy's inequality, (6-2) with < is satisfied if A 12 > 8. The cases A 12 < 8 have then 
to be treated separately. 

Again, we might have used the minimum of a quaternary quadratic form. The method in the text seems, 
however, more elementary. 
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This proves the result if A = 1. If i A = 2, we have a +ey =+eO 0 (1 +i) by lemma 3 
and hence I 0 (x +y) -- (f+el 3) 1 2 as required. 

If (o,f), (y, () are adjacent, (ii) is true. If (a,fi), (y, S) are adjacent, (5 4) is true for some z'. 
We may now choose e = 1, ?i such that 

I (,+66) z'- (a+7y) i - I (fz'-o) +6(z'-y) I< I|fz'- I = 1l- I. 
Hence (a+ey,/+eC)? Nby (5-4). This proves (ii). 

If (a, /), (y, S) are adjacent, (i) is true. Suppose per absurdum that I A I > 2i. We may choose 
q, a to satisfy the conclusions of lemma 4. We put 

a6+yq = AO, /6+qs= ARk, 
where 0, Re R(i). Then, by lemma 4, 

I - A IAI max{Iax,IyI}<N, 

J[rJN, 
so ( ES, Xl) sN. Further, if there is inequality in (6.2), we have 

I -z' - (/ I (z'-a)+(Sz'-Y)< max ff Az'- , 1z'-y } 
IAI 

in contradiction with (5.4). If there is equality in (6-2), so that A = e(1 + i)2 or A = e(l +i)3, 
then we have ?76y- = Ao, fi?&?S- AI , 
where 0+, Eq_, 3 , E_E R(i). Hence 

l^,-- I= K^ "). ) 
-I 1(6Z1 

- 
__ 

with strict inequality for one sign ?. This, again, is in contradiction with (5-4). 
This concludes the proof of the theorem. 

7. NODES 

In this section we show that there are only three kinds of nodes. We remember that the 
boundary between 91 (a, fi) and 1 (y, s) is part of the circle I ,fz- a I = I sz-y 1. We summarize 
what is to be proved in the following theorem: 

THEOREM V. At most four regions 9o(a, f) meet at a node z'. There is always at least one pair of 
these, S (a, f) and 3 (y, S) such that aS -fly = . On replacing (a,/f) and (y, 3) by equivalent ele- 
ments and interchanging them if necessary, the regions 9S meeting in z' and the angles subtended at z' are 

representedt in one of the following three diagrams (figure 3). If z' = + 7t, the value oft' is as shown. 
Further 1 min I|z'- I = 

We first prove a lemma: 
LEMMA 5. If S (c, OP), 9i (y, 3) and 9R (q, 0) all meet at a node, then at least one of I olS-fly 1, J aO -rfl I, 

I yO-6 I is 1. 

t Of course, the diagrams are purely schematic. In general the regions are bounded by arcs of circles 
and the orientation is quite arbitrary. 
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For otherwise, since R (a, f), 5 (y, 6), ) (q, 0) are neighbours, we should have, by theorem IV, 

a6-sy I - |I a0-q If =I yO - 8 \ = 2, 
or, say, S--7 = e (1 + i),) 

o0- f=6 2(l+i), (7.1) 
yO-3 = e3(1+i), 

a: t' = -p or _p2. (a+, ) 6 

9t(a,0 ) st(y, S) 

b: t'= 1 ori. 
- ?(r, 8) 9?[+(1 +i) y,' +(1+4) ]) 

4 7 7 

c: t'= 1 or i. 9(r, ) t[a+(l+i) y, f(1+i) 8] 

2 2 

(a, f) 9[)(1-) +Y, (tl-i)Y3+-] 

FIGURE 3a to c 

where el, e2, 63 are units + 1, ii. Since ac8-,fy t + 0, we may solve the equations 
y=Ao+y, 
0 ̂a 

L 
+^,uSJ (7.2) 

for A and ue k(i). Indeed, by (7.1) we have A = - 1i-16, # = 1 62 ER(i), and so A, # are units. 
Hence, by lemma 3, and since A- __ 1 (1 +i), we have 

j7 -a+- -2a0- (1 +i), 
0=-f+8-23-0 (l+i), 

contrary to the condition that gcd (y, 0) = 1. 
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COROLLARY. If (ac,/), (y, d) are such that j a-fly I = 1 then, by replacing (q, 0) by an equivalent 
pair if necessary, we have (q, 8) = A(,/) +y(r, 3) (7.3) 
where A, #u is one of the three pairs 

A = 1, = e, 
A = 1, / = e(l+ii), (74) 
iA = -i, u - (7= 4) 

and e is a unit. 
Since I o-fy I = 1 we can solve (7.3) for A, fe R(i). Then 

2 |ia-f | j= |1| I|as-i7 = i/ , 
21 A. 

Hencet A = e' or e'(1 -i) and : = c" or e"(1 +i), where e', e" are units. The corollary follows 
with c - c'-let" on replacing (5, 8) by (#c', ec'). Since gcd (An,) )gcd (q, 8) = 1, the case 
A = e'(1 -i), u = c"(1 + i) does not occur. 

We now proceed to the proof of theorem V. The substitution 
z_ ? yt Z--1 
fp+ t 

is conformal. Further, 
-(a8-#r) t It] 

_t it 
Z+st I *+tl 

z-y +4t ...z-y |+ z-r P+ t '" i~+st!' 
and, by (7.3), Oz-- = -Z A.t- l 

/J+-t P+'t' 
Hence the equations of the boundaries become: 

between 9(x(,fl) and S(y, ): Itl= 1, 
between S9(a,B) and 9((q,8): It1 = I t-l f, (7-5) 
between 3 (y,7) and s (q,0)): 1= At-?|, 

and the node corresponds to a value t' of t such that 
1= tt'l = At'-|. 

We now examine the various cases in (7.4) in turn. 
First case: A = 1, = c. Then the three circles (7-5) become 

Itl=1, It = Itt-- , 1= t-el. 
These three circles (see figure 4) meet at t = ep and t -cp2, and in both cases make an 
angle of ]7r with each other. 

On putting (ey, ec) for (y, 6) this gives case a of the theorem. 
Second case: A = 1, # = e(1 +i). The three circles (7 5) become 

Itl-1, 1 ti = t--6(l+i) , It--e6l+i) = 1. 

These meet at t c and th ci and make the angles 1 r, Ir3, ,3r with each other (see figure 4). 
On putting (cy, ec) for (y, 8) this gives case b of the theorem. 

f By using 1 - i in the expression for A and 1 + i in that for It a more elegant formulation is obtained. 
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Third case: A = (1-i), =- e. The three circles (7 5) become 

tl =l, Itl=l(l-i)t-Cl, I(1-i)t-e = 1. 
These again meet at t e and t = 6i and make the angles 2rfr, 3Ir, 3n with each other. On 
putting (ca, /e) for (y, S) and (-iy, - i) for (a, /), this again gives case b of the theorem. 

2nt 

\^ - 3. Z~^ L 

21 2 
3 3 \ / 

3o d 

FIGURE 4. Diagrams of (e = 1). a, first case. b, second case. c, third case 
(this is just the second case inverted int 1 - 1). d, fourth case. 

It follows that all nodes where just three regions meet are of types a or b of the theorem. 
Suppose now four or more regions meet at z'. Then, by lemma 5 and its corollary, they can, 
in a suitable notation, be denoted by 

9(a.,), S9(Y, ), S(l, 01), S(2) 02), ... 
where I| aS-fl - 1, (y,) , 0j j(=A,f) )+#,j(y7,) (j --= 1,2,...) 
and AJ =1, tj = ej 
or A = l, = (l +i) (7 6) 
or Aj = 1-i, j = 6J. J 
Further, since S (qi, 0) and 9i (%j, 0j) are adjacent, we have 

21||j-A | = A -AA. (7-7) 
The truth of the theorem will now follow from a sequence of remarks. 
(a) If Al =1 1, = , there can be no (2, 02), .... Suppose, per absurdum, that (q2, 02) exists. 

Then the values of t' corresponding to 9R(a,f), 91(y,')), s(i1, 01) and to (o,/?), 17, '), 
S9(q2, 02) must be the same. Hence, since (7 42) and (7.43) give t'Ek(i), but (7 41) does not, 
w ust e must have , ,#2 = 62. Hence 

t -(-e1p or - P2) - (- 2P or-622). 

VOL.1 24.A. 
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Since e, 62E R(i), this is possible only when 6 =2, i.e. when (q1, 01) = (q2, 2)- This proves 
the remark. 

(b) It is impossible that 1 = A2 1, , -e(1 l+i), /2 = e2(1+i). If we substitute these 
values in (7-7), we get 61 -62 1 1, 

which is impossible for units e1, 62E R(i) except when I =6 2. 

(c) It is impossible that Al =A2 = 1- i , = e 1 =#2 62. This follows as in (b). 
(d) At most four regions meet at a node. By interchanging (i//, 01) with (?2, 02), if necessary, we can 

have only ^ + have only Al- l, 1 -- 6e(1 -+i), A2 - i, 72 61- 

Except for the fact that 61 = e62 this follows at once from (a), (b) and (c). That 61 = 62 

follows at once from (7-7). 
By putting (e y, el S) for (y, S) this gives us case c of the theorem. That the angles are as 

shown follows from figure 4 in the t-plane. 
This concludes the proof of the theorem. 

8. CONSTRUCTION OF )N+i FROM SN 

In this section we prove the following theorem for integral N: 
THEOREM VI (cf. theorem III of ? 3). If (4, q) E N+ 1 but (5, ri) 0 N' then there are adjacent 

elements (a, O/), (y, 6) E aN such that 

I -/7| - 1, (q,) = (a+y,/?+ ). (8.1) 

The proof of this result will follow immediately from theorem VIII. Theorems VII and 
VIII have no explicit reference to Farey section either in the enunciation or the proofs. 

If ze Q, we shall use Sz and fOz to denote the real and imaginary part of z respectively. 
We first quote a well-known lemma without proof. 

LEMMA 6. For any z Q there is a 0E R(i) such that 

(Z -3)f 12? ((z-0) I<q), (8-2) 
and hence I z - 2. (83) 

We use this to prove the following theorem: 
THEOREM VII (cf. Lemma 2 of? 3). Let , re R(i) and let 

gcd (, )= 1, 1 q> 1. (8-4) 
Then there exist o, fe R(i) such that l-/ = 1 (8.5) 

and J 2-i, <2-i. (8.6) 

Since gcd (5, q) = 1, there certainly exists one solution a =o ao, = ,o of (8-5). Further, 
o-ao - , -/o-0-, (8-7) 

for any ?E R(i), is another solution of (8-5). We show that 0 can be chosen so as to satisfy 
(8.6) as follows: 

We first give a rough sketch of the proof. We have 
a ao P 

(8.8) - 0 1 fl 
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and hence, by lemma 6, we can certainly satisfy each half of (8-6) separately, by taking 
z -= o/ and z = flo/l respectively. However, by (8.5), 

a^sc~~~~~- , 1(8.9) 

and 1/q is comparatively small; so we hope that we can satisfy both halves of (8-6) simul- 
taneously. 

The detailed proof requires some modifications in the above simple programme. We write 
X=\I12, Y=ll|2. 

The theorem is trivial if X = 1 or Y = 1; and so, by writing - , -, for 6, C respectively if 
necessary, we may assume that YX> 1. (8.10) 
We choose an arbitrary real e> 0, so small that 

e i 
et<_ (8.11) 4161 <2Y) 

and put z =i (812) 

Finally, we choose for 0 the 0 of lemma 6 appropriate to this z. 
In the first place, by (8-2), (8-11) and (8-12), 

0 
= -) - ( < , ) <2+2Y' (8-13) 

and, similarly, j (1 <2+Y (8.14) 

But P _I[ _ip+iq fif Y 
where , qeR. Hence, by (8.13) and (8-14), 

12pl<Y+1, 12ql<Y+l, 
i.e. 12p1<Y, 12ql<Y. 

2 
ip n2 2 1, 1 1 Thus finally + ) < + 1 \Y/\Y 4 4 2' 

which proves the second half of (8-6). 
Further, by (8-9), a f (1-e) 

-_+ zZ0+Z-5; 

and so, by (8*10) and since e> 0, 

+) H (8-15) 

o(|) <2+X (8.16) 
a ai I+ im As before, we have = 6 - 65 - x ' 

where 1, me R and 12-+m2 = - (ac) -0 (X). (8.17) 
All that remains to be proved now is that 1| a/ , 1< , i.e. that 

12+m2< X2. (8.18) 
8o-2 
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By (8.15), (8.16) we have 1211<X+2, 12mJ<X+2. (8-19) 
If Xis even, (8-19) implies that i 211 <X, I 2m I AX, and so that (8-18) holds. Hence for the 
rest of the proof we may assume that Xis odd and so, by (8.10) and (8 19), that 

X 3, 11lI A(+1 ), m|A(X+ l). (8 20) 
We subdivide the proof into a number of cases 

(i) I< 2(X- 1), mI I <(X- ), 
(ii) Il -- (X+) m(X-), m3), 

(iii) 1Ill <2(X-3), m I-(X+1), 
(iv) [l I m- , (X+l), 
(v) ll - (X+l), Im =(X-l) or ll -(X-1), ml = i(X+l). 

In case (i) the inequality (8-18) follows at once. In cases (ii) and (iii) we have, by (8-20), 
12+ i m 12< {2X2- 4X+ 10}< X2, 

and so again (8-20) follows. Finally, cases (iv) and (v) cannot really occur since they con- 
tradict (8-17). Indeed, (iv) and (v) would give 

0-12-m2 = 2( ) X (X), 

and 0_12 +m2 (X)+ 
2 

(X21- )2 (X) 

X+1 -X+ 1 
This is impossible since 0< -2 <X, 0< - - 1< 

by (8.20). 
This concludes the proof of the theorem. We note that we have also proved a corollary: 
COROLLARY. (C) 

We now prove the existence of a pair y, 68 R(i) with certain properties. 
THEOREM VIII. Let the conditions of theorem VII hold. Then there are y, , ce R(i) such that 

le = 1 and Iy- - = cS--y i = 1 --flI = 1, (8-21) 
(5, C) = ,(a,) + (7Y, ) (8-22) 

and Illl<6, 11<|11. (8-23) 
The signs of equality in (8-23) are required only when 1 j = 1 or j C = 1 respectively. 

The proof when 11 - = 1 or I I = 1 is immediate; so we may assume that (8-10) holds. 
The proof depends on the following lemma: 
LEMMA 7. Let ze Q and < z l < ; 

then there is an cE R(i), I 6 1 such that 
(8-24) |(1 -cz) I +- I J(l -ez) I < 1. 

We may choose e so that 2 > (ez) > I J(ez) I. 
The truth of the lemma now follows. 

We now apply this lemma, as we may by the corollary to theorem VII, to 

z=q 
if 
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With this choice of e we now put 

y---ea, = q-c-f. 
Then (8-21) and (8-22) hold. (8-23) remains to be proved. 

We note first that i 8( ) ()& #', ^m1-^1-m ? ^% i L i - ^,i 
i=q 

j 

since otherwise we should, by lemma 7, have J(1-) : = 
contrary to (8-21). Similarly ( e) () 

Hence by (824), (825) and (826) 
Hence by (8-24), (8-25) and (8-26) 

(-f)r =0 and so 6 S= , 

(8-26) 

2 
()2 ( )2< 

rI\r])\ j/ 
as required. 

Further 

and so 

by (8-24) and (8 
But 

*10). 

_- / A\ -6 

+ () i < + 8() + W( + 

<1 2 <1 1 I+2 l11K x (8-27) 

y y u+iv 
- 

V2 Iyi2- o 1 (X). where u, v R and u2 + 
and, by (8-27), 1 u I + | v <X+,/2, i.e. 

(8-28) 

Iul+IvliX+l. 
We consider the following cases: 

(i) max{ u l, Iv l}<X, 
(ii) lul 0, Ivl= X+1 or lu l=X+l, Ivl=0, 

(iii) lul 1, Ivl =X or jul =X, vl= 1, 
(iv) lu -O, lvl X or lul =X, V = 0. 

T ^ i, 7?h-]2 (X)2 (32 (X-1)2.q_ 22 

if X3, and if X= 2 we have u. We1, w thv 1 and again (u/X)2 (/X)2 1. Hence (8o23) 
with < always holds in case (i). We show that the remaining cases cannot in fact occur. 
Cases (ii) and (iii) contradict the criterion (8.28). Case (iv) would imply that y c= e' with 
1 e' | = 1, and so we should have y1-6-o=0 (6) in contradiction with (8 10) and (8-21). 

The proof of theorem VI is now immediate. On writing a, f for e: ef we see that (8'1) 
holds. Further, by theorems VII and VIII 

max {X(a), (/?), (y), ()} < max { (<), 4(l)}< + N- 1, 
and hence max {X(J), (l), X( (y), Jr()}? N. 

Also gcd o(,f) = gcd(y, ) = 1 by (8-1). 
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Hence (a, f) e E N, (7, 3) e aN' 

Finally, (a,fi) and (y, S) are adjacent by (8.1) and theorem IV (? 6). 

9. THE CORRESPONDING RESULTS FOR k(p) 
We may define aN, N, 'N and 9 (a,f) as at the beginning of? 5 except that R(p) is read 

for R(i). All of the preceding argument may be carried out in k(p) more or less as in k(i). 
We shall not carry out the details but summarize the results in the following theorems 
followed by a few brief comments. 

THEOREM IX (cf. theorem IV). The necessary and sufficient condition that (o, /C) and (y, 8) E N 
be adjacent is that simultaneously 

(i) l s--fly =1 or 31, 
(ii) (a+c7y,f+?s) ONfor some choice ofe ?= 1, ip/, ?rp2, where e must also satisfy 

a+?ey-=B+ES=0 (I-p) if I os-y I - 3. 
The proof of this theorem depends on the following analogue of lemma 4, which is proved 

in the same way: 
LEMMA 8 (cf. lemma 4, ? 6). Suppose a, f/, y, Se R(p) and A = cS-/fy, X(A) > 3. Then there 

are , qreR(p) such that ?6+y=-6+6-=0 (A) 
and 0< [+ I < IA|. 
The last < can be replaced by < except when i A 2 and then I 6 I < /, I 1 < AJ. 

From theorem IX we may deduce the following analogue of theorem V: 
THEOREM X (cf. theorem V, ? 7). At most four regions 9? (a, /) meet at a node z'. There is always 

at least one pair of these, S9 (a,/ ) and 1 (y, d), such that oc -fy I = 1. On replacing (a, ?) and (y, 8) 
by equivalent elements and interchanging them if necessary, the regions 91 meeting at z' and the angles 
subtended at z' are as represented in one of the threefigures 5 a to c. If 

, + yt' Z 
+t 

the value oft' is as shown. Further . I '- 1 
(0 , E 

z = A T-t tl t 

We note that there is a corollary, the analogue of which is not true in k(i). 
COROLLARY. All nodes z'E k(p). 
We shall see that this means that the problems of part II are more easily solved in k(p) 

than in k(i). 
Finally the analogue of theorem VI is 
THEOREM XI (cf. theorem VI, ? 8). If NE R and (6, q) E aN+ 1 but (6, C) i AN, there are adjacent 

elements (a, /f), (y, S) E AN such that 
1 a-/fry 1, (, ) = (a,P) + (Y, ). 

The proof, as before, depends on two theorems with no reference to Farey section. 
THEOREM XII (cf. theorem VII, ? 8). Let 6, re R(p) and let 

gcd (6,) =1, 1 >1. 
Then there exist a, fE R(p) such that acq -f6 = 1 

and | <3-, <1 3- 7' 
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a: t' = -p or -p2. 

1 0, f) 2(Y, 8) 

b: t'= 1 or -p. 
910(y, ) 

IT 

C: t'= _p2. 

/ \ 

FIGURE 5a to c 

THEOREM XIII (cf. theorem VIII, ? 8). There are further y, 6, CE R(p) with e \ = 1 such that 
Iyri - 6f= \ Ia8-- \ - 1, 

(6, q) (a, l) + (y, )), 
and IYI<1I 181<11. 
The signs of equality are required only when 1 6 I = 1 or I = 1 respectively. 

Theorem XII is rather difficult to prove neatly, so we sketch the lemma on which the 
proof depends: 

LEMMA 9 (cf. lemma 6, ? 8). For any ze Q there is a qE R(p) such that 

(Z-)[<? , [ {P(Z-)}1<, I{p<(Z 2)}|<. 
The proof of this is immediate on dividing the Gauss plane ofz by three sets of parallel lines 

({(z- 0)=: ? t 
{^p(z- )} i?25 E,R(p) 

o 1 ge{p2(z- 0)}=^21 into congruent hexagons. 
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COROLLARY. I Z- 3$ I < 3-1. 

On writing u = (z--), v = {p(z--)}, w = {p2(z )}, 
we have u+v+w = {(1 +p+p2) (z-)} =- 0 
and tul<2, Ivl, i1 w<- (9.1) 
Further I z-3 J2 = - (Uv +vw+ wu) 

-= (u2-v) -= (v2-uw) = 3(w2-- u). (9-2) 
Since two of u, v, w must have the same sign (0 counted as both +, -), the corollary follows 
from (9-1), (9-2). 

The proof of theorems XII, XIII then follows on the same general lines as that of theorems 
VII, VIII. 

PART II 

10. INTRODUCTION 

In this part II we shall use the results of part I to prove the following two theorems: 
THEOREM XIV. Let c, f, y, 8e Q and u> 0, v > 0 such that 

UVZf=: _ a8- y I > 0. (10-1) 

Then there are , R/ R(i), not both zero, such that 
I x6+kq- I <U, I y6+8 l <v. (10-2) 

The theorem would be false if the < signs in (10.2) were replaced by <. 
THEOREM XV. Let a, f, 7, y Q and u> 0, v> 0 such that 

uv3 >S-fy I > o . (10-3) 
Then there are 6, r/ R(p), not both zero, such that 

I 6+ll u, |yI r6+ I iv. (10-4) 
The theorem would be false if the < signs in (10-4) were replaced by <. 

These theorems have been proved by Minkowski (I907), and another proof of theorem 
XIV has been given by Hlawka (I941); but it is hoped that the proofs given here are more 
transparent. The theorems are, of course, generalizations of Minkowski's fundamental 
theorem: 

THEOREM XVI. Let a, b, c, d be real numbers and u> O, v> 0 such that 
uv l ad-bc > 0. (10-5) 

Then there are x, y R, not both zero, such that 
lax+by l-< , Icx+dyl v. (10-6) 

The < signs in (10*6) cannot be replaced by <. 
Theorem XVI is a direct consequence of Minkowski's convex-body theorem, but theorems 

XIV and XV are not. 
In ? 11 we show that theorems XIV and XV can be deduced from what are apparently 

special cases. In ? 12 we show the relevance of part I to these special cases and in ?? 13 and 
14 respectively we conclude the arguments for k(p) and k(i). 

In the rest of this section we show by giving actual examples that the last sentences of 
theorems XIV and XV are true. 
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For theorem XV we just put a = 6 = 1, = = 0 and u = v = so that (10-3) holds. If 

we could have < in (10*4) we should have | l < 1, I <1, which is impossible for 6, qe R(p) 
except in the excluded case q = a = 0. 

,/3+1 For theorem XIV we put a y = 1, / = -p, d =_p2, U = 1, v = 3-= |_-p2 . 
Then (10.1) is true (with =). We shall show that 

--pq~ <1, (10-7) 

I (-p2q <V+l (10 8) 

together imply E = 0= . Suppose not. First, it follows at once from (10.7) that 
40o, =+0. 

Next, 3 1 1 = (6-pq)- (6-P2al) < 1 + /3 
and so, since e R(i), | i = 1 or | = 2. 
Similarly = 1 or = 2i. 
If I = I r= =I 2, then gcd (, q) would be 1 +i and 6' = 6/(l +i), ' = q/(1 +i) would be 
another solution of (10-7) and (10-8). Hence we may assume 

min{|l , Iq }= 1. 
If I| r = 1, put 0 = /6q, and if 1 6 = 1, put 0 =- /. Then, in any case, (10-7) and (10-8) 
become 0-p i< 1, 

whr l 3+ej1 (10.9) 

where | 6 ! = 1 or 2, i.e. 0 = 4 1, -i or 1 ? i (independent signs). As is easily verified, none 
of these 0 satisfy (10-9). Hence our initial assumption that we could read < in (10-2) is false. 

Our method of proof has the disadvantage compared with that of Minkowski that it does 
not show that these are essentially the only cases where equality is required in (10.2) and 
(10-4). 

11. A SIMPLIFICATION OF THE PROBLEM 

A special case (a = 0, b = c = 1, d = -0, u N= , v = 1/N) of theorem XVI is the following 
result: 

COROLLARY. Given any real numbers N> 0 and 0, there are x, yE R, not both zero, such that 

lyl<N, ly0-x Il/N. 
There is a well-known argument due to Hilbert (cf. Minkowski I907, chap. 1, ?? 6 to 10) 

which conversely deduces theorem XVI from this corollary. In this paragraph we show that 
similarly theorems XIV and XV may be deduced from special cases. The proof is a straight- 
forward generalization of Hilbert's argument. 

We shall denote by k(,/(-m)) a quadratic-imaginary extension of k and by R(( (-m)) its 
ring of integers, and prove the following theorem: 

THEOREM XVII. Let all ideals in R(,(-m)) be principal (e.g. R(^/(-m)) is R(i) or R(p)). 
Suppose there is a c> 0 depending only on m with the property that for every ze Q and N> 0 there are 
X, lER(V/(-m)), not both zero, such thatt 

Jt(Jy> N, i iyz-- CN-1. 
t By considering 0 < N< 1 it is easily seen to be necessary that c > 1. 
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Then for every a, f, y, Se Q and every u, v > 0 such that 
uv>c I a-fy >0, (11.1) 

there are c, / E R(( (-m)), not both zero, such that 

JI6+^Ij?u, Ir|-y6+I|V. (11-2) 
We first prove a lemma. 
LEMMA 10. The conclusion of theorem XVII holds if , ,f, y, Se RJ( -m)). 
Since R(J (-m)) is a principal ideal ring we may put 

Y = rY1, -= - 1, 
where 71, 81, 1eR(J(-m)), gcd (y1,1S) 1, 
and may choose a,, /? R(,(- m)) such that 

Z1 ~1--f1lYl - 1. 
The unimodular transformation 1- 

= a +lff (11.3) 
31 

= yi I/(11'63) 

then gives 0o+?X7, = y1++Xl, y7+9 = e^, 
where 55, XeR(/(-m)) and | a-f 71 = I I >0. (11-4) 

2 
We now put N= - 12 z = -/ 

in the definition of c. Then there are 61, 11 E R(( -m)), not both zero, such that 

tf(,)X- < 2 _I Vl +61 <= c [ 

i.e. such that 11 v, 

by (11.1) and (11.4). Since c, 4]e R(J(-m)) may now be determined from (11.3), this proves 
the lemma. 

COROLLARY. The conclusions of theorem XVII hold if a,, y, 7E k(( - m)). 
We may choose ec R ( ( - m)) such that w)a, fl, oy, wo E R(J(-m)) and apply the previous 

lemma with oa, wo/, oy, 0w, I ow u, o I v for. a, f/, y, S, u, v. 
We may now prove theorem XVII. Given o, ,/, y, SE Q and u, v> 0 satisfying (11 1) we 

may choose an infinite sequence of sets 
a(j), (J), y(), (J)E k(,(-m)), u(j)> 0, v(j)> (j= 1,2,...), 

such that u()v()>c \ c(J)(J)-iy() \ > 0, 
and o(j)-->, J)->f, 7y)- y, (J)-, u()-> u, v(J--v. 

Then, by the last corollary we may find 6(j), q(J)E R((- m)), not both zero, such that 

I[()+ 
' 

]) < u, | V<)+ - (J) | <. 

Since, as is easily verified, all the pairs 6(j), I(J) lie in a finite part of the X, 7 plane, some pair 
6', 7/' must occur for an infinite sequence j =j1 (I =1,2,...) of values ofj. Then, by letting 
I tend to infinity, we have +'+ ' I u, y6'+&]' I| ,< i ~ Y'&]l< V) 
as required. 
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12. THE FAREY ARGUMENT. INTRODUCTION OF S*, ETC. 

By theorem XVII the proofs of theorems XIV and XV are reduced to a consideration of 
min lJz-a 1 (12-1) 
a,f, 

over all a, fe R(i), R(p) respectively, such that 
V (tf) < N, 

where ze Q and N< 0 are given. We note that no bound is put on X(a). We are therefore 
led to consider g*, the set of all reduced fractions a/fl: 

a/ # * .. X(0} < N, 
and a, fiE R(i), R(p), respectively. We now define *, l in terms of * precisely as N', @N Ntll+r~ UN, N In terms ,,,N preci as ~N, ( 
were defined in terms of sN. 

The theory of S* runs entirely parallel to that of )N. It is slightly simpler because of the 
lack of restriction on .X(a). In particular, we may define the region S* (x,fl) belonging to 
(a,Bf)E *. As may easily be verified theorems IV, V, VI, X and XII hold if -*, *, $*, 
*, ... are read for , (, 1, , ..., etc. 

With this notation we shall write AN(z) for (12.1), i.e. 
AN(z)= min flz-a 1. (12.2) 

(M, fl) E 

LEMMA 11. We may assume /f4 0 in (12 2). 
Ifl/ = 0, we must have a+ 0, and so I z--o I > 1. Sincet N> 1 we may put f = 1 in (12.2) 

and then choose a so that I z-a 2--<1 (for R(i)), Iz- <3- <1 (for R(p)). Thus the 
minimum is not attained for fl 0. 

COROLLARY. * *(a, 0) is nullfor all a. 
We now prove the following theorem: 
THEOREM XVIII. In both R(i) and R(p) the maximum of AN(z) is attained at a node of *. 
We give the proof for R(i). That for R(p) is similar. 
We first note that AN(z) cannot attain its maximum at an inner point of an *(c,f), 

since there AN(z) min |z-y I = z-al 
(y,6)E S 

and f4 0 by lemma 11, corollary. Hence if theorem XVIII were false, AN(z) would attain 
its maximum at an inner point of the boundary between two regions, S * (a,l,), 9 * (y, 8) say. 
The boundary is an arc or arcs of the circle 

I fz-a I = z- 1- (12-3) 
The truth of the theorem is then a consequence of the following lemma: 
LEMMA 12. Let (a,/f), (y, 8) E A, and let zo be a value of z on the circle 

I|z-aI = 1z-y| 
for which I fz- c I = Sz-y i is a (local) maximum. Then there is a (A, u) E 

l such that 
ZUZO\-A I < IZo-a = - Irz-S 1. 

The z satisfying (12.3) are of the form 

z(O) = z e 

f We defined vN and a* only for N> 1. 
8I-2 
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where 0 is real. z0 = z(00), where 00 is a 0 for which 

lz-al= 1sZ-Yr l = S 

is a (local) maximum, i.e. 1 ,+ Seis I is a (local) minimum. This can only be the 00 defined by 

eiOo = sgn I) 

We may now choose Ie R such that 100- 1 I < 7T. 

Put e e' = i - i. Then 
l+ s_ 12 I -I 11 i+ IS 12 2 1 Sl I cos (o00 - 1) 

<1 I 2+1 12- -,2 i fB I 
<max{l122, iS12}. 

Hence X (fl+ e) < N. On writing 
a+efl= A, y+e =vu, gcd(A,u)=l 1 

we have then (A, #) E * 

and Ilz-A 1 1 | I -Y | <| I I z 
Inr 

l I / 7 
BNtI e ie o o 

I I I " j -- I / 7-] I - I -8 e |o 
as required. 

This concludes the proof of lemma 12, and so of theorem XVIII. 

13. PROOF OF THEOREM XV 

In this section we deal only with k(p). Our object is to prove the following theorem, of 
which theorem XV is a consequence: 

THEOREM XIX. Let N> 0 and let vE R(p) be such that N1 = X(v) > N is the least norm greater 
than N. Then for all ze Q there are a, /f R(p), not both zero, such that 

r(/)<N, J/z-al <N1r . 

The last < cannot be replaced by <. 
If N< 1, we have N1 = 1 and the theorem is trivial (f = 0, a = 1). Hence we may assume 

that N- 1 and so apply the results of? 12. In that language theorem XIX asserts that 
max A(z) = N1. 
zeQ 

By theorem XVIII we need consider only nodes z'. By theorem X and its corollary (? 9), 
Z' = Al/E k(p). If A, #E R(p), gcd (A,<) = 1, we have 

AN(A) 1 < N i 
since A/Mu 0 * and so X(pu) > N, JX(p) > N,. Further, clearly, for the v of the theorem, 

A\v vl NI ' 
which proves the last sentence. 

Since N1> N, theorem XV follows from theorems XIX and XVII (with c =- 1). 
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14. PROOF OF THEOREM XIV 

In this section we deal only with k(i). Our object is to prove the following theorem of 
which theorem XIV is a consequence: 

THEOREM XX. For every N> 0 andfor all ze Q there are a,flE R(i), not both zero, such that 

X(f) <N, | z-a|< 1J/2 N-1. 3---/ 
The constant /2/(3 -,/3) cannot be replaced by a smaller one. 

If N< 1, the theorem is trivial so we may assume N> 1 and apply the results of? 12. In 
that language theorem XX asserts that 

max AN(z)< 2 N_-. 
zCn 3 --J3 

By theorem XVIII we need consider only nodes z'. By theorem IV (?6) either z'ek(i) or 
z' ? k(i), z'E k(i, p). 

LEMMA 13. If z'E k(i) then A(z') < N-. 
The proof is exactly similar to that of the previous theorem XIX (? 13), and will be omitted. 
Since ,/2/(3 -/3) > 1 we need therefore consider only nodes z'? k(i). 
LEMMA 14. If z' k(i) is a node, then 

Z =tl-p2) a, /?,y,E R(i); ia|-/y|=l, (14-1) 

wheret max{|(fl, | S, jfl8+6J}<N, (14.2) 
min{l +isl, I 8-i(fl+6) I, I|f+a-i I}> N. (14-3) 

From theorem V (?7)4+ it follows that (14-1) and (14-2) hold, since (14-2) just expresses 
the fact that (a,fl), (y, &), (a+7y,fl+)) E a. It remains to verify (14.3). Suppose, per absurdum, 
that I f/+ i8 < Ni and so (a + i,+ i+ i) e *. Then we would have 

min 1 z' - - = min Oz' - 
(,, 0) e a (, 0) C TD* 

I i+p2I < I (f+i )z' -(a+ir) I = 

<lI-p261 
= lAz- a . 

Hence z'i 1 * (a,fl). This is a contradiction, since z' can only have the form given ifz' e (a, /?). 
The rest of (14-3) is proved similarly. 

The converse that if (14-1), (14-2) and (14*3) hold, then z' is a node, is true but we do not 
prove it as we do not require it. The proof is straightforward but a little tedious. 

LEMMA 15. If f, SE Q and (14-2) and (14-3) hold, then 

32- I| p2SI|>3-Ni (14.4) 

Put A = fl-p2a, I fl-pS, 
so that (p-p2) = p-p2#, (p_p2) 8- =A-- , ( p-p2)(fl+&) = -(P2A-pA ). 
Then, by (14-2), max I A-pu l <I p-p21 Ni = (3N)I, 

I=0, 1,2 and hence max { A I It 1 }< (3N). (14.5) 
t Note the cyclical symmetry in (oc, i), (y, d), (-ca-y, -8-8). + Case a. If t' = -p in the theorem interchange (ca, /8) and (y, 8). 
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Further, by (14-3), 

and so 

min I (p+i) A -plp2 + i)# l > (3N), 
1=0, 1,2 

max { (p +i) A |, I (p2 +i) # I}> (3N)I. 

Since p-il - /3> 3 1 lp2+il ,,,,/2 =+/2 
we have i (p2+i) u <(3N)i by (14 5). Hence I (p +i)A > (3N) by (14-6), which is the 
required inequality. 

COROLLARY. If z' k(i), AN(') < 3- N. COROLLARY.~~ 
~~~~~ 

If z ki) 

By theorem V (? 7), we have AN(z') /= |I -p2 I- 1, so the corollary follows immediately. 
Finally, theorem XX follows at once from theorem XVIII and lemmas 14 and 15; and 

theorem XIV follows from theorems XX and XVII. That the constant in theorem XX is 
best possible follows from the already proved fact (? 10) that theorem XIV is best possible. 
If theorem XX could be improved, then so, by theorem XVII, could theorem XIV. Indeed, 
by reversing the argument of this paragraph and using the converse of lemma 14, it is not 
difficult to prove that /2 lim NW max AN(z) --3' 

N->oo z EQ 3 -3 

but we shall not go into details of the proof. 
PART III 

15. INTRODUCTION 

In this part III we show that both .S * (a, /f) and S (a, /f) for f + 0 are star domains about ca/l 
in the sense of Minkowski. The proof that 9 * (a, /) is a star domain is rather long but quite 
elementary. The proof that 91 (a, ) is a star domain is more complicated, and we only carry 
the proof through for 'large enough' N (i.e. for N7 No, where No is an absolute constant which 
we have not troubled to determine). There is little doubt that 91 (a, /) is a star domain for 
all N, but it does not seem worth while pursuing the subject further as 9t* (a, /f) is perhaps the 
more natural object of investigation. We discuss throughout only k(i). Doubtless analogous 
results hold for k(p). 

In what follows we denote the interior, closure, frontier and complement of a point set 
9) by S9, 9), a 9, S and 9)1 respectively.t All point sets will be in the two-dimensional 
plane with co-ordinates x, y or, what is the same, in the Gauss plane of z x+ iy. 

In ? 16 we prove two theorems of a general nature; in ?? 17 and 18 we apply them to 91 * (a,/b) 
and 9(a, f) respectively. 

16. GENERAL PREPARATION 

It is easily seen that Minkowski's definition of a star domain is equivalent to the following 
one: 

DEFINITION. A non-null bounded point set S in the plane is said to be a star domain-, about a point 
O if OE E c and whenever PE i, all the points of the line segment OP except possibly P are in JS. 

We note for later use the following two lemmas: 
t There should be no confusion with the previous use of Jz to denote the imaginary part of the complex 

number z. 
+ We note that a star domain need be neither open nor closed, so 3 is not necessarily a domain in the 

topological sense. One can show, however, that Jt is a topological domain. 
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LEMMA 16. If i'l, 2 *I , Z 5 2 r are star domains about 0, then so are also 

)l, U C2... U c)r 

and n2flS2-r ... 
LEMMA 17. Let X be a star domain about 0 = (0, 0). Then the set e obtained from ~V by the 

transformation 1 xt A iy'^ x + 
iy x + iy 

is also a star domain. (Here 0 = - is considered to belong to H.) 
We suppress the proofs. 
In the rest of ?16 'star domain' will mean 'star domain about 0', until the contrary is 

stated. Ifa point set Z is given, a point P4= 0 on i3 is called black if there is a 8> 0 (depending 
possibly on P) such that tPeXS (1-S<t<l), 

tPcEW (l<t<1+8), 
where tP, for positive t, is the point on the radius vector OP at a distance t \ OP \ from 0. 

LEMMA 18. If allfrontier points of a bounded point-set X are black, then X is a star domain. 
Let PE Z. Suppose that tP if) for some t in 0<t< 1. Denote by r the l.u.b. of such t. 

Then 0r < 1, since either PE fSS and .f? is open or PE FS and then P is black by hypo- 
thesis. Further, tPe S (r<t<l), (16.1) 
since r is an upper bound. But then clearly TPE Z. Hence rP is black. This, however, is in 
contradiction with (16'1). Hence tPE >) (0<t< 1), i.e. ? is a star domain. 

LEMMA 19. Let =c SI U 2... UO r, where 1 ,..., r are bounded point-sets. Let Pe o$, 
say PE ~Zj forj =Jl,j2, ..., j and PcE Zj forjjl, ...,j,. Then P is a black point of ) if it is 
a black point of j,, ..., 5i, 

The proof is obvious. 
LEMMA 20. Let ), i2, ..., r be boundedpoint-sets and Z = I U 2 U ... U ). Suppose that, 

for every j, every point PE 3)Zj, PC 7Z~ is a black point of j. Then X is a star domain. 
For by lemma 19 every point of oF is a black point of Z. Hence by lemma 18, ) is a star 

domain. 
Let u, vo be fixed real numbers. We denote by A the set of all numbers pairs (u, v); 

u-uo (1), V-VO (1). 
For any point P = (x', y') we denote by 

((P)=((X?(y') 
the open circular domain 

(X Y)E( (x, y') ._. (X-x')2+(y_y)2<l1 

of centre P and unit radius. 
Finally, for r> 0 we denote by % the region 

(x, y) c .e - x2y2-<r2. 

THEOREM XXI. a = U ((P) 
pe An 

ia either the null set or a star domain with respect to O = (0, 0). 
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If P = (u, v) e A n , the points of (E ((u, v) are of the form 

P(0) = (u+cos ,v+sin ) (-7r<0<7Tr). 
We require a condition for P(O) to be black. 

LEMMA 21. (i) Ifu2+V2 < 1, then all the points P(O) are black points of (u, v). 
(ii) If U2 -+v2 = 1, then all the points P(0) except 0 (0, 0) are black points of^ (u, v). 
(iii) Ifu2+v2>1, and p(O) = ucosO+vsin> -1, (16-2) 

then P(O) is a black point of q (u, v). 
We put S(t) = (u-tu-tcos0)2+(v-tv-tsin 0)2, 

so that 0(t) < 1, =1, > 1, according as 
tP(O) E ?C (u, v), o' (u, v), WQ(u, v). 

Further (1) 1; t)S(t)] = ucoss+i 0sin0+1. 

Hence if (16.2) holds, P(O) is black by definition. T'his proves (iii). If u2 +v21, then 
u cos0 + v sin0 -(u2 + 2) -1, 

with equality only when u =-cos 0, v =-sin 0; i.e. with this exception (16-2) holds. This 
proves (i) and (ii). 

LEMMA 22. Let (u, v) A. 

(i) If (u-1, v) E (, then P(O) e for -rr< I 0 I t. 
(ii) If (u,v- 1) E (, then P(O) E for - r < 0 < -r. 

(iii) If (u- 1, v-1) e , then P(O) E for -r< < - i7T. 
(iv) If (u-1,v+l + 1) E , then P()E R for 7T < <7. 

We prove (i). We suppose 7r>T 1 0 > -r and put 
P(O) (u + cos 0, v + sin ) = (x', y'). 

Then (- -x')2+(v-y')2 (1+cos0)2+sin20 
= 2+2 cos0, 
<1 

since cos 0< - . Hence P(O) E (u- 1, v). 
Further, (u- , v) E A since (u, v) E A. Hence 

P(0) E (u- , v)C U (f (P)= 
Pe n A 

as asserted. 
The proofs of (ii), (iii) and (iv) are similar. 
LEMMA 23. Let (u, v) E e n A and lett P(f) i A. Then P(0) is a black point of (u, v) with respect 

to O= (0, 0). 
We may suppose, by symmetry, that u v O. (16-3) 

We are given that (u, v) E, i.e. u2 + v2 r2. (16.4) 
We distinguish a large number of cases, 01, 02 , A2, A B, B2, B C1, C2 (say). 

Case 0. 2 + v2 1. 
Subcase 1. u2 +v2 < 1. Then all P(O) are black by lemma 21 (i). 
Subcase 02. u2+2 = 1. Then u > since u > v 0, and (u-1)2+v2<1 2= 2+ v2 r2. 

I P( v) since and (u, v) are open. 
t I.e. P(O) EJr n tF(u, v) since A and T(u, v) c j are open. 
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Hence (--l,v)E? nAand 0 = (0,0)E (u-l,v) C U (P) =- . But bylemma 21 (ii) 
Pe<nA 

all points P(O) are black except 0. The lemma is thus proved in this case. 
We may therefore assume from now on that 

u2+v2>1. (16-5) 
Hence by lemma 21 (iii), to show P(O) is black we need only prove 

p(O) - ucos +vsin 0>-1. 
Case A. u < 111 
Subcase A1. v 1-, so u> by (16.5). Then, by (16.4), 

(- 1)2 +v2 = u2+2+ (1 -2u) <u2+v2<r2, 

and so (u-l,v)E . 

Hence, since P(0) i? , we have, by lemma 22 (i), 

10< 23r 

If I| < i1r, then p(O) = ucosO+vsinO -v> - 1. 
If 17 < 0 i <r, say | 0 =1 + , where 0 < 6<-nr, then 

p() >-u cos0--v sin 0 
= - u sin - vcos6 
> 1-1 sin- 11cos 

11 1 11 /3 
10'2 20' 2 

Hence always p(O) > - 1 and so P(O) is black. 

Subcase A2. v > 1 so 11u u v 11. Then 

(- 1)2 + ( - 1)2< (?)2+ ( )2< 1 <2+v2 r2, 

( -1)2 +2 = 2+V2+ (1 -2u)<u2+ 2< r2, 

U2+ (V-- 1)2 U2+ 2+ (1 -2v) <u2+2 <r2, 

and hence (u-l,v-1)eS, (u-l1,v)e, (u,v-1)E. 
Hence, by lemma 22 ((i), (ii) and (iii)) 

-7T < 0< 2|T. 

Then p(O) = ucos -+vsin8> ucos8> ~- u> - ( 0<<?7T), 

p(8) >vsin 0>-v>-l (--ir?<8<0), 
and so always p(0) > - 1, as asserted. 

Case B. u> T, v?<. 
Subcase B . u -. Then (u- 1)2 +2<u2+ v2r2 

and (u- 1)2+ (v- 1)2 u2+ (1 + (- 1)2-2u) 
u2+ (1 +1 -1) 

< 2 U2 + v2r2, 
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Hence, by lemma 22 ((i)- and (iii)), we have 
-2 0< ? 7ff, 

and so p(0) = ucosO+vsinO>- -v> -1 (I 01 7r), 

p(e) >ucosO >-u>-1 (r<e Cff 0 r). 
Hence always p(0) > - 1, as asserted. 

Subcase B2. u >. Then 

(u-1)2+ (+1)2 =u2+v2+ (2-2u+2v) <u2+v2<r2, 
so (u -lv+l)eS. 

Also, as in case B, (u- 1, v) E, (u-1, v+ 1) E . 
Hence by lemma 22 ((i), (iii) and (iv)), since P(O) ? 

01 \ 7T. 

Further, we have then p(O) = ucosO+vsinO> -v> -1, 
as asserted. 

Case C. u>-, v3. 
Subcase C1. u < 2 + 3v. Clearly 

(u- 1)2+ v2<u2+ v2 r2, 
u2 + (-- 1)2 <u2+ v2r2 

and so (u- l,v)E, (u,v-1)E S. 
Then by lemma 22 ((i) and (ii)), as before 

F hbr 6r< 20r. 
Further p(0) = ucos 0 + v sin O (O <0< r), 

p(0) >ucos 0- v sin 0 

> u(cos 0- sin 0 1) 
0o (-i<T80<O) 

and, if nT < = 0 , + < 3t, 

p () = v cos - u sin 6 
- 2sin +v(cos -- sin ) 

> -2 sin 
>-1. 

Hence always p(0) > - 1, as asserted. 
Subcase C2. u>2+^v. Then 

(u-1)2+ (v+ 1)2 = 2+v2+ (2+2v-2u) 
< 2+V2 <r2 

and hence (u-- 1,v+1)E . 

Also, as in C1, (u-1,v)E) , (u,v-1)E. 

Hence, by lemma 22 ((i), (ii) and (iv)) we have 

6 -- 
- 
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Then p(O) = ucosO+vsin800 (0<O?<?r), 

p(o) > ucosO-v Isin l 
>u(cos O- sin O ) 
>0, (0) 

and so always p() > - 1, as asserted. 
Since all u, v satisfying u uv 0 fall under one ofO1, 0 ,2 Al, A, B1) B2, C1, C2, the lemma is 

proved. 
Theorem XXI now follows directly from lemmas 20 and 23, since - = S.f is open. 
The foregoing lemma will suffice for the t * (ca,f). To deal with the S (a,,/) we require 

a more elaborate version. 
Let A be as before, and let s> 0, p, q be real numbers. We define S' by 

(X^eY) e ._=. (X P)2+ (Y-q)2S2. 
THEOREM XXII. There exist absolute constants m, M with the following property: 
Suppose that either p2 +q2 m, s>1, (16-6) 

or pIq<ij,lqlj s2?M. (16.7) 
Then '= U ((P) 

Pe' nA 
is a star domain. 

Suppose further that (" -= ' ln 
and " = U (P). 

Pe?6"nA 

Then if either (16*6) or (16-7) holds, $" is a star domain. It is also a star domain for r2 M= s2M 
and Jp I = 1, q=0 orp = 0, q = 1. 

The conditions (16* 6) or (16 7) imply that V' is very nearly a circle with centre 0, i.e. very 
nearly an @, and hence so is V". In the proof of theorem XXI all the inequalities were 'weak', 
i.e. we could have proved stronger inequalities than were actually needed. The proof of 
theorem XXII consists in going through that of theorem XXI and verifying that we may 
choose m and M so that the inequalities continue to hold. We omit the details. 

17. 9*(a(, f) IS A STAR DOMAIN 

We prove the following theorem: 
THEOREM XXIII. 9* (, f) is a star domain about L/fl. 
8*Q(a,i) was defined as the set of points z such that 

flz--a = min Oz-- j, 
gcd (], 0)=1 

Ol \<Ni 

and so Iflz-acI= min Oz--q. (17.1) 0< If 0 1 <N 
Let A, tu be a solution in R(i) of the equation 

A,B--ta == 1, (17-2) 
so that every pair of integers (q, 0) may be put in the form 

(%,0) - A(a,fl) +B(A,8), (17-3) 
82-2 
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where A- (17.4) 

= - ER(i). (174) B = f#--oO 
We apply the conformal transformation 

/ + 0t ,t --#z 
Z-+at t= a+-z (17.5) 

Then equation (17.1) becomes 1 = min Bt-A 1, (17-6) 
subject to the condition [I 0= I Aft+B I < NI, 

i.e. A+ f < . (17.7) 

For given Be R(i) we denote by ?B the set of all t with 

I Bt-A <1 (17.8) 
for some A satisfying (17-7). 

LEMMA 24. SB is a star domain about -#/fl or the null set. 
We apply the transformation Bt = t* (17.9) 

and denote by * the set of t* = Bt, tE ?B. We write 
B/u A+-= - u+iv, (17.10) 

and put t+--= x+iy. (17.11) 

We use now theorem XXI and the corresponding notation. Thus (17-6) is equivalent to 
(X, y) (E (U, v) 

N and (17.7) to u2+ v2 l- =r2 (say). 

Finally, we write B = UO + ivo 

so that u-u0 (1), v-v0 (1). 
Hence by theorem XXI with the appropriate definition of A, G in terms of u0, v0 and r 

*: U 6((P) 
PeAne 

is a star domain about tI = - B// (corresponding to x = y = 0). Since %B is obtained from 
St by a ro a a rotation and a magnification, this proves the lemma. 

From lemma 16 we have the corollary: 
COROLLARY. = U %B is a star domain. 

B 

Finally, ce in the t-plane is the transform of * (a,/i) in the z-plane by (17.5). The trans- 
formation (17-5) may be written in the form 

(Pt+ #) (/z-a) == A~-a/ - 1. 
This is a transformation from x+iy= z - oc to x'+iy' =-/it +u of the type discussed in 
lemma 17. Hence sla ( 
is a star domain about a//i, as asserted. 
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18. 9J(a, ,f) IS A STAR DOMAIN FOR fl 0 

We shall prove the following theorem: 
THEOREM XXIV. Let M, m be the constants of theorem XXII. There is a constant No such that 

1 (a, f) is a star domain about c/fl whenever flO 0 and 
N >No. (18-1) 

There seems little doubt that the condition (18-1) is unnecessary. The S(a,,f) are in fact 
star domains for all N for which diagrams have been drawn. 

We require the following lemma: 
LEMMA 25. 91 (a,f) is the set of all ze Qfor which 

fI z-cZa I min Oz-- I (18-2) 
subject to I r j <Ni, I, -N, 0 < a0-? 22. (18-3) 

We recollect that 1 (a, ?) is defined by 
zE ?t(ca,/) .-. |jz-a l min m Oz-l I. (18-4) 

Since (q1, ) E ?N is equivalent to | I NI, I O | < N6 , gcd (q, 0) = 1, we may replace (18-4) by 
ze 9(a, f) . fiz- al= min 1 Oz-- 1. (18.5) 

11 <N1 
(a, 0) + (0, 0) 

Suppose, per absurdum, that there is some z for which (18-2) and (18.3) are true, but (18.5) 
is false, i.e. there is some (y, S) such that | y I < N*, j 4 | < Ni and 

1 -yl<llz -a, 
where necessarily A > 2', A S-fiy, 
by (18 3). We suppose y, 3 are chosen so that A has the least value for which a contradiction 
occurs. 

Let 5, C be the 5, v of lemma 4 (? 6) and put 

Yi= a ER(i), 1 - ER(i). 

Then much as in the proof of theorem IV (? 6) we have 
J7y1j<N, |11|<N1 

and l1z-y 1 <H l\lz-, 1+ J Sz- jl<jf< z-! |. 

Finally, /a1KzJoa&18 fiy1/ Ijo-fiy==fqjKjal . Finally, I l - 10lfl , I | g-PYI I = | x- | = < |<| A . 

Since I A I was assumed to be minimal this is a contradiction. Hence the lemma is true. 
Suppose first that afi+=0. (18.6) 

Then we choose A, #cR(i) such that (17-2) holds, and make the transformation (17.4). 
Equation (18-2) becomes i <min I Bt-A |, 
where A, BeR(i) are given in terms of y, 0 by (17-3) and (17-4) and so are subject to the 
conditions of (18.3), i.e. | = + I |=|+ A+BA I N, (18N7) 1 

- 
1 I A'+B# I <<N,) 
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and 0< I a0-fq I = B 1 < 2. (18.8) 
For given BE R(i) we denote by S' the set of all t with 

IBt-A!<I for some A satisfying (1 87). 
LEMMA 26. ?B is a star domain about -#//l (or null) for I B 1 <2 and N> 2M/m (M, m of 

theorem XXII) except, possibly, when I B I = 21, 1 aB I < 21. 
The proof is similar to that of lemma 24 except that theorem XXII is invoked instead of 

theorem XXI. We make the substitutions (17-9), (17-10) and (18-11) and put 
Bu BA -B _ _ - 

c ^p +iq. 
Then (18-9) is the same as (x, y) E ~ (u, v), 
and (18-7) becomes A BoA Ni 

A+ <N 1 

and so (u-p)2 (v-q)2 S2, 

U2+ V2< r2J 

N N where s2 r2 2- 2 

B 2 2 Also p2+q2 < 2 

and so ->- N 2 
p2 + q2 2 m 

since I / | I 1 and N> 2M/m by hypothesis. Thus 
either s2>M or p2 +q2 m (or both). 

Finally, s2 -- 1, 

and p,jq satisfy the conditions of theorem XXII. Lemma 26 now follows from theorem XXII 
just as lemma 24 follows from theorem XXI. 

COROLLARY. 5"- U ?B 
< IBI <2 

is a star domain for N> No. 
This follows from the lemma since j+ i C Z1 for J aJ I | 21 and large enough N. 
Finally, by lemma 25, T? " in the t-plane is the transform by ( 17X 5) of 91 (a, ,) in the z-plane. 

Hence, as in the proof of theorem XXIII, we deduce that 9l(a,,f) is a star domain about a//?. 
There remains the case when (18-6) is false, i.e. a = 0 since /?= 0 by hypothesis. Here we 

make the transformation t = 1/z and invoke theorem XXI. We omit the details which are 
similar to those in the proof of theorem XXIII. 

19. CONCLUSION 
It will be apparent that many of the methods of this paper can be applied to the corre- 

sponding problems in other quadratic imaginary fields k(V(-m)). We have not made any 
detailed investigation of any other special cases, but the following two general theorems are 
easily proved. We use gN, ON, 'N, 1 (a,f), etc., to refer to k(,/(-m)). 
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THEOREM XXV (cf. theorems IV, IX). There is a constant CO depending only on m such that 

if S (a, /f) and 9 (y, S) are adjacent, -Y | < Co. 
THEOREM XXVI (cf. theorems V, X). There is a constant C1 depending only on m such that no 

more than C, regions meet at a node. The angles which they subtend at the node belong to one of a bounded 
set of schemes. 

It might be of interest if further values of m, e.g. m = 2, were investigated in detail. 
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EXAMPLES OF FAREY SECTIONSt 

N(i) for N = 25. 

140-13 V3. 57- 12 V3 
626 ' 626 

/172 - 9 115 -20 /3 
9 962 ; 962 

3: 51- 8 3. 
146 ; 

7+ V3i 
26 

5(38 + 3 3 
5*: 218 

61 {98+ 7 13. 
6: 386 

10-33/3\ 
146 / 

55- 10 43 
218 / 

386 / 
17 124+151V3 17+41/3 

482 ; 482 

8: (22-V3. 21-613) 
74 74 

9 (40-51V3 13+6/3 
122 ; 122 / 

N 25 

(87 + 2 V3 80+1513 
458 458 

11: 26 ; 26 
5+ 43i 12: 5+ 

14 

55+10V/3. 38-3V3 
1: 218 ' 218 

14 96-V/3 7-2 V3 
* 222 ' 74 J 

1 291+16 /3 68-919V3 
15: 674 ' 674 ] 

16: (164-11V3. 39+6V3 
314 314 / 

17. 104-9/3 57-4,/3\ 
194 ; 194 / 

1136+5 V3 113-121/3) 
18:\ 338 / 

149- 10A/3 116- 943 
19' 362 ' 362 

20 
- (90 913 57 + 4V13 
194 194 

21 21 + 6 13 22 + /3 1* \ 74 ' 74 J 

22 (321+20V3. 
818 ; 

23: + 4 - 
2 26 
1 2-13. 

24:+ 2-3- z 2 2 

2: 12-1 i+ 25. 2+ 12 i 2 2 

26 + 13 i 

27: 1 6+3 i 2 46 

314+3/3) 
818 / 

f One of us (K. Mahler) has drawn a complete set of diagrams of the regions 9l(a, ft) belonging to RN 

in k(i) and in k(p) for values of N up to 25. These diagrams have been lodged with the Royal Society, where 
they may be inspected, as, for reasons of economy, it was impossible to reproduce them all in the present 
paper. + Unnecessary vertex. 
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N(i) for N= 10. 

N=10 

o1+3$, 

ol+2i o2+2i 

oI 2+ o3+32 

o01+t 0o2+t 0 3+t 
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)N(i) for N= 5. 

g)k(p) and SNV(P) for N= 19. 
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