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In this paper we consider pseudo-valuations) on commutative
rings R with a unit-element, and define certain processes for ob-
taining new pseudo-valuations from given ones or from real func-
tions on R. For each type of operation there are two definitions
according to whether the resulting pseudo-valuation is, or is not,
required to be non-archimedean. Given a real non-negative function
@ on R we derive in Ch. I a pseudo-valuation which may be de-
scribed as ‘the greatest pseudo-valuation majorised by ¢’. We then
define the products and compounds of two pseudo-valuations and
obtain some of their properties in Ch. II. These operations are
illustrated in Ch. III by examples from algebraic number fields and
rings of algebraic integers. In Ch. IV the connexion between the
different operations, and their invariance properties, are established.
The operations of forming the product and compound correspond to
forming the sum and product of two ideals, just as the sum of
pseudo-valuations corresponds to the intersection of ideals (P.I.
19). This suggests a number of relations connecting the different
operations, which are in fact found to hold when we restrict ourselves
to bounded non-archimedean pseudo-valuations. On the other
hand, we can prove that certain laws such as the distributive law for
multiplication (or compounding) and addition do not hold generally
(Ch. V). .

We should like to express our thanks to Dr. J. A. GREEN, who
read the manuscript and suggested many improvements.

1) Cf. the definitionin § I, and K. ManLER, Uber Pseudobewertungen I, Acta
Mathematica 66 (1935) 79—119. This paper will be referred to as P. 1, followed
by the number of the paragraph.



162

I

1. In all that follows R is a commutative ring with the unit-
element 1. A pseudo-valuation of R is a real-valued function W(a)
defined for all 2 in R and having the properties

1) W©) =0, W(a) > 0;
ii) W(a —b) < W(a) + W(b);
iii) Wiab) < W(a).W(b).

We call a real-valued function on R admisstble, if it satisfies i),
subadditive, if it satisfies ii) and submultiplicative, if it satisfies iii).
A real-valued function ¢(a) which satisfies the inequality
i)’ pla — b) < max {p(a), ¢(b)}
is called nom-archimedean. Thus a function which satisfies i), ii)’
and iii) will be called a wnon-archimedean pseudo-valuation, which
agrees with the usual terminology (as e.g. in P. I). For the sake of
distinction the ordinary pseudo-valuations will sometimes be called
subadditive.

As examples of pseudo-valuations we have the functions
0if a=20
1if a #0.

They are called the smproper pseudo-valuation and the trivial pseudo-
valuation of R, respectively.

An admissible submultiplicative function ¢ always satisfies

e() > 1 (1
unless it is identically zero; for if ¢(a) s 0 for some 4 in R, then

0 < gla) = g(1.a) < p(1)p(a),
from which (1) follows on dividing by ¢(a). Hence we have
- Lemma 1.1. An adwmissible submultiplicative function @, which is
such that @(1) < 1, 4s identically zero.
In particular, a pseudo-valuation W is improper if W(l) < 1.

Ula) =0 and Wy(a) :{

2. In P.I. 7 it was shown that any finite set of pseudo-valuations
Wi,..., W, defines two new pseudo-valuations

Wela) = Wy(a) + ... + Wala)
and

Wi(a) = max {Wy(a), ..., W,(a)},

which are in fact equivalent 2).

2y Cf. P.I. 8, or § 14 below, for the definition of ‘equivalent’.
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If we have an infinite set of pseudo-valuations: W, (Ae 4),
then we can similarly define the functions

Wela) = Z;.4 Wila); Wi(a) = sup {W,(a)},

where the expressions on the right may assume the value 4 oo. If
W, or W% is finite for all a in R, it will again define a pseudo-
valuation; the proof is exactly as in the finite case. However, W
will not be finite unless almost all the W, are improper. For every
proper pseudo-valuation satisfies W(1) > 1, and so

Wz(l) = 2W;_ proper 1.

Hence the sum Wy gives nothing new, and we shall only consider
the second type of sum.

We have the following obvious criterion for deciding when
sup(W,(a)) is a pseudo-valuation:

Lemma 2.1. If W, (Ae A) is a non-empty family of pseudo-
valuations on R and if theve is a veal function ¢ on R such that

Wi(a) < g(a) forallacR, e 4, (2)

then sup(W,(a)) is a pseudo-valuation.
For the condition (2) ensures that sup(W,(a)) shall be finite for
all values of a.

3. The criterion of Lemma 2.1 suggests considering the pseudo-
valuations which are majorised by a given real function ¢ on R.
Such pseudo-valuations exist if and only if g{a) > O for all aeR.
Let Qp be the set of all pseudo-valuations on R. Then if ¢ is any
real non-negative function on R, we can put

W,(a) = sup {W(a) | W e Qg W < ¢}, (3)

where W < ¢ means W(a) < ¢ (a) for all 2 € R. By Lemma 2.1, W,
is a pseudo-valuation; in fact it is the greatest pseudo-valuation
majorised by ¢. Similarly we can define the greatest non-archi-
medean pseudo-valuation majorised by ¢ as

Wo(a) = sup {W(a) | W € Qp, W non-archimedean and W < ¢}. (4)

In particular, if we take as our non-negative function ¢ a pseudo-
valuation V, then W3 defined by (4) is the largest non-archimedean
pseudo-valuation majorised by V. Of course this may be the im-
proper pseudo-valuation U; e.g. if V is the ordinary absolute value
on the field of rational numbers, then there is no proper non-
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archimedean pseudo-valuation majorised by ¥, and so Ws=U
in this case. On the other hand, if V is again taken to be the absolute
value, this time on the ring of rational integers, then the largest
non-archimedean pseudo-valuation majorised by V is W, the trivial
pseudo-valuation. This is not difficult to prove and also follows from
the alternative definitions given later.

Let ¢ be any real non-negative function on R. We can think of
the set of pseudo-valuations W majorised by ¢ as determined by a
set of conditions, one for each a e R, viz. W(a) < ¢(a). Only the
condition for @ = 0 is vacuous, since p(0) > W(0) = 0 holds in any
case. Thus the value ¢(0) does not affect our set of pseudo-valuations
and we may suppose from the outset that (0) = 0, i.e. that p is
admissible. Then we can sum up the results of this paragraph in

THEOREM 3.1. If @ is any admissible function on R, then there is z)
a uniquely deteymined greatest pseudo-valuation W, which is majorised
by ¢ and i) a uniquely determined greatest non-archimedean pseudo-
valuation W which is majorised by g.

Clearly

0L W, < W, <o

Further, W, coincides with ¢ if and only if ¢ isa pseudo-valuation,
and W7 coincides with ¢ if and only if ¢ isa non-archimedean pseudo-
valuation. It is also clear that W5 is the greatest non-archimedean
pseudo-valuation majorised by W,,.

4. The above definitions of W, and W3 were non-constructive,
We shall now give a constructive definition of these functions.
For every admissible function ¢ we define the function

pX(a) = infg,_, I1; p(x), (5)

where the greatest lower bound is extended over all factorisations
of 2 in R3).

The function p* is again admissible. For the lower bound of a set
of non-negative numbers exists and is non-negative, and since there
are factorisations of a (e.g. a = a), the set over which the lower
bound is extended is not empty. Since (0) = 0, we have @*(0) =0
and so ¢X is admissible.

8) The greatest lower bound (inf) is sometimes loosely referred to as “the lower
bound”, when no confusion is possible. Similarly for the least upper bound (sup).
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Fuyther ¢* is submultvplicative. To prove this, let 4, b€ R. Then
for any factorisations a = Il x;, & = Iy,
@*(ad) < Ip(x) Iip(y,).
Hence, by taking the lower bound over all such factorisations of
a and b, we get
@*(ab) < inf Ilp(x,).inf He(y))
= ¢*(a) $*(0)

-~

as asserted. .
The operation ¢ — @* is monotone, ie. if @, < @,, then

o1 < @5,

as is immediate from the definition.

If we take the factorisation @ = a in (5), we see that p*(a) < ¢(a)
for all @ € R. Thus ¢* < ¢. Equality holds here if (and of course
only if) ¢ is submultiplicative. For then

¢(a) < ILg(x,)
for all factorisations of a, hence
p(a) < inf ILp(x;) = ¢X(a).
5. Next we define for every admissible function ¢ a second
function ¢t by the rule
¢t(a) = infy,,_, max; p(4 %), (6)

where the lower bound is taken over all additive decompositions
2 x; = a and over all possible distributions of signs before the x,.
As for X we can verify that ¢t is admissible. It is also non-archi-
medean, for if £ x;, == a4 and Ly, = b, then

gHa — b) < max {max, ¢p(+ ;), max, ¢(+ y;)},
whence, on taking the lower bound,

¢t(a — b) < max {inf max; (4 «x,), inf max; (4 v,)}

= max {p*(a), p*(O)}-
Similarly we define
9®(a) = infp, o (Zi 9+ %)) (7)

and show that ¢® is admissible and subadditive.
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We note that the operations ¢ —>¢* and ¢ — ¢® are both
monotone. Further ¢+ < ¢® < ¢, and ¢ = ¢+ or = @® if and
only if ¢ is non-archimedean or subadditive, respectively. This
follows in the same way as for the function gX.

LemMmA 5.1. If @ is an admissible submultiplicative function, then
ot and ¢® are lLikewise submultiplicative.

Proof. If X x; = a, £y, = b are additive decompositions of 2 and
b respectively, then X %, = ab. Hence, by the definition of ¢+
and because ¢ is submultiplicative,

@t(ab) < max,, p(+ xy;)
< max,; ¢(+ %) e(4 vs)
= (max; p(+ %)) (max; ¢(+ ¥,))-

Taking the lower bound over all decompositions of 2 and & we obtain

gt(ab) < ¢t(a) pH(b),

which shows that ¢* is submultiplicative. The proof for ¢® is
analogous.

We note that the roles of + and X cannot be interchanged in this
lemma, i.e. if ¢ is an admissible non-archimedean (or subadditive)
function, it does not follow that X is again non-archimedean (or
subadditive). In fact the proof of the lemma depends essentially
on the distributive law, and this does not remain true if we inter-
change -+ and X.

6. If ¢ is any admissible function, ¢X is both admissible and
submultiplicative. Both these properties are preserved in ¢*®
which, moreover, is subadditive and hence is a pseudo-valuation.
Similarly ¢** is a non-archimedean pseudo-valuation.

. THEOREM 6.1. The function @*® coincides with W,, the greatest
pseudo-valuation majorised by @. Similarly >+ equals W, the
greatest non-archimedean pseudo-valuation majorised by ¢.

Proof. We have seen that ¢*® is a pseudo-valuation. Since
p*® < X < ¢, it is majorised by ¢; hence ¢*® < W,, because
W, is the greatest pseudo-valuation majorised by ¢. Conversely,
since W, is a pseudo-valuation and W, <e,

VV‘}7 = WWXGB < ¢X@’

whence W, = *® A similar argument shows that W5 = ¢x+.
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We note that ¢*+ and ¢*® may be defined directly by
(pX+ (d) = inf max; Hv<p(:{: xi‘l‘)’
qJXGB(a) = 1nf 2% Hv (p(:]: xiv)’

where in each case the lower bound is taken over all decompositions
a = 2; I x, and all distributions of signs.

1I.

7. We now turn to the study of certain binary operations on
Qp, the set of pseudo-valuations on R. Their interpretation in the
ring R will be considered in Ch. IV, with the help of the results of

‘Ch. I.

Let a be any element of R. Since a = a.1, there always exist

decompositions
a=xY+ ..+ %Vn (N

of a, where x;, v, € R, and # is arbitrary. Hence, for any two pseudo-
valuations W,, W, of R, we can form the lower bounds

Wia) = W, . Wyla) = inf max,(W,(x)W,(y,)), (2),

Wir(a) = W, © Wa(a) = inf Z; Wi(x) W,(ya), (2)e
Wirr(a) = Wy X Wa(a) = inf maxy(W,(x), W(y4), (2)s

Wip(a) = Wy ® Wy(a) = inf Z; (Wy(x) + Wa(ys),  (2a
extended over all decompositions (1) of @. As we now show, the

functions W,—W,,, thus defined are pseudo-valuations on R.

8. As in the case of p* (§ 4) we can prove that the functions Wy,
where N = I, I, I1I, IV, exist and are admissible. To prove that
they are subadditive, let b be a second element of R, and let £ be any
positive number. In each of the four cases N = I, 11, I II, IV we

- select some decomposition (1) of a and some decomposition

b=¢&m+ ... + Elim @)
of b such that
- Wila) > max, (Wi (%) We(ys) —
and (4),
W (8) > max,(W,(£)Ws(n,) — &
or
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Wia) > Z; (Wi(x) Wy(y,)) — e
and (4),
Wii(0) > Z; (Wi(€)W(n,)) — &,
or
W rrr(a) > max,(W,(x,), Wy(y,)) —
and (4);
W p(6) > maxy(Wy(&,), Wyn,) — e,
or

Wip(a) > Z: (Wilxs) + Wolys)) —
and (4)4
Wiplt) > Z; (Wié)) + Walny) — &,
respectively.
By (1) and (3), @ — b admits the decomposition
a—b=xy+ ... +xy.+ (—E)m+ o+ (= En)ms

further W,(— &;) = W,(¢;). Hence, from the definition of W y(a—b)
and from the inequalities (4) for Wy(a) and W, (d),

Wi(a — b) < max {max,(Wy(x,)W,(y,)), max,(W, (&) Wy(n,))}
< max(W(a), W,(b)) + e, '
Wila — b) < Z; (W) Wolys) + Z; (Wi(&) We(n,))
< Wipg(a) + Wi (b) + 2,
Wir(a — ) < max {max,(W, (%), W(y;), max,(W,(&,), Wan,))}
< max(W;(a), Wi(0)) + e,
Wipla — b) < 2i (Wi(x) + Wiy)) + Z; (Wi(&) + Walny)
< Wipla) + W;p(0) + 2e.
In the limit, as ¢ — 0,
Wila — b) < max (Wy(a), Wy(0)),
Wila — b) < Wig(a) + Wiy(b),
Wir(a — b) < max (Wyp(a), Wip(b)),
Wip(a —b) < Wip(a) + Wip(h).

This proves that W;; and W, are subadditive, and W, and W,,,
are non-archimedean.

To prove W,, submultiplicative, let the decompositions (1) of a
and (3) of b be chosen so as to satisfy (4). From (1) and (3) we
obtain the decomposition
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ab = 2.2,(x.£;) (vns)

of ab. Therefore, since W1 and W,, as pseudo-valuations, are
submultiplicative,

Wi(ab) < max; (W, (x) W1i(E)Ws(y) Wa(ns))
= max,(Wy(x) Wo(y:)) . max,(W,(£;) W,(n,))
< (Wi(a) + &) (W) + ),
W ip(ab) < Z:Zi(Wi @)W1 Waly) Wa(n,))
= 2,(W (%) Wy(y:)) . 24 W1(€s) Wa(ns))
< (Wi(a) + &) (W) + o),
W prr(ab) < max, (W (x) Wi(&)), Waly) Wa(ns)
< maxy(W,(%:), Wa(yy)) - max,(W(&;), Wa(n;)
(Wirr(@) + &) (Wi (8) + 2,
22,Wi(x)W1(&) + Wiy Walns))
Zi(Wilx:) + Walyd) . Z4Wi(€) + Walns)
(Wip(a) + & (Wrp(b) + e).

Wy (ab)

ANNON A

Letting ¢ — 0, we see that W is in fact submultiplicative. Thus the
following result has been proved:

THEOREM 8.1. If W, and W, are arbitrary pseudo-valuations on R,
then W, Wy, W, © Wy, Wy X Wyand Wy & Wy are likewise pseundo-
valuations on R. Moveover W . Wy and W, X W, are non-archimedean.

The functions W,. W, and W, © W, will be called the non-archi-
medean product and the subadditive product, and the functions
W, x Wy and W, ® W, will be called the non-archimedean com-
pound and the subadditive compound, of W, and W, respectively.

In establishing Theorem 8.1 we have not used the full force of
the hypothesis. Instead of taking W, and W, to be pseudo-val-
uations it is enough to assume that they are admissible and sub-
multiplicative and satisfy Wy(— a) = Wy(a) (B = 1,2). The last
condition can also be dropped provided we modify the definitions
(2) by allowing — x; and — ¥, as arguments on the right and taking
the lower bound over all distributions of signs.
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9. Just as the letter N was used to denote the four indices 7,
I1, II1, IV in Wy(a), we let the symbol O stand for any one of
the foursigns ., ©, X, or ®. Then it follows from the definitions
and the commutativity of R that all four operations are commu-
tative:

W, oW,=Ww, O W,. (5)

Here (5) is an abbreviation for W, O Wy(a) = W, O W,(a) identi-
cally in a, and similarly in later cases.

Next we prove that the four operations are associative. For this
purpose we make use of

Lemma 9.1. If Wy, W,, W, are any three pseudo-valuations of R
(or indeed any admissible functions), then the function

(W1 OW,) O W,

(where O 1s ., O, X or Q) is symmetric in Wy, W,, W,
Assuming the truth of this lemma for the moment, we have by (5),

(Wl O Wz) O W3 = (Wz O Wa) O W1
=W, O (W, OWy),
and hence
THEOREM 9.2. The operations ., ©, X and & are commutaiive
and associative.

10. It remains to prove Lemma 9.1. We do this by writing
(W1 O Wy) O Ws(a) as the lower bound of expressions involving
certain types of ternary decomposition of a. For N = I, II, I, IV
write

Wi(a) = Wy O Wy(a),

V(a) = W5 O Wyla) = (W1 O Wy) O Wya).

An upper bound for Vy(a) in terms of ternary decompositions
is obtained as follows. Let

a = XY2y + oo+ XY (6)
Then
Via) < max; Wi(xy)Wa(z) < max, Wy(x)Wy(y) W(z),
V(@) < Zi Wiy )Ws(z) < Zi Wix) Waly) Wa(z),
Vi) < max (Wi (xys), Wy(z)) < maxy(Wy(x), Wa(y), Wa(z)).
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For the subadditive compound V¥, we need decompositions of the
more general type
a=32p I Z¥ ) T K igBion (7)
Then .
Vip(@) < Zige {WTp(Ze %igeYige) + Wil2ic)}
< Zigor (Wi1Hige) + Walyig) + Wal2icr)}-

By taking the lower bounds of the right-hand sides for all ternary
decompositions of the type (6) for N = I, I, I1I, and of the type
(7) for N =1V, we find that

V(a) < inf max, W,(x)W,(y,) W(z.),

< inf B, Wi(x) Woly) Ws(z,),

< inf max,; {W,(x,), Walv.), Wa(z:)},

< inf Zype (W1 (Kige) + Walyie) + Walzio)}-

Vila
Vinla
Vir(a)

We now show that equality holds in each case. The Lemma will
follow from this, since the right-hand sides are obviously symmetric
in the W’s.

1. The non-archimedean product.

If £ > 0O, there exists a decomposition

@ = Uy + ...+ U2, - (9)

)
)

of a such that

W% . Ws(a) > max Wi(u)Ws(z) — e (10)
Write
o = max (W,(zy), 1),

so that w is a finite constant not less than 1, which only depends
on the decomposition (9) of a.
Next choose decompositions

Wy = %y + oo XY, G =1,...,7) (1)

of #y, ..., u, such that

&
W;‘ (ug) = Wy Wy(u;) > max; o, Wi (%) Wa(yi,) — o (12)
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In general the numbers »; will depend on 4, but by adding, if
necessary, a number of zero terms 0.0 to the decomposition (11)
of u; we can arrange that the decompositions (11) all have the
same number of terms, so that v, = v, = ... =9, =y say.

In order to unify the notation we put 2 =2, (0=1, ..., »;
¢ =1, ...,%). Then by (9) and (11),

Ca= 212 2l X, i
= 2 2,y X430V ig%ig-

This is a ternary decomposition of the form (6), as becomes clear
when we replace the index-pair 7o by a simple index u running
from 1 to m = .

By (10) and (12)

Vi(a) > max, maxg{ Wi(xs,) Wolyi) — -——} Walzs) — e,

and from the definition of

Hence
Vi(a) > max, max, {Wl(xig) Wz(yie) Wi(zi)} — 2e,

or, on changing to the single index s,
VI(“) > maX,u {Wl(x/.:) I/Vz(y,u) W3(Z,u)} — Ze.
Letting ¢ — 0 and combining the result with (8), we find that
(W,.W,).Wy(a) = inf max, Wy(x,)Wy(y,) Ws(z2,), (13)

where the lower bound is extended over all decompositions (6) of
a. This proves the assertion for the case of the non-archimedean
product.

The proofs in the other three cases are similar and we can there-
fore be more concise. In each case ¢ is a fixed but arbitrary positive
number.

II. The subadditive product.

We choose a decomposition (9) of & such that

/40 Wy(a) > 2, Wi (u)W,(z,) — e.
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Next put
w = 21 W3(Zi) + 1:
and choose decompositions (11} of u,, ..., #, such that
e .
Wiy =Wy O Wylu,) > Eg Wi Wa(yip) — o (i=1,...,n.
Then
€
Virla) > 2 (3, Wi W) — = Wata) — o,
and hence

Vir(a) > Eie Wl(xig) Wo(yi) Walzi) — 2e.
Changing the notation as before, we obtain the formula
(W1 © W) © Wyla) = inf Z, Wix)W,(y,) Wslz,),

where the lower bound is again extended over all decompositions

{6) of a.
II1. The non-archimedean compound.
We now choose the decomposition (9) of @ so that

Wi X Ws(a) > max; (Wi (w), Ws(z) — e,
and decompositions (11) of #,, ..., », such that

Win(u) = Wy X Wy(u;) > max, (Wy(xy), Wavs) —¢

Then
V(@) > max, {max, (Wy(xy), Ways) — & Walz)} — e,
whence
Vinrla) > max; max, (W), Walyig), Wolzig) — 2.
and we obtain the result |
(Wy x Wy) X Wy(a) = inf max, (Wy(x,), Wa(v,), Ws(2,)

where the lower bound is again taken over all decompositions (6)

of a.
IV. The subadditive compound.
Again we choose a decomposition (9) of a such that
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Wiy @ Wyla) > Z, (Wi (uw:) + Wy(z;)) — e,

and next decompositions (11) of #,, ..., u, such that

W}kV(ul) > Eg (Wl(ng) + WZ(yle)) -

Qe

Then
Virld) > TS + Walya)) — -+ W) —

= E'ig (Walsg) + Woyig) + Ws(2:) — 2e.

Now the decomposition
a = Zia Xigl igRi

is of the form (7) (the range of each of the suffixes o and 7 is 1 for
every ¢ and they have therefore been omitted). Hence

(Wl & Wz) ® W3(a) = inf Eigat (Wl(xigo') + W2(yigr) + W3(Ziar))1

where this time the lower bound is taken over all decompositions
(7) of a.
This completes the proof of Lemma 9.1.

From the proof of the Lemma it is clear why the different types
of ternary decomposition (6) and (7) have to be considered. By
renaming the suffixes we can regard any decomposition (7) of
a as being of the form (6) %), but then we must count certain factors
repeatedly. For the products and the non-archimedean compound
this is of no importance, and it is therefore sufficient to consider
decompositions (6) when taking the lower bound. In the case of the
subadditive compound we cannot make this simplification but have
to consider all decompositions (7) when calculating the lower bound.
Though we actually use only a decomposition of the form a —
= ¥ X;):% it is not enough to take such decompositions, because
they are not symmetric in the three sets of factors. The decompo-
sition (7) is in fact the simplest type of ternary decomposition which
suffices for our purpose. It is not the most general type, as we might
have a decomposition

a= 2 YigodY igrpPicuys

%) This is precisely what we did when we replaced the suffix pair ip by p in order
to obtain (13).
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where each of 4, g, 0, 7, A, p, » Tuns over some range depending on
the suffixes preceding it in %sy53, Vigrus Ziow HOWever, this will not be
required.

I11.

11. Before considering the products and compounds in greater
detail we shall illustrate the definitions by a few examples.

First take R to be an algebraic number field K of finite degree =
over the rational field P. Suppose that of the » conjugate fields

Ko K@ K

of K the first 7, are real and the remaining 27, = n — 7, fields
K+l and K(7‘1+1’3+1)’ Krit2) and K(rl+r2+2)’ e, Krtrd gnd K+l

are complex conjugate in pairs. If @ is any element of K, denote
by a'® the number conjugate to it in K®. Then a'® is real for
h=1, ..., 7;, while a*+» and a‘"+m+» are complex conjugate
forh=1, ..., #,. .
The field K has exactly 7, + 7, inequivalent absolute values, viz,

QW(@) = |a®|  (h=1,...,7 + ).

Further let p be an arbitrary prime ideal in the ring J of integers
of K. To p there corresponds a p-adic valuation of K (unique to
within equivalence) which we denote by €, (4). This valuation is
fully determined if we know that

Q (a) = ¢, where 0 < ¢ <1,

for all elements 2 of K which have a denominator prime to p and a
numerator divisible by the first and no higher power of p.

It is known that every pseudo-valuation of K not equivalent to
U or W, is equivalent to the sum of a finite number of valuations
Q™ and Q, ®). The tables which follow give the results of the four
operations W; O W, applied to the functions U, W, Q™ and Q. In

 these tables % and % are distinct indices 1,2, ..., 7y + 7, provided

that », + 7, > 2; in the exceptional case 7; + 7, = 1 the row and
column belonging to Q® are to be omitted ¢). Similarly p and q
denote two distinct prime ideals of J.

5 Cf. K. ManLer, Uber Pseudobewertungen II, Acta Mathematica 67 (1936),

51—80.
%) This is the case when K is the rational field or an imaginary quadratic field.
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Table 1
w,. W, U W, Qm Qk Qp Qq
U U U U U U U
W, U W, U U U U
Q) U U U U U U
Q&) U U U U U U
Qp U U U U Qp U
Qq U U U U U Qq

Table 2
W, O W, U W, Qw Qx) Qp Qq
U U U U U U U
W, U W, U U U U
Q) U U Q) U U U
Q) U U U Qr) U U
Qp U U U U Qp U
Qq U U U U U Q.q

Table 3
W, x W, U W, Q) Qe Qp .Qq
U U W, U U U U
W, W, W, W, W, W, W,
Q) U w, U U U U
Qe U WO_ U U U U
Qp U W, U U Vao U
Qq U W, U U U Vq
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Table 4

W, @ W, U Wy | @» | ow | o | q
U U W, U U U U
W, We | 2w, | W, | W, | w, | w,
Qn) s W, 20 (a2 U U U
Qw U W, U |20 U U
Q, U W, U U v U
Q, U W, U U U v

" The pseudo-valuations V', and V;‘ occurring in the Tables 3and 4
are defined by '
V(@) = cg/?l
and
V:(a) — Cg»/Z] + c:;wz}

where » is the integer determined by Q,(a) = ¢,. Clearly both v,
and V7 are equivalent to the valuation Q.

12. Most of the entries in these Tables are an immediate conse-
quence of

LeMma 12.1. Let R be a field, W(a) a pseudo-valuation and Q(a)
a valuation of R. If there exists an element a of R such that

Wi(a) <1 < Qfa), (N
then
W. Q=WoQ=WxQ=WeQ="U.

In the case of the products (. and O) only one inequality in (1) need
be strict. '
Proof. Since Q(a) > 1, a is different from zero, and so the unit-

~element 1 admits the decompositions

] = agm.qm m=1,2...).
By the hypothesis

0 < lim,, ., W(a™) < lim,,, . W(a)™ = 0,
lim,, ., Q(@~") = lim,, , , Q(a)-™ = 0,

hence W O Q (1) = 0, and the Lemma follows by Lemma 1.1.
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We shall discuss briefly the entries in the four Tables. Since the
commutative law holds, we need only consider the entries on or
above the main diagonal.

Table 1. We can use Lemma 12.1 for the non-diagonal elements,
since all the argument functions except U are valuations and all
except W, are non-trivial.

Q@ QW — U,  This follows by using the decomposition
1=%.1+4+%.1 (2

of 1 and applying Lemma 1.1.

Q.0 =0, I

; a=%y;+ .. + X0Vm (3)
is any decomposition of a, then '

Q@) = Q2 x1ys) < max, {Q(%)Q, ()},
hence Q, < Q,.Q,, and equality is established by using the decom-
position a = a.1.

The same proof shows that W,. W, = W,, while it is evident that

U.U=0U.

Table 2. As for Table 1, except that Q™ O Q% = QM.
Clearly
QW(a) = QW(Z xy,) < TQM(x)QW(y)),
for any decomposition (3) of 4. Hence QW < Q™ © QW and
equality again follows by writing ¢ = a.1.

Table3. Wy X W = W,, where W is any pseudo-valuation
occurring as argument in the Table. For if (3) is any decomposition
of a % 0, then at least one x; is different from zero; therefore
max {Wy(x,), W(y,)} > 1 = Wy(a), and equality is attained for the
decomposition a = a.1.

UxW=UW #W,). Leta s 0besuchthat W(a) < 1, then
U X W(a) < max{U(l/a), W(a)} < 1,
hence U X W = U.

The remaining non-diagonal elements follow from Lemma 12.1.
QM % QW = U. As in Table 1, using the decomposition | =
=33+4d+da+id of L
Q, x Q =V, If (3) is any decomposition of a % 0, then

max, Q, (xy,) > Q. (a).
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Let ¢ = u be a suffix for which the maximum is attained, then

Q. (%), () > Qy(a).
Hence, by the definition of Vp,

max {Q (x,), Q) > V().

and so V,, < Q, X . The reverse inequality follows by choosing
x and y in R such that both xy = a and

max {Qp(x), Qp(y)} = V,(a).

Table4. U QW = U (W £ W). As for Table 3.
W QW = W, (W 3= Wy). Again, for a # 0,
2 (Wo(xs) + Wy} = 1 = Wa).
To obtain equality, take.a decomposition 2 = xy with W{y)->0.
The proof that W, ® W, = 2W,, is similar.
The remaining non-diagonal elements follow again from Lemma
12.1.
QW @ Qi = 202 Tf (3) is any decomposition of @, then by
the theorem of the arithmetic and geometric means and by Jensen’s
inequality,
ZAQW(x) + QM(y)} > 22, QW (xy,)'e
> 2{Z; QW (xy )}
> 2 Qi (g)*e,

In this inequality the difference between the left- and righthand
sides can be made arbitrarily small by choosing a decomposition
a = xy for which | Q™(x) — Q™ (y) | is sufficiently small.

Q Q0 = V;f‘. This follows as for the corresponding entry in
Table 3.

13. As a second example consider the ring J of all integersin the
algebraic number field K discussed in §§ 11—12. Let Q® and Q,
have the same meaning as before; if a is an ideal in J, denote by
W (a) the pseudo-valuation defined by

01if a =0 (mod a),
Wala) = { 1 otherwise. :

It has been proved ?) that every pseudo-valuation of J not
equivalent to U or W, is equivalent to the sum of a finite number of

7) Cf. K. ManLer, Uber Pseudobewertungen ITI, Acta Mathematica 67 (1936)
283—328.
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absolute values Q) a finite number of p-adic valuations Q,, and
a residue-class pseudo-valuation W,

When 7, + 7, = 1, J is the ring of rational integers or the ring of
integers of an imaginary quadratic field; in these cases there is only
one absolute value, which is moreover equivalent to W, We omit
this case in the discussion which follows; thus in Tables 5—8 we
suppose that 7; 4 7, > 2. As before, 4 and % are two distinct inte-
gers 1,2, ...,7, + 7,,and p and q are two distinct prime ideals of J.
Further g and b are any two distinct ideals of J. Write p7| |a to
indicate that a is divisible by p~, but not by pr+. If p7 || q, the
pseudo-valuation V;“)(a) is defined by

Oif a=0 d p7),
Vi)a)(a):{ wa (mo p7)

Q,(a) otherwise.
Clearly Vg‘) is equivalent to W,,, unless a = 0.

We observe that W, and U are the limiting cases of the residue-
class pseudo-valuation W with a = 0 or J respectively. Therefore
the proofs given for W will hold for W, and U if correctly inter-
preted.

Table 5
WyW, | U | W, Qm|Q® o | Q | W, | W,
U ulv |\ Uv|U|U|U| U U
W, U | W, | U | U |Q |Q | W, | W,
Quw u, U |\U|U|U|U| U U
Qw vy v |\uv | Uv|uU|Uu| U u
Q, UlQ | U U |Q |U| VY | VD
Q, UlQ |U U |UQ | Ve | v
W, U |\ W, | U | U | VIVel w, | W,
W, U | Wy | U | U | V2IVE W | W,

Table 5. 1t is clear that W . Wy = W__. 8), and this holds even
if a="5.
QW W = U. Let e be a unit of J such that Q™ (e) < 1 and let
®y, ..., w, be a basis of J over the ring of rational integers. Then
e~™ = 3 £,w,, with rational integral &, can be written as a sum of a

8) Ci, also §21.
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finite number of terms 4 w;; hence 1 = e™.e~™ is a sum of terms
e™(4+ w,), and

Q®W W (1) < max, {QM(e™W(+ w,)} < 1
for sufficiently large m. Now the result follows by Lemma 1.1.

Q,.Q, = Q, follows as for Table 1.
Q,.Q, = U. There exist elements £ and 5 in J such that

E4+np=1, =0 (mod p), n =0 (mod q). (4)
Hence
Q,.Q, (1) <max{c, ¢} < 1.
Q.W, = pr“). Let p7||a and write a = prc¢. Then p™ and q™
arerelatively prime for each mz, so there exist x and y in J such that
w+y=1 =0 (modp™), y =0 (mod ¢). (5)
If prla, then, since a = an + ay,
Q. W (a) < max {c’, W (ay)} -0 asm — oo.
On the other hand, if p 44, then %y, == 0 (mod p7¢) for at least one
term of any decomposition (3) of a4 in the ring J, and so
Q)W) = Qx) > O, (a).
Evidently equality holds for the decomposition a = l.a. In the
limiting cases a =0, J the relation reduces to Q . W, = Q,,
Q, . U= U, respectively.

Table 6
W, 0W, | U | W, |Qm|Qmw|Q | Q | W, |28
U viviv|lvivu|u| U U
W, U | W, | U | U |Q | Q | W, W,
Qmw UlUjaw| U |U|U U U
Qw Ul U | U |Qw| U |U U U
Q, UiQ | U|U|Q | U vy | vy
Q, Uu|Q | U|U|U|Q ve | ye
W, U | W, | U | U V@RI vVeL W, | W,
W, U |\ W, | U | U VR VS W | W

Table 6. The proofs are as for Table 5 with the following ex-

ceptions:
Q® o QW = QW follows as in Table 2.
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QW O Q® = U. There is a unit ¢ of J such that Q®(e) < 1,
but Q®(g) > 1; then the result follows with the help of Lemma 1.1.
QM oOW=U (W= Q, or W,). Take a unit e such that
Q) < 1 and write e=™ = ¥ £,0,, where o, is a basis of J and the
£, are rational integers. Then, since W is non-archimedean,

Q® © W(1) < 2, QW (e W (£,
< QW)™ . (Z; W(w))
<1
for sufficiently large m.
For Table 7 we define 2, as max(Q,, Q,) and put
@iy _ [ & Q@) if a =0 (mod a),
W) m{ 1 otherwise,
where 7 is determined by p” | | a. By ¢ we understand again a unit
of J such that QW(e) < 1, Q®(e) > 1.

Table 7

W, x W, U | W, Q| Qe Qp Qq w, "
U v |\w,| U U Q, Qq W, b
WO WO WO WO WO WO WO WO WO
Q) U | W, | U U Qp Qq W, W,
Q) u i w,1 U U Qp Q w, 2
Qp Q, | W, Qp Qp Vp Zp W%: W:))
Qq Qq W, Qq Qq E;m V( ) Wq W
W, W, | W | W, | W, ,W&) qu) W Waﬁ
W, We | Wo | Wy | Wy | W, W W e Wee

»Table7. QW X W, = W,_. If a =0 (moda), then, since
a=em.e ",
QM X W (@) < max{Q®(em), W (e~"a)} — O,

as m — co. If 520 (mod q), then, in every decomposition (3) of
a (in J), xy;32£0 (mod a) for some Z, hence

max{Q®(x,), W, (v} > 1;
and the lower bound 1 is attained for the decomposition

a == em. e~ Mg,
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Q™M x Q= Q.. For every decomposition (3) of a (in J)
Q,(a) < max; Q,(%;), hence
Q*’(a), < QM x Q (a).
Conversely, since a = e™. e ™q,
Q* x Q ( ) < max{Q®(em), Qp(e“ma)}
< Q ( M) = Qp(a),
when m is sufficiently large.
QW % QW = U, Write | = e™.eme~2™ and express e2™ as a
sum of terms 4 w,.
QW x QW = U. Q® x Q®(1) < max{Q®(em), QF (e7™)}) < 1
(m > 1).
Q, xQ, =V, Asfor Table 3.
Q, x Q =2, . Foranydecomposition (3), Q,(2) < max,Q(x.),
Q. (2) < max Q_(y;), hence

2y, o = max{Qy(a), Q(a)} < max{Q,(x), Q (v},

and so Ep, . Qp X Qq. For the converse, let m be any positive
integer and choose fandnin Jsuchthaté 4 # = 1,£ = 0 (mod ™),
7 = 0 (mod q™).
Then
Q X Q ( ) < max{Q &), ), Q. (a), Qq(n), Qp(a)}
< maX{Q a), Q (@)},

when m is sufficiently large.
Q, X W, = Wfp“). Clearly Q_ X W (a) = 1,if a5£0 (mod a), so
suppose 4 =0 (mod a). Let p7||a and p*||a and put a = p~c,
so that s > 7 and p fc. It suffices to consider decompositions (3)
of a in which all y;, = 0 (mod a). Then at least one x, satisfies
P71 L, whence

Q, X W (a) = c;7 Q(a).

To show that equality is attained we construct a spécial decom-

position of a as follows. Let %, ..., u,beabasisof prand v, ..., v,
a basis of ps—*. Then a can be written as
a=2p 2,

where the coefficients &;; are rational integers. Now for any positive
integer m determine z and y in J such that mw+ y =1,
7 =0 (mod p™), y = 0 (mod ¢).
Then
a=m.a+y.a=mn.a-+ Z;E&v;. yu,.
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By hypothesis W (a) and W (yu;) vanish, Q o(Zi £iv;) < c77Q,(a)
and Q, (%) - 0 as m — oo; henceQ X W (a) < ¢, "Q,(a). Wenote
again the limiting cases: Q, X W Wy, Q, X U Q.

W, x Wy = W_. Clear (Cf § 21).

For Table 8 we define W, ; as W, + min(W_, W,); further we
abbreviate Q™ @ Q® by G™. This function is specified in greater
detail in the discussion following the Table.

Table 8.
W, QW,| U w o | ok Q, Q, W,
U U W, U\ u Q, Q, W,
W, Wo| 2W, | Wy | W, | WotQ, | Wo+ Q | W+ W, | W, + Wy
Qr) U W, o | U " Q, Z8
Qe U W, U | oW Q, Q, W,
Q, Q, | Wo+ Q| Q, | Q v Q, + Q, ?;1>+W W‘f”—}—W
Q, Qy | Wo+ Q4| Q | Q 5, i Q vE wo+w, W<6>+ Wy,
WC( Wa WO + Wa WCI W(l W Cl) a WE]:)—}- Wa a, a
Wy We | Wy + Wy | Wy | Wy W‘5)+ Wy | WP+ W,y Wi s

T'able8. The proofsare as for Table 7 with the following exceptions:
QM @ QM —= @M, Taking this as the definition of @™, we find
as for Table 4 that

D) = 20,
Let Q™ (e) = a < 1. Then there exists an integer m such that
' QW(egmg) 1
< Q) (g=m) < o
It follows from the decomposition & = e™a.e—™ that

2
DM (a) < QMW(ema) + QW (e—m) < . Q(h)(a)1/2,
: a
and so

2
200z < B ;%Q(h)l/z_

Thus the pseudo-valuation @™ is equivalent to Qw 9.

%) In the terminology of § 14 we can say that @) is strongly equivalent to Q®Vz,
We donot attempta more precise determination of @), as this is immaterial to our
purpose, but we remark that in the special case when there exists a unit ¢ such that
QW) () is arbitrarily near to ! without being equal to 1, this proof shows that

") (a) = 200 (g)Ys.
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Q 09, ="V;. As for Table 4.
Q ® W W + W,. Suppose first that a 5= 0 (mod a). Then
1n every decomp051t1on @) of a Q(x;) > Q(a) for at least one
suffix ¢, and W (y;) = 1 for at least one suffix 5, hence O, ®W (a) >
> Q,(a) + 1, and equality may hold, as the decomposmon a=a.l
shows

Now let a|a. In every decomposition (3) of a either vy, #0
(mod a) for at least one 4, and so W _(y,) = 1, whence

QW (@) > 12> ¢ Qya);
or y; = 0 {mod a) for all 7, and then at least one x, satisfies the
inequality Q,(x;) > ¢,"Q,(a), so that in any case
. Q, @ Wy(a) > W(a) + W (a). (6)
To show that equality holds in (6), we construct again a special
decomposition of a. Let p* | | a, and denote by p the positive rational

prime divisible by p. Let a 0 be an arbitrary element of a, and m any
positive integer. Then there exists a second element §of a such that

a= (ap™ f). (7)
Since « € a, there exist y and » in J such that
a=pupm.a-v.p. (8)

It follows from this decomposition of a that

Q, @ Wyla) < Quup™) + Wol(a) + Q,0) + W (. (9
By (7) p7 | |  and by (8) Q,(a) = Q,(vp) for all sufficiently large m,

hence Q (v) = ¢;7Q, (a). Inserting this in (9) and letting m tend to

infinity we obtain the required result.
W, ® Wy = Wa’ p- Clear.
IV.

14. Our next object is to establish a connexion between the
binary operations defined in Ch. I and the unary operations defined
in Ch. I. Whereas the formal laws proved in Ch. IT (commutativity,
associativity) took the form of equalities, we cannot hope to establish
equalities now, but only some form of equivalence, since there is a
certain amount of arbitrariness in the definitions.

We shall say that two admissible functions ¢,, @, are equivalent,
@; ~ @y, if, for any sequence a, in R, ¢,(a,) — O if and only if
®2(an) — 0. The functions will certainly be equivalent if there

exists a constant % such that

< kg, and ¢, < kg,
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In this case we say that ¢, and ¢, are strongly equivalent and write
@1 ~ p,. We use the signs ~ and 54 to indicate the negation of ~
and = respectively.

The concept of equivalence is of greater theoretical importance
than that of strong equivalence, because it determines the largest
class of pseudo-valuations which define the same topology on R 19).
However, we shall often use the notion of strong equivalence, as it is
easier to handle. This is largely due to the fact (which is easily
verified) that a linear operation is always av-invariant.

15. The relations ~ and =~ are evidently reflexive, symmetric
and transitive; thus ~ defines a partition of the set of all admissible
functions on R into equivalence-classes, the ~-classes, and each
such class is further subdivided into av-classes. We shall say that
an operation *: ¢ — ¢* on admissible functions is ~-invariant, if

@1 ~ @, implies ¢ ~ @j.
The operation * is called ~-invariant, if

@, ~ @, implies ¢f ~~ @f. _
A binary operation is called ~-imvariant (~~-invariant), if it is
~-invariant (as-invariant) with respect to each argument. Thus a
~-invariant operation is one which can be defined in a natural way
on the ~-classes, and similarly for as-invariance.

We note that of the two properties, ~-invariance and as-invar-
iance, neither implies the other. Thus the operation which as-
sociates with each pseudo-valuation W the pseudo-valuation V
defined by

V(a) = [W(a)]™,
is ~-invariant but not always as-invariant. On the other hand, the
non-archimedean product on a field is av-invariant but not always
~-invariant, as we shall see later (§ 19).
We have the obvious
LeMMa 15.1. The operations + and @ are mv-imvariani. This is

clear, since both operations are linear.
Onthe other hand, the operation x definedin §4. isnot as-invariant,

10y Cf. P.1.8. An admissible function on R does not in general define a topology
compatible with the ring structure of R: e.g. consider the function ¢ on the ring of
rational integers defined by @(0) = 0, ¢(n) = | 1/n | for » = 0. For this reason the
notion of equivalence will chiefly be used for pseudo-valuations.
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nor are the combined operations X + or X @. For, consider any
proper non-archimedean pseudo-valuation W, and define ¢ by

1
#(0) = 37 W)

Then ¢ is admissible and non-archimedean, and ¢ ~ W, but
@* = U by Lemma 1.1, because ¢X(1) < ¢(1) = 4. Hence ¢* ~ W
and a fortiori pX 5¢ W. Since ¢* and W are non-archimedean pseudo-
valuations, it follows also that X -+ and X @ are not as-invariant.
The argument shows further that X is not ~-invariant.

16. Let W, and W, e Qg We shall prove in this § that the
greatest non-archimedean (subadditive) pseudo-valuation majorised
by W, and W, is strongly equivalent to the non-archimedean
(subadditive) product of W, and W, We simply follow the con-
struction of §§ 4—é6.

Lemma 16.1. Let W, and W, be any two submultiplicative admissible
functions and put

¢la) = min(Wy(a), Wy(a)). (1)
Then

$X(@) ~ ind,,,_, W) W,(y).
Proof. Write

() = inf,, _, W) Wa0); @

we have to show that ¢X ~ ¥. From the factorisations @ = 4.1 =
= l.a we see that Y(a) < W,(a)W,(1) and P(a) < W, (1)Wy(a),
hence ¥(a) < kg(a), where &k = max(W,(1), Wy(1)). Therefore, if we
can prove that ¥ is submultiplicative it will follow that

Y(a) < kepX(a).
Now
W(ab) = int,, g Wi(0)W,0). |
Hence, for any factorisations @ = x'x”, b = y'y” of @ and b we have,

LN T SN 4

since x'y'x"y” = ab,
Flab) < Wi (x'y ) Wy(x"y")
< Wi )WLy )Wa(x) Wo(y”).
Taking the lower bound with respect to all such factorisations, we
obtain
Hlab) < infy oo (W1 () Wy(a)} ind, 1y _y (W1 (v ) Wo(y")}
= Y(a) ¥().
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Hence ¥ is submultiplicative, and it follows that ¥ < kgX.
Conversely, given any factorisation a = xy,

p*(@) = p*(xy) < p*(*)e*(y)

hence ¢X(a) < inf,,_, W (x)W,(y) = P(a). Thus ¢* < ¥ < kg*
and the lemma follows. .
Lemma 16.2. If Wy, Wy € Qg and W(a) = inf,,_, W,(x)W,(y),

= W, W, PO =W, 0W,

Cor. 1. W, Wy, < W, OW,.
Cor 2. If W,OW, is non-archimedean, then W,OW, = W,. W,.
Proof. By definition

T'i'(él) = infz'z,-——-a max; yl(i zz)
= infy, _,max;inf . Wi(x)W,(y)
= infy, _, max;inf , _, W, (4 %) W,(v,),
or T"‘(ﬂ) = infEm:a max; infa:{yg—:z,‘ 1'/Vl(x'i) W2(yz)’ (3)
since W, is a pseudo-valuation. To complete the proof we use the
following lemma on real functions in R.
LEMMA 16.3. If z,, ..., z, ave fixed elements of R and F is a real-

valued function of two variables in R, then

max;..q,.n inf:c,-y,-=z¢ F(xi’ y1) = 1nf;"_'_3/1‘=z'n max;i=1,...,n F(xa‘t y:i)' (4)

.....

For when we consider a fixed 7, then
infw.“[/i=zi F(x“ yz) < infa’:,-yi=zi max; F(le yi)’

and hence
Flx;, v) < inff¥~% max; F(x;, ;).

.....

max; mfmi:zi

To obtain the reverse inequality, denote the value of the left-
hand side by K. Given ¢ > 0, we can choose %;, y;, ¢ = 1, ..., n)
such that F(x;, v,) < K -+ ¢ (¢ =1, ..., ), and this shows that

inf,, _, max; F(x;,y;) < K + e.

Letting ¢ tend to zero we obtain (4), and this proves the lemma.
We apply this lemma to the decomposition (3) with F(x,y) =

= W,(x)W,(y) and get

PHa) = infp, o max; Wi(x)We(y,) = W1. Wy(a).
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Similarly we have, by definition,
PO (a) = infy,_, 3, P(4 2)

= infz’zi——-a 27/ infauy,:zi Wl(x’t)Wz(yZ))
whence
Y®(a) = inf

Zogima 2 Wilx) Wa(y,) = W,0Wy(a),
and this completes the proof of Lemma 16.2. The two corollaries
now follow from the properties of 4 and @ (§ 5).

Since ¥ a ¢X, where p(a) = min(W,(a), Wy(a)), it follows from
Lemma 15.1 that ¢** ~ W,.W, and *® ~ W, © W, By
Theorem 6.1 we can express this as

THEOREM 16.4. If Wy, W, € Qy, then the greatest pseudo-valuation
(non-archimedean pseudo-valuation) majorised by min(W,, W,) s
strongly equivalent to the subadditive product W, O W, (vesp. the
non-archimedean product W,.W,).

If Wi(1), Wy(1) < 1, then the strong equivalence in Theorem 16.4
can be replaced by equality and in this form the Theorem provides
an alternative proof of the entries in the Tables 1, 2, 5 and 6 of
Ch. IIL

17. There is no analogous interpretation of the compound of two
pseudo-valuations, but we can now define a function

Pla) = inf,,_, max{W,(x), W,(y)} (5)
and show that
Y =W, x W,, (6)

Yo ~ W, @ W, )

By defining ¥ as inf(Wy(x) 4 W,(y)) instead of using (5) we can
strengthen (7) to an equality but only at the cost of weakening
(6) to an equivalence. We shall not go into the proof which is very
similar to the case of the product given in the previous §, but only
mention the results which here correspond to the corollaries of
Lemma 16.2:

THEOREM 17.1 W, X W, < W, @ W,

TuEOREM 17.2. If W, @ W, is non-archimedean, then W, @ Wy
~ W, x W,

18. We now come to the question of the invariance of the differ-
ent operations. For the sake of a later application we prove the
invariance properties not with respect to equivalence, but with
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respect to the quasi-ordering which defines the equivalence. For this
purpose we recall the definition of P.I. 8:

If W,, W, € Qp, then W, is said to be contained in W,: W, CW,,
if to every & > O there corresponds a number ¢, such that

Wi(a) << &, holds whenever Wy(a) < s,. (8)

More briefly, the condition (8) states that W, is small whenever W,
is small. Similarly we say that W, is strongly contained in W, : W, €
EW,, it W, < kW, for some k. It is clear that W, € W, implies
W, CW,. Further W, ~ W,ifandonlyit W, CW, CW; W,~W,
if and only if W, EW,CEW,.
Lemma 18.1 If W, €W, (1 = 1,2), then
W, OW, €W, OW,,
where O 15 ., O, X or .
Proof. Let W, < kW', W, < kW', then it is clear from the dei-
initions that
W, O W, <IW,/ OW,,
where [ = max (&%, 1).
By applying this Lemma first as it stands, and then with W, and
W' interchanged (7 = 1,2), we obtain
THEOREM 18.2. The operations ., O, X and & are ~-invariant.

19. The results on ~-invariance are less complete. For the non-
archimedean operations they are given by the following theorems.
TaEOREM 19.1. The non-archimedean compound is ~-invariant.

THEOREM 19.2. The non-archimedean product is ~-invariant when
applied to bounded pseudo-valuations.

We prove these Theorems by a Lemma analogous to Lemma 18.1:

LeMmA 193. If W, CW,/ (i = 1,2), then W, X W, CW," x W,';
and further iof W; and W, arve bounded, then W, W, CW, . W, .

Proof. Consider first x. We shall prove: If W; CW,’, then
W, x W, CW, X W, From this the first part of the Lemma will
follow by the commutativity of X.

Assume that

Wi X Wya) <a (a>0); (9)
then there is a decomposition a=z%y;+ ...+ %y, of a such
that max{W, (%)), W,(v.)} < 2a, or

Wl (.962) < 2a, Wz(y‘i) < 2a ('Iz - 1, ey %). (10)
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Let ¢ > O be fixed. Then there is a § > 0 such that
W,'(z) < 6 implies W,(2) < ¢ whereze R. (11)
Now choose a = 4 min{4, &} in (9); then, by (10),
Woly:) < 20 < e and W,/ (x,) < 2a << 6,
so that Wi(x,) < ¢ and therefore
W, X Wy(a) < max{W,(x,), Wy(y,)} < e.

Hence W; X W, is small whenever W, x W, is small and this
proves the first part of the Lemma.

The proof for the non-archimedean product is similar. We
suppose now that W, and W, are bounded, say that

Wilzy < o, Wy(z) <w for all ze R.

If
W, Wya) <a (@ > 0), (12)
then there is a decomposition @ = %y, + ... + %,v, of a such
that max,{W, (x) W,(y,)} < 2a. Therefore for each i =1, ..., n,
either W, (x;) < v/(2a) or Wy(y,) < v/(2a). (13)

Let 6= () be as in (11) and choose « = } min{(e/w)?, 8(c/w)?
n (12). Then, by (13), either W,'(x,) < 4/(2a) < d(¢/w) and hence
Wi(x:) <'elw, or Wy(y,) < 4/(2a) < ¢Jw. In either case
Wix)Wy(y) < elw.o =,
whence
W, .Wy(a) < max {W,(x,)W,(y.)} <e.

This completes the proof of the Lemma.

We note that in the second part of the Lemma it is enough to
assume that W, and W, are bounded for the conclusion to hold.

Theorems 19.1 and 19.2 are an immediate consequence of the Lem-
ma. The following example shows that the boundedness condition
in Theorem 19.2 cannot be omitted.

Let Q, be the p-adic valuation on the rational field. Then Ql/?-
is again a valuation and is equivalent to Q,. By the remark after
Theorem 16.4, or by Table 1,

Q,.Q,=Q,.
On the other hand
Q;,’z.Qp = U,
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For Q,(p) < Q/*(p), and so
1 \Yz
QZZ.Q”(I) < Q, (;) Q,(p)

Q,(7)
:ﬁﬂw(p)”g < 1.

Thus Q*.Q, ~ Q,.0Q,, although Qlr~Q,

Similarly one can show that Qo Q, = U, and therefore
QF 0Q, +~Q, ©Q, It will be proved later (§22) that if only
bounded and non-archimedean pseudo-valuations are considered,
then the subadditive product is equivalent to the non-archimedean
product and is therefore ~-invariant. The example just given shows
that the boundedness condition is again essential. The question of
the ~-invariance of the subadditive compound remains open.

V.

20. With every ideal a of the ring R a pseudo-valuation W, can
be associated by defining

w,a) =

This is consistent with the notation W, for the trivial pseudo-
valuation, which can be regarded as the pseudo-valuation associated
with the zero-ideal. Similarly the improper pseudo-valuation U is
associated with the whole ring.

In P.I. 3 it was shown that the set of elements for which a given
pseudo-valuation vanishes is an ideal, and so we have the converse
that every pseudo-valuation W which takes only the values 0 and 1
must be the pseudo-valuation associated with an ideal a; here q is
uniquely determined as the set where W vanishes.

“Let us call a pseudo-valuation of the form (1) special. It is clear
that two special pseudo-valuations which are equivalent must in
fact be equal, so that the relation ~ defines a partial ordering on
the set of special pseudo-valuations. This corresponds to the partial
ordering by inclusion of the ideals of R in the sense that

W, CWy if and only if a2 b. 2

0if a =0 (mod a),
1 otherwise 1)

(1)

1) For the special case of the ring of algebraic integers this pseudo-valuation
occurred already in Ch. II1. Cf. also P.I1.3.
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Therefore every relation between ideals in R corresponds to a
relation between special pseudo-valuations and conversely. We
investigate some of these relations and in particular give another
interpretation of the operations defined in Ch. II.

21. Let a, b be any ideals of R and W, Wy the pseudo-valu-
ations associated with them. Consider the subadditive product
V=W, O W;. From the definition it is clear that V takes only
the values O or 1 and is therefore special; and V(e) = 0if and only
if there is a decomposition ¢ = X1+ --. + %y, for which
W x)Wey) =06 =1, ..., n), that is, if and only if ce g 4 b.
Hence

Wa O WB = Wa+5'

In the same way (or by Lema 16.2 Cor. 2) it follows that
W, Wy=W

so that the product of special pseudo-valuations corresponds to the
sum of ideals.

Consider next V' = W, X W,. Again V' takes only the values
0 and 1. Further V'(c) = 0 if and only if there is a decomposition
=%y + ... + x5, of ¢ such that max{W (x,), Wyly)} =0,
which is the case if and only if x,€q, y,€b, ie. if c eab. Hence
V' = Wab. If cegb, it is clear that W, ® W(c) also' vanishes;
combining this fact with the relation WX Wy < W, ® W,
(Theorem 17.1) we see that the subadditive compound is equivalent
to W .. Now W, ® W, is bounded by the constant 2, as we see by
using the decomposition ¢ = ¢.1; hence W, ® W, is strongly
equivalent to W .. Summing up, we have

THEOREM 21.1. If W, Wy are the pseudo-valuations associated
with two ideals a, b of R, then

W, OWy=W,. . Wy=W,,,
W, @ Wyn W, x Wy =W,

a-+5’

The strong equivalence in the last line cannot be improved to
equality since e.g. Wy, ® Wy(1) = 2. In fact, as we saw in Ch. III,
Wy @ Wy =W, + min(W_, Wy).

For the sake of comparison we recall the result proved in P.I. 11
that max(W,, W,) = W,op- We restate this in a more general
form as
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THEOREM 21.2. If a; (A€ A) is any non-empty family of ideals
and thewr intersection is a, then

sup{Wa, [ Ae A} =W,
This Theorem, together with (2), implies that the set of ideals of R
and the set of special pseudo-valuations form isomorphic complete
lattices 12).

22. The interpretation of the product of two special pseudo-
valuations given in § 21 can be extended to the case of bounded non-

archimedean pseudo-valuations. .
Let W, W, be two such pseudo-valuations and consider an

element a of R for which W,.W,(a) is small. If W,.W,(a) < a,
where a > 0O, then there is a decomposition & = xy; + ...+ %y,
of a such that

W) Woly:) < 2a (t=1,...,m)
Let w be an upper bound for W, and W,, then foreach: =1, ...,
either W,(x;) < 4/(2a) or W,(y:;) < 4/(2a), and so either
Wilry,) < Wilx)Wily) < wv/(20) (3)
or
Walry) < W) Ws(y) < wv/(2a). (4)

Denote by & the sum of the terms x,y, for which (3) holds, and by ¢

the sum of the remaining terms. Then a = b + ¢, and by (3) and (4)
Wi(b) < wv/(20), Wy{c) < w+/(2a),

since W; and W, are non-archimedean. Thus if £ > 0 is fixed, and

0 < }(¢/w)?, then for any a € R such that W,.W,(a) < 8, we can

find b and ¢ € R such that b + ¢ = a and W,(d) < e, Wy(c) <.

More concisely, we can say that if W,.W,(a) is small, then

a = b -+ ¢, where W,(b) and W,(c) are small.
. Conversely, if W,(b) < a, W,(c) < a, then by Theorem 16.4

Wi Wy(b + ¢) < max(W,.W,(b), W,.W,(c))
< kmax (Wy(b), Wy(c))
<ka,
where & depends on W, and W, only. By taking 6 < ¢/k, we see
that if W,(b), Wy(c) < 8, then W, . Wy(b + ¢) < ¢, and so we have
obtained the following result:

12) Cf. G. BIRKHOFF, Lattice Theory, (2nd ed.), New York, 1948, Ch. IV, Theorem 2.
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THEOREM 22.1. If W, and W, are bounded non-archimedean
pseudo-valuations on R, then Wy . Wo(a) is small if and only if a can
be written in the form a = b + ¢, where W,(8) and Wy(c) are small.

We note that this defines W,. W, to within equivalence when W,
and W, are given, since the neighbourhoods of zero and hence the
topology defined by a pseudo-valuation are determined by a know-
ledge of the regions where the pseudo-valuation is small. In particu-
lar this gives another proof of the ~~invariance of the non-archi-
medean product (Theorem 19.2), this time restricted to bounded
non-archimedean pseudo-valuations.

Suppose again that W, and W, are non-archimedean pseudo-
valuations and that W,.W,(a) is small. Then by Theorem 22.1
a.= b + ¢, where W,(b) and W,(c) are small. By Theorem 16.4

W, O Wy(a) < Wy O Wy(b) + W, © Wy(e)
< B(Wy(8) + W,y(c)),

where % depends on W, and W, only. Therefore W, © W,(a) is
small. Conversely, by the inequality W, Wy < Wy © W, of Lemma
16.2 Cor. 1, if W; © W,(a) is small then W,.Wy(a) is small. Hence
W, © Wy(a) is small if and only if W,.Wy(a) is small, or in other
words, W, © W, ~ W,.W,. Thus we have proved

TuEOREM 22.2. If Wy, W, are non-archimedean bounded pseudo-
valuations, then

Wy . W, ~W, O W,

Cor. The operation © is ~-invariant when applied to non-
archimedean bounded pseudo-valuations.

For then it is equivalent to . which is ~-invariant by Theorem
19.2.

A similar ~-invariant characterization of the non-archimedean
compound X of non-archimedean bounded pseudo-valuations is
possible, viz. that W, x W,(a) is small if and only if a has the form
@ = X%Y1 -+ ... + x.y, where W,(x,) and W,(y,) are small. But we
do not know whether this is also true for the subadditive compound.

23. The correspondence between ideal operations and operations
on special pseudo-valuations established in § 21 shows that to every
identity holding between ideals there corresponds an identity
between special pseudo-valuations, and inequalities correspond in a
similar way. In many cases these identities and equalities still hold,
with = and 2 replaced by ~ and C respectively, for any bounde
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non-archimedean pseudo-valuations. As examples we consider the
ideal relations

1) a b2 ab,
2) a(b + ¢) = ab + ac,
3) ab 2 (a M b) (a+b).

The corresponding relations for pseudo-valuations are given by
THEOREM 23.1. If W,, W,, W, are bounded non-archimedean
pseudo-valuations, then

1) W, + W, CW, x W,,

2) Wi X (We.Wg) ~ (W x W) (W, X Wy),

3) Wi X Wy C(W,+ W,) x (W,.W,).
Proof. 1) Let w be an upper bound for W, and W,. If W X Wy(a)<a
(a > 0), then there is a decomposition a = %y, + ... + %Yy Such

that Wi(x;), W,(yv:) < 2a. Hence
Wi(a) < max (W (x)W,(v,)} < 2aw.
Similarly W,(a) < 2aw, and 1) follows. :

2) Since W, .W,;€W,, it follows by Lemma 18.1 that
Wy X (Wy. W) € W, X W, and similarly W, x (W,. Wa) EW, X W;
in other words ‘

Wi X (Wy. Wg) < k(W X W), R(W; x W),
where % is some constant, which may without loss of generality
be taken to be greater than 1. Then (W, x W,) is again a pseudo-
valuation, hence by Theorem 16.4
Wy X Wy W) < [R(W1 X Wy)].[R(W, X Wy)]
C (W, x Wy).(W, x Wy);
therefore theleft-hand side of 2) is small if the right-hand side is small.

“Conversely, if W, x (W,.W,) (a) is small, then & can be written
as & = %Y1 + ... XY, Where W,(x;) and W,.W,(y,) are small.
Hence y; has the form vy, =y, + y,” ,where Wo(y)) and W,(y,")
are small. Then Wy X W,(Z x9,) and W, X W,(Z x,9,") are small,
and since @ = x.y,' 2 x4,”, it follows that (W, x W,) . (W, x W) (a)
is small, and this proves 2).

3) By Lemma 19.3, since -W,, W, CW, + W,,

Wy X Wy C(W, + W) x Wy,
Wi x W, C(W,+ W,) x W,;
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hence by Theorem 16.4

Wy X W, ClW,+ w,) x Wa.[(W, + W) x W)
CWi+ W, x (W,. W)

by 2). This completes the proof,

24. It would be of interest to decide whether any relation holding
between ideals in a commutative ring with a unit-element always
has its analogue for non-archimedean bounded pseudo-valu-
ations. The converse is obviously true: If a relation holds generally
for non-archimedean bounded pseudo-valuations, then the corre-
sponding relation for ideals must also hold, since all we need is to
consider the special pseudo-valuations in order to effect the change-
over to ideals. As an illustration of this principle we prove that the
product or the compound of pseudo-valuations is not distributive
with respect to addition.

THEOREM 24.1. The equivalences

w; . (W, + Ws) ~W; . W, + w, . Ws, (5)

Wy X (W, + W) ~WiX Wy Wy X W, (6)
where the W, are non-archimedean bounded pseudo-valuations; do
not hold generally.

Proof. Suppose that (5) and (6) are true generally in any com-
mutative ring with a unit-element. On taking the W, to be special
and rewriting the resulting equations in terms of ideals we obtain
the equations

a+bNe=@+06nN (a + ¢,

a.(6 N ¢) = (ab) N (ac),
which must hold identically in the ideals a, b and ¢. It is therefore
enough to give examples of rings in which these equations are false.

i) Let R be an algebra over any field with basis 1, u, v, and
multiplication-table

1 w v
1 1 u v
wiuw 0 O0;
v v 0 0

R is associative and commutative and has a unit-element. Denote
by a, b and ¢ the ideals generated by # 4 v, u and v respectively.
Then

a+(50c)=(u+v)#(u,v)=(a+6)ﬂ(a+®~
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ii) Let R be the ring of polynomials in two indeterminates x, y
over a field, and put a = (x,3), b = (x?), ¢ = (?).

Then a(b N c) = (232, x%%) £ (2% = (ab) O (ac).

Therefore the equivalences (5) and (6) do not hold universally.

This completes the proof.
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