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A PROBLEM IN ELEMENTARY GEOMETRY.

By Kurt MAHLER

RECENTLY, in connection with some work on Diophantine approximations, 1
encountered the following problem on triangles.

Let T be a triangle with vertices A, B, C which are, respectively, inner points
of the sides a, b, ¢ of a second triangle t. Is it always possible to move T' into a
new position where its vertices are inner points of t?

I give here an affirmative answer to the problem and prove, moreover, that
it suffices to apply to 7' an arbitrarily small rotation about a suitably chosen
point of the plane. I am indebted to my Manchester colleagues for a number
of simplifications of this solution, arrived at when discussing the problem with
them.

In the proof, several cases will be distinguished. We always denote by
a, B, y the perpendiculars to the lines a, b, ¢ at A, B, and U, respectively ; these
perpendiculars will be thought of as extending to infinity in both directions.

Case 1. « and B intersect at a point D which does not also lie on y (Fig. 1
and 2).
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If T'is rotated about D by an arbitrarily small angle, C' describes a small arc
of the circle K with centre at D. The side ¢ of ¢ is not a tangent to K ; hence
the direction of the rotation can be chosen such that the new position of C' lies
inside ¢.  This rotation has thus the required property since it obviously
transports also 4 and B into inner points of ¢.

Case 2 : All three lines «, 8, y intersect at a point D in the interior of ¢ (Fig. 3).

0
Fig. 3 ’
¢ Fig. 4 /

Evidently every sufficiently small rotation of 7' about D has the required
property.

Case 3 : The three lines «, B, y intersect at a point £ which lies, say, on the side
c of ¢t (Fig. 4).

The hypothesis implies that B coincides with C, and that « is the side AC
and g the side BC of 7. Select a point D on y arbitrarily near to B and inside 7.
The smaller angle at 4 of AD with the side a is less than, but arbitrarily near
to, 90°. Hence there is a rotation of 7" about D such that 4, after first leaving
Z, is changed into an inner point of ¢, and that both B and C become likewise
mner points of ¢. Moreover, the angle of this rotation can be made arbitrarily
small by taking D sufficiently near to C = K.

Case 4 : The three lines «, B, y intersect at a point ¥ which lies outside ¢, say
on the outer perpendicular y (Fig. 5).

Draw the circle, K say, that passes through ¢ and E and has as its centre
the midpoint of the line segment CH ; further select a point D arbitrarily near
to B on K. Evidently K touches the side ¢ of ¢ on the outside of the triangle.
If P is any point on K which does not lie on the small arc D of this circle, the
angle £ DPE has the constant value £ DOE, = say. Further the points A
and B are separated from D and ¥ by the tangent ¢ of K. It follows therefore
that the two angles £ DAE, = ¢say,and L DBE, = 7 say, are both smaller than
{. We can then select an angle ¢ which is smaller than 2{, but greater than
both 2¢ and 27 ; moreover, ¢ will be arbitrarily small if D was chosen suffi-
ciently near to . We rotate now 7' about D by the angle ¢ in such a direction
that A and B first leave ¢ and afterwards become inner points of ¢ ; then, at
the same time, C' has likewise been changed into an inner point of ¢ This
concludes the proof.
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It roay be noted that the theorem has no obvious generalization to polygons
of more than three sides. Thus there exist rectangles with their vertices on
the sides of a square @ that cannot be moved into any new position where their
vertices are inner points of Q.

The theorem may be extended to simplices in more dimensions.
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