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ON THE MINIMA OF COMPOUND QUADRATIC FORMS

KURT MAHLER, Manchester.
(Received September 4, 1954.)

In my paper on Compound Convexr Bodies,*) 1 obtained certain
approximation theorems by using geometrical methods. Tn this paper,
it will be my aim to derive similar theorems by means of properties of
quadratic forms. These properties deserve an interest in themselves
and seem to be new.

1. Asin my paper on Compound Convex Bodies,let 1 = p = n, let X, X®),
., X be any p points in R,, and let E = [X®, X® .., X®] be their

compound point in R, where N = (g) . Explicitly, the coordinates &,, &, ..., &y

of E are defined as the N p-th order minors of the p X n matrix formed by the
coordinates of X, X® . X, The ordering of these minors is arbitrary, but
fixed once for all. The compound point E is different from O provided X, X®,
..., X are linearly independent.

2. Next let @ = (a,;) be any n-th order quadratic matrix. We then denote
by & = a® = (a}}) the p-th compound of a, i. e. that matrix of order N the
elements of which are all the N2 minors of order p of the original matrix a;
the ordering of the two indices of these minors shall be the same as in 1. From
the theory of matrices and determinants it is known that the p-th compound of
the product of two or more matrices is equal to the product of their p-th compounds,

(ab...)» = a®b® ...,

and that the determinant ||x|| of the p-th compound of a is given by

Il = ]| =l where P = (1 ).

In particular, the p-th compound of a non-singular matrix is again non-singu-
lar.

*) To appear in the Proceedings of the London Math. Soc.
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3. Let

n

n
F(X) = E Z @@y (A = Q)
h=1 k-

be a positive—deﬁnite quadra.tic form in R, and let
AT

E Z Z ‘XHAEI:léK - Z z a’HKé:HEK (‘XHK = O‘AH)

be its p-th compound form (concomitant, Begleitform) in Ry, the coefficient
matrix a® being defined as in the last section. Denote further by
= and A= AP = [af = o]
the discriminants of F(X) and ®(E), respectively. Hence
A= A",
by what was said before.
The following statement follows immediately from the product rule for com-
pound matrices. Denote by
X X =0X and E =& = QwE
a non-singular affine transformation of R,, and its p-th compound in R,
respectively. Then the new quadratic forms
G(X) = F(QX) and Y(E) = ®QWE)
stand to one-another in the relation that W'(E) is again the p-th compound of
G(X).
To apply this result, let F,(X) and ®4(Z) be the unit forms
Fy(X) = th and @y (E) z &,
H=1

in R, and Ry, respectively, which trivially are positive-definite. So, by hypo-
thesis, is F(X); hence there exists a non-singular affine transformation £ such
that
F(X) = Fy(QX).
It is easily verified that ®y(Z) is the p-th compound of F,(.X); so necessarily also
D(E) = DO (QME) .
This formula makes it evident that also ®(Z) is positive-definite. It has thus
been proved that the compounds of positive-definite forms are likewise positive-
definite.
4. Denote again by F(X) and ®(E) a positive-definite form in R, and its
p-th compoundin R . Next let L, and Aybe the lattices of all points with integral
coordinates in R, and R, respectively. We denote by

My, My, .., My
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Minkowski’s successive minima of F(X)in L, and by

My, Ugs -5 Uy

those of ®(Z) in Ay Thus n independent points X,, X,, ..., X, of Ly, and N
independent points E;, E,, ..., By of A,, exist which have the following char-
acteristic properties. First,

F(X,)=m, for h=1,2,...,n, @

[1]

) = ug if H=1,2,...,N;
secondly,
| F(X)=m, if X # O isin L,, ®E) =y if E + O isin Ay;
and third. for h =1,2,...,n —land H = 1,2,..., N — 1,
F(X) =m,. if XelL, is independent of X;, X,, ..., X,,
®(E) = pu, ., if EcA, is independent of B}, E,, ..., By .
It was shown by MiNkowsKI in the ,,Geometrie der Zahlen* that the succes-
sive minima satisfy the inequalities,
A<mm,...m, <0,4, (1)
A= gty .oy = 0yA. (2)
Here 8, and é, are defined by
8, = A(G) 2, Oy = AGy) 2,

where A(@,) and A(Gy) denote the determinants of the critical lattices of the
unit spheres
G, 1X| =1 and Gy: Bl =1

in » and N dimensions, respectively. There are well-known lower and upper
bounds for A(G,) and A(Gy), due to MiNnkowskr, Bricurerpr, Hrawka
and others; but for our purpose it suffices to know that o, and 0 are positive
constants depending only on n and N and not on the special quadratic forms
under consideration.

5. There exist N = (2) distinct systems of p indices vy, vy, ..., v, satis-
fying

1 Sy <<vy <o <<y =10
With each such system we associate the product of minima
M(y) =m,m,, ... m; .

Denote by M,, M,, ..., M all these products arranged in order of increasing

size,
M, =M,=...=M,.
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Then, evidently,
MM, ... My = (mm,...m,)". (3)
We shall prove a set of simple inequalities connecting the N minima pj; with

the N products M.
6. This proof is based on an algebraic identity. Denote by

F(X,Y)=F{Y,X) = 21 k21ahkxhyk

the bilinear form belonging to ¥(X) = F(X, X). Let again X™, X®  X®»
be p linearly independent points in E,, and let
= [X0 X, . Xo)]
be their compound. Then, identically in X, X® .  X®),
iF(XU)’ X(I)), F(X(”, X(rl))7 . F(X(l), X(ﬂ))
CP(X®, XYy, FX®, X®), L F(X®, XP)
i bl 3 3 b b 2
L j L =0E). (4)
| : * :
’ F(XP, XD), F(XP, X®), ..., F(X®, X))

For assume, first, that F(X) = F(X) and hence ®(E) = ®(E) are the unit
forms of X and E, as defined in 3. Then F(X,Y) = XY is simply the inner
product of X and Y, and the identity (4) holds in this special case because it
coincides with the well-known formula for the determinant of the product of
a rectangular matrix into its transposed. But then (4) is true in general, as
follows from the equations

F(X,Y) = Fy(QX, QY), O(E) = Oy(QWE) ,

[QXD, QX QX»] = QWE |
where the affine transformation Q is defined as in 3.

7. The determinant on the left-hand side of (4) is symmetrical. We therefore
construct the corresponding quadratic form

4 D
QZ) =2 2 F(X©0, X9)zz,;
0=1 o=1
here Z = (2, 2y, ..., 2,) may be any point in R,. This quadratic form can be

written as an inner product,
v »
UZ) = 3 (2,QX)(z,QX7) =YY,
p=1 og=1
where

Y =2, QX0 4 2,QX® .. 4 2,QX®

The points XM, X®,.... X®, by hypothesis, are independent, and the same
is therefore true for the transformed points QX®, QX® ... QX®, Hence
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Y £ 0 and YV > Ounless 2, = 2, = ... = 2, = 0. This means that the quad-
ratic form Q(Z) is positive-definite. But thenits discriminant, i. e. the determin-
ant on the left-hand side of (4), cannot exceed the product

F(X, X0) F(X®, X®) ... F(X@®), X®) = F(XM) F(X®) ... F(X®)
of its diagonal elements, and so it follows from (4) that always
O(E) < F(XW) F(X®) ... F(X®) if 5 = [XO, X®, ..., X®], (5)

8. The n points X,, X,, ..., X, in which the successive minima of F(X) in
L,y were attained are, by hypothesis, independent. Let us form the compounds

HO) = [X,, Xy oo X, (6)

of all NV sets of p distinet ones of these points; as before, the »’s run over all
sets of indices for which 1 < », < v, < ... <, = n. The so defined points
H(v) in R are then also independent, as may be proved in the following way.

Since X, X,, ..., X, are independent, every point in R, is of the form
8§ X + 8. Xy + o0 8, X,

with real coefficients. Such a representation holds thus, inparticular, for each
one of the n unit points
By = (1,0,...,0), By, = (0,1,...,0), ..., B, = (0,0,...,1)

in R,. On the other hand, we obtain all N unit points in Ry by forming all the
compounds
(B By, oo B

where A, 4, ..., 4, run over the distinct set of p indices with
1= <lh<...<i =n.

These compounds may then be written as linear combinations
o) H),
)
with real cooefficients o(»), of the compounds (6), and they form a basis of Ry.
This proves the assertion.
Evidently the points H(v) belong to the lattice A, i. e. they have integral coor-
dinates.
9. With each lattice point H(») associate the product
M(y) =m,m,, ...m, .
Further denote these points also by
H]7H2>"'> HN: (7)

where H,, is that point H{») for which M(») = M.
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The basic inequality (5) implies that
OHP) =m,m,, ...m, = M(»).
In the new notation, this is equivalent to
ODHyY) =M, (H=1,2,...,N). (8)

Here, by hypothesis,
M, =M, =<..=<M,. (9)

On the other hand, it will not, in general, be true that the values ®(Hj) are
likewise arranged in order of increasing size. Therefore denote by

HY, HY, ... HE
such a permutation of the points (7) for which
O(HY) = O(H)) < ... = O(HY). (10)
Then, by the characteristic properties of the successive minima u,,
OH}) =uy; (H=1,2,...,N).
It is further clear from (8), (9), and (10) that
O(H;;) = max {O(H,), D(H,), ..., D(H,)} < M, .
Hence the last inequality implies that
g =M, (H=1,2,...N). (11)

10. On combining this upper bound for u, with former inequalities, we may
deduce also a lower bound.

By (2) and (11),

N N N
g = A 11;[]/“}(}” = A{K]_IIJWK}*I = AMH{I‘IIMK}’I .

K+H K+H

Here, by (1) and (3),
N
[T Mg = (mymy ... m,)" =< (8,4)",
K-1

while further
A=A", 5§, = AG,) .
Therefore, finally,

g =AM (8,4) "= NG M, (H=1,2,...,N). (12)
In (11) and (12), the following result is contained.
Theorem 1: Let 1 < p =<=n —1, N = (Z), and P = (z : i), let further

A(@,) denote the lattice determinant of the n-dimensional unit sphere G, X = 1.
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Let F(X) and ®(E) be a positive-definite quadratic form in R,, and its p-th com-
pound in Ry, respectively. Let further

My, Mgy ooy My, AN flg, Loy «ony by

be the successive minima of F(X) and O(E) in the lattices Ly and A, of all points
with integral coordinates in R, and R, respectively. Finally let M, M,, ..., M y be
the set of all products

My)=m,m, ...m,

Y1 Vo

A=<y <o <, =n)

P

arranged in order of increasing size. Then
MG My =pg =My (H=1,2,..,N).

11. Two simple deductions from the last theorem have some interest in
themselves.

Theorem 2: Let the hypothesis be as in the last theorem; assume furthermore that
F(X) and so also O(E) are of unit discriminants. Then the first minima m; and u,
of these two forms are connected by the relation

AG) T my < py < AG,) mi '
Proof: Since
My, =My = ... =M, , (13)

it is obvious that M, the smallest of the products M, has the explicit value

M, = mm, ... m, .
Therefore
M, =m7,
and so, by Theorem 1,
My g A(Gn)zp m‘i) .

Next, again by Theorem 1 and on account of 4 = 1,

-1
My = MMy ... My

and
M, =mm,...m, < §,(m, M, o...Mm,)" 1.
From this inequality, by (13),
nor P
My My oo My = (Mg ...my)" " =my 0

whence, finally,
n-n

< M, <om! " = AG,) Zm] .
231 1

This completes the proof.
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Theorem 2 is a transfer principle of the same kind as the well-known ones due
to PerroN and KHINTCHINE,!) and, in fact, one easily sees that it contains these
as very special cases.

12. Since (n ﬁ p) = (;) , the (n — p)-th compound of F(X), the form

N N
WH) = 5 2 i g (@ix” = affi”)

say, depends likewise on just NV variables. We may then interpret ®(Z) and
Y¥'(H) as forms in the same space E,. It lies near to look for relations between
the successive minima i, fy, ..., uy of ®(E) and the successive minima u}, ui,
euy (s of W(H), both in the lattice A, of all points in R, with integral coordi-
nates. Again Theorem 1 leads to an answer to this question.

We earlier introduced already the products

M(V)::ﬁ‘&,,lml,z...m,,ﬁ (1 gvl < Yy < ... < vy <’)’I/).

We now associate with each such product a second product

M)y =m, m, ,...m, (1 v, <w,,<..<w =n),

Ypt2

the new indices being such that the sequence v, v,, ..., », forms a permutation
of 1,2, ..., n. Thus
M(v) M*(v) = mym, ... m,

is independent of vy, v,, ..., ¥,.
Let, as before, M|, M,, ..., M , denote the products M (») arranged in order of
increasing size,
M, =M, <...<My.

If, in this notation, M(v) = M ,, then write

M*(v) = M% ...
Then also
My <M, <.. <My
and
M, My 4= mmy...m, .
By Theorem 1,
NG My <uy =M, , (14)

and the same theorem gives also the analogous inequalities

NG My < ufy < M. (15)

1) See J. F. Koksma, Diophantische Approximationen, Ergeb. d. Math. IV, 4 (Berlin
1935), p. 66.
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Here

pe [ 1 ) n — 1
T m—p—1 \ p

S R R

Hence, on multiplying corresponding inequalities (14) and (15), we find that
NG MuM% o = pgtde g1 < MMy 4.y
Further, by (1),
A= MyMy go0=mmy...m, =AG,)*4.

and therefore

Therefore, finally,
AG)Y A = pypy g = AMG) 24

There is no loss of generality in assuming again that 4 = 1. The result
obtained may then be expressed as follows.

Theorem3: Let 1 < p <=n—1and N = (g) ; let further A(QG,) be defined as

before. Let ®(E) and V'(H) be the p-th compound and the (n — p)-th compound,
respectively, of the same positive-definite quadratic form F(X) of unit discrimin-
ant in R,. Let py, ty, ..oy and wi, i, ..., Wy be the successive minima of
O(E) and \V(H), respectively, in the lattice Ay of all points with integral coordinates
n Ry. Then

AG)Y = upus g1 =AG) P (H=1,2,...,N).

The most interesting case of this theorem is that when p = 1. This case is
closely related to the theorem on polar convex bodies by M. Riesz and myself;
compare my paper on Compound Convex Bodies.

13. To conclude this paper, let us deduce from Theorem 1 the main result of
the paper just mentioned.

Let K be any closed, bounded, symmetric, convex body in RE,, and let K =
= [K]® be its p-th compound in R. By the theorem of Fritz Joun,*) there
exists in B, an ellipsoid K with centre at the origin such that

ntlcKck. (16)
Hence, if E = [E]® denotes the p-th compound of E, then also
n"EcKcE. (17)

It is rather difficult finding the explicit form of E. We introduce therefore an
ellipsoid E* which is easier to handle.

*) See R. Couranrt, Anniversary Volume, New York 1948, 187 — 204.
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Let F(X) be the positive definite quadratic form the square root of which is
the distance function of £; this ellipsoid is thus defined by #F(X) = 1. Let ®(E)
be the p-th compound form of F(X), and let E* be the ellipsoid in R, which has
®(E)! as its distance function, hence is defined by ®(E) = 1. As we shall prove,

N 'E*c Ec E*, (18)
whence, by (17),
(n?N)*E* ¢ K ¢ E*. (19)

14. The relation (18) is obtained as follows. There is a non-singular affine
transformation X — X’ = QX in R,, with its p-th compound E — &' = Q@w=E
in Ry, such that

G, = QF and I'” = QWE . (20)
Here G,: |X| =< 1 denotes the unit sphere in R,, and I'”” its p-th compound
in Ry. The first relation (20) implies the identities
F(X) = Fy(QX), OE) = b(Q0E)
of section 3; here Fy(X) and ®y(E) are again the quadratic unit forms. Since

®y(E)! is the distance function of the unit sphere Gy in R, and ®(E)! is that
of the ellipsoid E*, we obtain the further relation

Gy = QPVE*. (21)
Since the property of being a subset is not destroyed by any affine transfor-
mation, it is obvious from (20) and (21) that the relation (18) holds if, and only

if, it is true that
NGy TP cdy. (22)

As I have shown in my note On the p-th Compound of a Sphere,*) I''" is the
convex hull of the set
M = Gy 0 Qn, p) .

Here Q(n, p), the Grassmann manifold in R,, consists of all points
E=[X" X® .., X"
where X, X® ... X® run independently over R,. In particular,
PGy, I'?PcGy,
whence the right-hand half of (22).
Next, by taking for X, X®, ... X® all combinations of p distinet unit

points in R,, it follows at once that Q(n, p) and therefore also X" and I'{®
contain the 2V positive and negative unit points

(F1,0,...,0), (0, T1,...,0), ..., (0,0,..., F 1)

*) To appear in the Proceedings of the London Math. Soc.
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in R,. Hence 1", by its definition as a convex hull, encloses the generalised

n o2

octahedron

|

151! + I52| + ot lfwl =1.
Next, all the hyperplanes
FETFETF...Fé&y=1

bounding this octahedron have a distance N ! from the origin. The sphere
N-*@, is then a subset of the octahedron and so also of I'\”’. This proves the
left-hand half of the relation (22).

15. Let now my, m,, ..., m, be the successive minima of K in L,, and 1, s,
..., ity those of K in Ay, L, and A, being as before the lattices of all points with
integral coordinates in R, and R, respectively. Let similarly mE,mE, om)
and u¥, u¥, ..., 11 be the successive minima of & in Ly, and of E* in A, respecti-
vely. The relations (16) and (19) lead immediately to the inequalities,

* ok
my <m, =nm, (h=1,2..n),

23
wh <y =WNY uy (H=1,2,..,N). (23)

Next denote by my, my, ..., m, and py, yy, ..., wy the successive minima of
the quadratic forms F(X) and ®(E) in L, and A, respectively. Since F(X ) is
the distance function of E, and ®(Z)! is that of E*, the equations

m, =mi> (h=1,2,..,n), (24)
wy =pi (H=1,2,...,N)
hold.

We finally apply Theorem 1. Denote by M}, M, ..., M}, the products

’

M@y =m.m, ...m, (1 <v <v,<<...<w, =n)

1" g Yp

arranged in order of increasing size, and define corresponding products M 5

ME .., M¥ and M, M, ..., M, for the two sets of minima m, mj, ..., m}
and my, my, ..., m,. It is then trivial, by (24), that
My, =M} (H=1,2,..,N). (25)

Next associate with each product

M*(v) = m>m} ... mf;

the analogous product
M) =m,m,, ...m, .
The first set of formulae (23) implies that
MH(v) = M(v) = n'” M*(v),
and it is therefore evident that also
ME =M, <»¥'M;}, (H=12,...,N), (26)
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because both sets of products M7, and M, are numbered in order of increasing
size.

16. We finally apply Theorem 1 which, at once, gives
MG My < uy < My
By (24), these inequalities are equivalent to
MG My = pyy = My .

On using now the second set of formulae (23) together with the formulae (26)
we find that

n P AG) My = MG MG < pf = py = (0PN) pg <
~(nPN)EME < (nN) M, .

The following result has thus been proved.

— 1
— 1
A(G,,) be as before. Let K be any closed, bounded, symmetric, convex body in R,
and let K == [K]® be its p-th compound in R . Let further

Theorem 4: Let 1 = p <n — 1, N = (Z), and P = (z ); let further

My, Mgy ooy My, ANA [y, Yoy o ovy thy

be the successive mintma of K and K in the lattices Ly and A,, respectively. Let
finally M., M,, ..., My be the N products

M(v) =m,m,, ... m, (I =r <9, <..<w, =n)
numbered in order of increasing size. Then
n P AG) My, =py =@NY M, (H=1,2, ...,N).

This is essentially the Theorem 3 of my paper On Compound Convex Bodies,
which stated that
My =py =My,

with a positive constant ¢, depending only on » and p. By combining the two
theorems, we obtain immediately the slightly improved result that

n NG My = py = My

The old theorem was in so far more general that, instead of the minima of K
and K in L, and A, the minima of these two bodies in any pair of lattices L and

= [L]™ were considered; here [L]® denotes the p-th compound lattice of L.
There is no difficulty in extending also Theorem 4 to this more‘general case,
and no new ideas are involved.
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Peswome

O MUHUMYMAX HKBAIPATUYECKUX COINPOBOMRIAIONNX
OOPM

KVPT MAJIEP (Kurt Mahler), Mauuecrep.

(Mocrynmnio B pegakmuio 4/1X 1954 r.)

B cBoeit paGore ,,Compound Convex Bodies™ st ToJyumsi reoMeTpuyecKUM
yTeM HeCKOJIbKO allpoOKCHMAIIMOHHBIX Te0peM. 3/1ech A Ha 0CHOBAHUM CBOHCTB
KBaJpaTNIHbX (POPM AOKABBIBAIO HECKOJBKO POJICTBEHHBIX TEOpPeM, MMeIOINX
CaMOCTOATEJBHELI WHTEpeC.

I. IIyers 1 <p<mn-—1, N = (Z) . Eeom XU . X® —— qoukum n-Mep-

Horo mpocrparcersa R, to nyers E = [XM .. X®] o3zpavaer uX colpo-
BOMKIAONIYI0 TOUKY B R, 7. e. 1y Toury, N KoopauHaTaMil KOTOPOIl ABIAIOTCA
onpefieIuTe N P-ro MOPSAKA 7 X P-MATpHIL, COCTABJEHHOI M3 KoopmuHaT

rogex XM, ... X®. Dru ompejenuresn MoEHO Oparhb B HPOM3BOJIBHOM, HO
pas HaBcerga YeTaHOBIEHHOM HOpPSAKe.
M. Ilyers

n

F(X) = z WpZp @ s (Wpre = App)
F=1

h

— peifcTBUTENBHAS KBaJpaTHyHas fopma (B HOCaYIONEM H3JI0ReHIN BCET/Ia
MOJIOYKUTETBHO OllpejiesieHnas). Boipaskennem ,,p-as conpoBosalomas Gopma
dopmer F¢¢ o6osznaunm opmy
OE) ~ > ity
HK-1

rie koodduumentsr aff) paBHbl N? ompefieanTeqAM pP-TO HOPARKA MATPHIEI,
cocraByieHHON 13 KodPUMeHTOB @yy. [lopAgok HiTeKkCOB TaKoOIl e, Kark u B 1.
Ecau F momnosguresnsuo ompepenentua, 1o u @ Gyger moT0:mUTeNBHO ompefe-
JeHHOH $opMoil.

[Iycrs Teneps L, (cooTB. Ay) — MHOMECTBO Beex Todek u3 R, (cooTs. n3 Ry)
¢ regouncaeHnsMu Koopamsaramu. Ilyers my, < ... < m, — mocjeoBaTeb-
Hile MuHEIMYMBl Munroscexoro gopmer F(X) st X ms L, Anagorudno, nyersb
X ... < uy — vmuanmymer O(E) g B uz A, UssecrHo, 4To

A<m;...m, < AG,) A4, (1)

Aoy < AGy)EA, A= AT, P:(Z:i)’ (2)

rue 4, A oGosrauator muckpumuHanTel opm F u @; A(G,) ectb onpenenurens
KPUTHYeCKNX pelieror n-MepHoii epmumunoil cdepsr. Iycrs temeps M; <
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. < My npefcraBifaioT pacuoslosmeHibie B BO3PACTAIONIeM HOPsiike 1po-
H3BRJICHNA M, My, ... D, (1 <9, <, < ...<<p,<n). Torga cripasegnusa

2 »
Teopewa 1.

AGY My < g < My (H—1.2 .. N).

Jorasareaserso nposoured npir nomotnn (1), (2) u ilepapeiersa
OE) < F(XD) ... FX®) (5)
rie E obosnauaer conpoBoRA0ONYo Toury [X® . X ]
s reopembr 1 Burreraior jiBa caefcTelss (B teopemMax 2, 3 MBL LpefloJa-
raex juast nipoerorst 4 = 1), Bo-nepspix, ofuiast Teopema mepenoca:

Teopema 2.
n—p

MG my <y < AG,) 2 mi 1

Bo-properx, 13 teopempr 1 ocjiepyer reopeMa, Koropas B npocreiimen caydae
» = 1 HAXOAUTCHA B TeCHOI CBABIT ¢ TEOPCMaMU 0 MOJAPUBIX BRINYEKABIX Tesax M.
Pitca 1 asropa. A mwenno, nyers @ Oyper p-as, V' Oyper (n — p)-aa conpo-
Bosratomasg Gopma Goparsr £ rorga © m P umelor ofny M TY iKe pasMepHOCTh
. 7 n , * _- P
N = - CMyers pf 200 =y — HOCIIe0BATEARIBIe MUY MBI
n-—p ¢ ‘ : == A
. Toria umeer Meeto
Teopena 3.
(71 \2N < Y\ -2 - AT
A{C'“) ————— /”]]/"N Hil .= A((’n) ([] - ]7 Sy “”) .
Haxoner, B nocrepinx afzanax (13—-16) paGoTsl TOKABRIBACTCA TeC poMa,
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