REPRINT FROM THE

PROCEEDINGS

OF THE

ROYAL SOCIETY OF EDINBURGH

Section A (Mathematics)

VOL. LXIV-PART III (No. 17)

Invariant Matrices and the Geometry of Numbers

By K. Mahler, F.R.S., Department of Mathematics, Manchester University

PUBLISHED BY
OLIVER & BOYD
EDINBURGH: TWEEDDALE COURT
LONDON: 39A WELBECK STREET, W.1

1956

Price 4s. od.

XVII.—Invariant Matrices and the Geometry of Numbers. By K. Mahler, F.R.S., Department of Mathematics, Manchester University. *Communicated by* Professor A. C. AITKEN, F.R.S.

(MS. received December 13, 1955. Revised MS. received February 22, 1956. Read March 5, 1956)

Synopsis

With every matrix representation of the (real) full linear group can be associated a multi-linear mapping of one affine space, R_n , into another, R_N . This mapping is studied from the viewpoint of the geometry of numbers of convex bodies, and a general arithmetical property of such mappings is proved. The result generalizes my recent work on compound convex bodies.

matrices to the study of convex bodies and their geometry of numbers. Professor A. C. Aitken, after reading this paper, suggested to me in a letter of 23rd August that a similar theory should also hold for other kinds of invariant matrices corresponding to the matrix representations of the full linear group.

I show now that this conjecture is correct and establish a general transfer principle for convex bodies. The method used generalizes that in the

IN a paper which has just appeared (Mahler 1955) I applied compound

paper cited, but is perhaps even a little simpler. There is, fortunately, no need to use the complicated explicit formulæ for invariant matrices.

It is nearly unnecessary to express my indebtedness to Professor

Aitken. This paper would scarcely have been written without his suggestion.

I. Let
$$R_n$$
 and R_N denote the real affine spaces of all points

respectively. We consider these points as vectors and use the ordinary notation for sums of vectors, or for the product of a vector by a scalar.

 $X = (x_1, \ldots, x_n)$ and $\Xi = (\xi_1, \ldots, \xi_N),$

If S is any point set in R_n , then tS means the set of all points tX where $X \in S$; and correspondingly for point sets in R_N .

2. It is assumed that a mapping M of $R_n \times \ldots \times R_n$ (p factors) into R_N is given which has the following properties:

 (M_1) : To every system of p (equal or distinct) points $X^{(1)} = (x_1^{(1)}, \dots, x_n^{(1)}), \dots, X^{(p)} = (x_1^{(p)}, \dots, x_n^{(p)})$

K. Mahler

in R_n there corresponds a unique point $\Xi = [X^{(1)}, \dots, X^{(p)}] = (\xi_1, \dots, \xi_N)$

in R_N , which is called the associated point of $X^{(1)}, \ldots, X^{(p)}$. (M_2) : The mapping is linear in each point,

 $[X^{(1)}, \ldots, \lambda_1 X_1^{(\pi)} + \lambda_2 X_2^{(\pi)}, \ldots, X^{(p)}] = \lambda_1 [X^{(1)}, \ldots, X_1^{(\pi)}, \ldots, X^{(p)}]$

224

 $+\lambda_{0}[X^{(1)},\ldots,X_{0}^{(\pi)},\ldots,X^{(p)}].$

 (M_3) : The set Ω of all points $\Xi = [X^{(1)}, \ldots, X^{(p)}]$ in R_N obtained by this mapping contains N linearly independent points. (M_4) : To every non-singular affine transformation T of R_n there corre-

sponds a non-singular affine transformation T^* of R_N such that $[TX^{(1)}, \ldots, TX^{(p)}] = T^*[X^{(1)}, \ldots, X^{(p)}]$ identically in $X^{(1)}, \ldots, X^{(p)}$. We call T^* the associated trans-

formation of T. (M_5) : There is a constant P such that, for all T, the determinants det T and $\det T^*$ satisfy the equation

 $|\det T^*| = |\det T|^P$. (M_6) : The associated point of p points with rational coordinates has itself

rational coordinates.

Mappings M of this kind exist; e.g. the mapping of systems of p points in R_n on their compound point in R_N where $N = \binom{n}{n}$ has the required

properties. Other examples corresponding to matrix representations of the full linear group will be mentioned at the end of this paper. 3. Denote by

 $U_1 = (1, 0, ..., 0), \qquad U_2 = (0, 1, ..., 0), ..., \qquad U_n = (0, 0, ..., 1)$ the *n* unit points in R_n . Every point $X = (x_1, \ldots, x_n)$ in R_n has thus the form $X = x_1 U_1 + \ldots + x_n U_n$. It follows therefore from (M_2) that $[U_{\nu_1}, U_{\nu_2}, \ldots, U_{\nu_n}],$

Invariant Matrices and the Geometry of Numbers

225

(H=1, 2, ..., N)

 $(H=1, 2, \ldots, N).$

 $\nu_{H1}, \nu_{H2}, \ldots, \nu_{Hn}$

where $\nu_1, \nu_2, \ldots, \nu_n$ separately run over all suffixes

 $1, 2, \ldots, n.$ Hence, by (M_3) , there exist N sets of p such suffixes, the sets

say, such that the N associated points

 $Y_H = [U_{\nu_{H1}}, U_{\nu_{H2}}, \dots, U_{\nu_{Hn}}]$ $(H = 1, 2, \dots, N)$

on Ω are linearly independent and therefore form a basis of R_N . 4. Let $t_1 > 0, \ldots, t_n > 0$, and let T_t denote the affine transformation

defined by $T_t U_1 = t_1 U_1, \ldots, T_t U_n = t_n U_n.$

By (M_2) , the associated transformation T_t^* satisfies

 $T''_{t}Y_{t} = \tau_{t}Y_{t}, \ldots, T''_{t}Y_{N} = \tau_{N}Y_{N},$

where, for shortness, we have put

 $\tau_H = t_{\nu_{H_1}} \dots t_{\nu_{H_n}}$

From the form of T_t and T_t^* evidently

 $\det T_t = t_1 \dots t_n, \qquad \det T_t^* = \tau_1 \dots \tau_N.$

It follows therefore from (M_5) that

 $\tau_1 \ldots \tau_N = (t_1 \ldots t_n)^P$ identically in t_1, \ldots, t_n . (1)

Hence, on comparing on both sides of this equation the exponents of t_1, \ldots, t_n , we find that

Exactly P of the suffixes $\nu_{H\pi}$ $(H=1, 2, ..., N; \pi=1, 2, ..., p)$ (2)

are equal to each of the values $1, 2, \ldots, n$. Thus, in particular, the exponent P in (M_5) is a positive integer and P = pN/n.

5. We need two further simple properties of the mapping M. Let again $\Xi = [X^{(1)}, \ldots, X^{(p)}]$. Then, by (M_2) , the coordinates ξ_1, \ldots, ξ_N of Ξ

It is further obvious that if one of the points $X^{(1)}$, . . ., $X^{(p)}$ is replaced

6. By "body" we always mean a set with inner points, and by "convex body" we mean a closed bounded convex body symmetric in the coordinate

Let $K^{(1)}, \ldots, K^{(p)}$ be any p (distinct or identical) convex bodies in

 $\Xi = [X^{(1)}, \ldots, X^{(p)}], \text{ where } X^{(1)} \in K^{(1)}, \ldots, X^{(p)} \in K^{(p)},$

origin.

 R_n . The associated points

form a certain point set

226

on Ω ; denote by

by its negative, then Ξ likewise becomes $-\Xi$.

 $\Sigma = \langle K^{(1)}, \ldots, K^{(p)} \rangle$ $K = [K^{(1)}, \dots, K^{(p)}]$

the convex hull of Σ . We call K the associated set of $K^{(1)}$, . . ., $K^{(p)}$.

THEOREM 1.—The associated set K is a convex body.

Proof.—From the continuity of M, Σ and so also K are bounded sets, and, being a convex hull, K is closed and convex. Next, K is symmetrical

in the origin O. For $K^{(1)}$ contains with each point $X^{(1)}$ also the symmetric point $-X^{(1)}$, and hence Σ and so also K contain with Ξ the symmetric point $-\Xi$.

Finally, O is an inner point of K, hence K is a body. For each of $K^{(1)}, \ldots, K^{(p)}$ contains a neighbourhood of O, and therefore a positive number δ exists such that the sphere $|X| \leq \delta$ lies in all β bodies $K^{(1)}, \ldots, K^{(p)}$. The 2n points

 $\mp \delta U_1, \ldots, \mp \delta U_n$

are then elements of these bodies, and it follows from (M_2) that Σ and hence

also K contain the 2N associated points $\mp \delta^p \Upsilon_1, \ldots, \mp \delta^p \Upsilon_v.$

Therefore, by convexity, the "octahedron"

 $\Xi = s_1 \Upsilon_1 + \ldots + s_N \Upsilon_N$, where $|s_1| + \ldots + |s_N| \leq \delta^{p_n}$

(3)

assertion.

The following two properties are immediate consequences of the definition of the associated body:

 $[s_1K^{(1)}, \ldots, s_pK^{(p)}] = s_1 \ldots s_p[K^{(1)}, \ldots, K^{(p)}]$ for positive s_1, \ldots, s_p .

forms a subset of K. But this octahedron contains a certain neighbourhood of the origin because Y_1, \ldots, Y_N form a basis of R_N , whence the

 $[k^{(1)}, \ldots, k^{(p)}] \subseteq [K^{(1)}, \ldots, K^{(p)}]$ if $k^{(1)} \subseteq K^{(1)}, \ldots, k^{(p)} \subseteq K^{(p)}$. (4)

7. From now on only the associated body $K = [K, \ldots, K] = [K^p]$

$$p$$
 times of a single convex body K , p times repeated, will be considered. We shall establish a relation between the volume $V(K)$ of K in R_n and the volume $V(K)$ of K in R_N , and we begin with a simple special case. Let E be any ellipsoid in R_n with centre at the origin, and let $E = [E^p]$

be the associated body in R_N . In general, E is a rather complicated convex body. Theorem 2.—A positive constant c_1 depending only on the mapping M

THEOREM 2.—A positive constant c_1 depending only on the mapping in exists such that $V(\mathbf{E}) = c_1 V(E)^P.$ Proof.—Denote by G_n : $|X| \leq 1$ the unit sphere in R_n , and by

 $\Gamma_N^{(p)} = [G_n^p]$ its associated body in R_N . There is a non-singular affine transformation T of R_n such that $E = TG_n$ and therefore $V(E) = |\det T| \ V(G_n).$

$$V(E) = |\det T| \ V(G_n).$$
 The associated affine transformation T^* of R_N has then, by (M_4) , the property that $\mathbf{E} = T^*\Gamma_N^{(p)}$, so that

 $V(\mathbf{E}) = |\det T^*| \ V(\Gamma_N^{(p)}).$ Further, by (M_5) , $|\det T^*| = |\det T|^P.$

Therefore, finally, $\frac{V(\mathbf{E})}{V(E)^P} = \frac{V(\Gamma_N^{(p)})}{V(G_n)^P}, \quad = c_1 \quad \text{say,}$ as was to be proved.

as was to be proved. 8. Let now K and $K = [K^p]$ be a convex body in R_n , and its associated body in R_n , respectively. By the theorem of Fritz John (1948) there

 $n^{-\frac{1}{2}}E \subseteq K \subseteq E$.

body in R_N , respectively. By the theorem of Fritz John (1948) there exists in R_n an ellipsoid E such that

and (4), also $n^{-\frac{p}{2}} \mathbf{E} \subseteq \mathbf{K} \subseteq \mathbf{E}.$

K. Mahler

Let again $E = [E^p]$ be the associated body of E. Then, by the rules (3)

$$n^{-\frac{n}{2}}V(E) \leqslant V(K) \leqslant V(E)$$

228

Hence

and

so that

$$n^{-\frac{Np}{2}}V(\mathbf{E}) \leqslant V(\mathbf{K}) \leqslant V(\mathbf{E}),$$

 $n^{-\frac{Np}{2}}\frac{V(\mathbf{E})}{V(E)^{p}} \leq \frac{V(\mathbf{K})}{V(E)^{p}} \leq n^{\frac{np}{2}}\frac{V(\mathbf{E})}{V(E)^{p}}.$

Theorem 2 leads therefore to the following result: Theorem 3.—Two positive constants
$$c_2$$
 and c_3 depending only on the mapping M exist such that

 $c_2 V(K)^P \leqslant V(K) \leqslant c_3 V(K)^P.$

9. We introduce now the distance functions F(X) of K and $\Phi(\Xi)$ of $K = [K^p].$ If $X \neq O$ is any point in R_n , then there is a unique positive number F(X)such that

$$X \in sK \text{ if } s \ge F(X), \quad \text{but} \quad X \notin sK \text{ if } s < F(X).$$
 Put $F(O) = 0$. Then $F(X)$, the distance function of K , has the following two properties:
$$F(tX) = |t| F(X) \quad \text{for all real } t;$$

 $F(X+Y) \leq F(X) + F(Y)$.

The distance function $\Phi(\Xi)$ of K is defined analogously. THEOREM 4.—If $X^{(1)}$, . . ., $X^{(p)}$ are any p points in R_n , and if

THEOREM 4.—If
$$X^{(1)}$$
, . . . , $X^{(p)}$ are any p points in R_n , and if $\Xi = [X^{(1)}, \ldots, X^{(p)}]$ is the associated point in R_N , then
$$\Phi(\Xi) \leqslant F(X^{(1)}) \ldots F(X^{(p)}).$$

Proof.—The assertion is obvious if the points
$$X^{(1)}$$
, . . . , $X^{(p)}$ are

not all distinct from O; let this case be excluded, and let

 $Y^{(1)} = F(X^{(1)})^{-1}X^{(1)}, \ldots, Y^{(p)} = F(X^{(p)})^{-1}X^{(p)}.$

Then $F(Y^{(1)}) = \dots = F(Y^{(p)}) = 1$

so that $Y^{(1)}, \ldots, Y^{(p)}$ lie in K. Therefore the associated point

 $[Y^{(1)}, \ldots, Y^{(p)}] = \{F(X^{(1)}) \ldots F(X^{(p)})\}^{-1} \Xi$

assertion.

10. The results so far obtained will now be applied to the geometry of numbers. Let L_0 be the lattice of all points in R_n with integral coordinates, and let similarly Λ_0 be the lattice of such points in R_N . The successive minima

 m_1, \ldots, m_n of K in L_0 are defined as follows. First, there is a point $X_1 \neq 0$ in L_0 such that $F(X_1) = m_1$ is a minimum, called the first minimum of K in L_0 . Secondly, let $2 \le k \le n$, and assume that the points X_1, \ldots, X_{k-1} in L_0 and the corresponding

successive minima $F(X_h) = m_h (h = 1, ..., k - 1)$ have already been defined. Then there is a point X_k in L_0 linearly independent of X_1, \ldots, X_{k-1} such that $F(X_k) = m_k$ is as small as possible; m_k is called the kth minimum of K in L_0 . Thus X_1, \ldots, X_n are linearly in-

dependent, and
$$0 < m_1 \le \ldots \le m_n < \infty$$
. If Y_1, \ldots, Y_n are any n linearly independent points in L_0 arranged such that $F(Y_1) \le \ldots \le F(Y_n)$, then always

 $F(Y_1) \geq m_1, \ldots, F(Y_n) \geq m_n$

Further Minkowski, in his Geometrie der Zahlen, proved that
$$2^n n!^{-1} \leqslant m_1 \dots m_n V(K) \leqslant 2^n.$$

(5)Naturally, these results have their analogues for K and Λ_0 . There

exist
$$N$$
 linearly independent points $\Xi_1, \Xi_2, \ldots, \Xi_N$ in Λ_0 such that $\Phi(\Xi_K) = \mu_K (K = 1, \ldots, N)$ are the successive minima of K in Λ_0 . Again, $0 < \mu_1 \le \ldots \le \mu_N < \infty$.

If H_1, \ldots, H_N are N linearly independent points of Λ_0 arranged such that $\Phi(H_1) \leq \ldots \leq \Phi(H_N)$, then $\Phi(H_1) \geqslant \mu_1, \ldots, \Phi(H_N) \geqslant \mu_N.$

Finally, by Minkowski's theorem, $2^{N}N!^{-1} \leq \mu_{1} \dots \mu_{N}V(K) \leq 2^{N}$.

(6)II. Our aim is to find inequalities between the minima m_k and the

minima μ_{K} . One such inequality is obtained on dividing (6) by the Pth power of (5), viz. $\frac{2^{N-nP}}{N!} \leq \frac{\mu_1 \dots \mu_N V(\mathsf{K})}{\{m_1 \dots m_m V(K)\}^P} \leq 2^{N-nP} n!^P.$

Here $V(K)/V(K)^P$ lies, by Theorem 3, between the lower and upper bounds c_2 and c_3 . Thus, on putting

(7)

K. Mahler

 $c_4 = \frac{2^{N-nP}}{N! c_2}, \qquad c_5 = \frac{2^{N-nP} n!^P}{c_2},$ we obtain the even simpler inequality

230

$$c_4(m_1\ldots m_n)^P\leqslant \mu_1\ldots \mu_N\leqslant c_5(m_1\ldots m_n)^P$$
 which involves only the successive minima.

which involves only the successive minima. As we shall see, (7) implies N separate inequalities for the μ_{K} . But,

As we shall see, (7) implies
$$N$$
 separate inequalities for the μ_K . But, in order to obtain these, it is first necessary to derive upper bounds for

these minima from Theorem 4. 12. By construction, the *n* lattice points X_1, \ldots, X_n are linearly

independent, and therefore can be written as
$$X - TU \qquad X = 0$$

 $X_1 = TU_1, \ldots, X_n = TU_n,$

$$X_1 = TU_1, \ldots, X_n = TU_n,$$
 where T is a certain non-singular affine transformation of R_n . Let T^*

as usual be the associated affine transformation in R_{N} . Further, let

ere
$$T$$
 is a certain non-singular affine trusual be the associated affine transformat $u_{H\pi}$ (H :

 $\nu_{H\pi}$ $(H=1, 2, \ldots, N; \pi=1, 2, \ldots, p)$ be the same sets of suffixes, and

$$Y_H \!=\! \left[\,U_{v_{H1}}, \,\ldots, \,U_{v_{Hp}}\right] \qquad (H\!=\!{\rm I},\,2,\,\ldots,\,N)$$
 the same base points of R_N , as in § 3. Finally, put

 $\mathbf{Z}_{H} = [X_{v_{H1}}, \dots, X_{v_{Hn}}]$ $(H = 1, 2, \dots, N)$ Then, by (M_4) ,

z, by
$$(M_4),$$

$$\mathbf{Z}_1 = \mathcal{T}^* \mathbf{Y}_1, \ \dots, \ \mathbf{Z}_N = \mathcal{T}^* \mathbf{Y}_N.$$

Since also
$$T^*$$
 is non-singular, it follows that the new points Z_1, \ldots, Z_N

be written as sums

are likewise linearly independent.

13. Being an element of L_0 , each point X_h is of the form

 $X_h = \sum_{k=1}^n x_{hk} U_k$

with integral coefficients x_{hk} . The associated points \mathbf{Z}_H may therefore

 $\mathbf{Z}_{H} = \sum_{(1)} z_{H,(\nu)} [U_{\nu_{1}}, \dots, U_{\nu_{p}}]$ where v_1, \ldots, v_p independently run over the suffixes $1, \ldots, n$, and where

 $\mathbf{z}_{H_1(\mathbf{v})}$ are certain integers. Applying now (M_6) for the first time, we see

there exists a positive integer g such that all points

 $g[U_{\nu_1}, \ldots, U_{\nu_n}]$ $(\nu_1, \ldots, \nu_p = 1, \ldots, n)$ belong to the lattice Λ_0 . This, however, implies that also $gZ_1, \ldots, gZ_N \in \Lambda_0$

14. Denote, from now on, by
$$M_1, M_2, \ldots, M_N$$
 the N products
$$m_{\nu_{H1}} \ldots m_{\nu_{Hp}} \qquad (H=1, 2, \ldots, N)$$

arranged in order of increasing size, $M_1 \leqslant M_2 \leqslant \ldots \leqslant M_N$

We call these numbers
$$M_H$$
 the associated products of m_1, \ldots, m_n . Similarly, denote by H_1, \ldots, H_N the N lattice points $g\mathbf{Z}_1, \ldots, g\mathbf{Z}_N$ arranged in order of increasing distance function,

 $\Phi(H_1) \leqslant \Phi(H_2) \leqslant \ldots \leqslant \Phi(H_N).$ By Theorem 4. $\Phi(\mathbf{Z}_{H}) \leq F(X_{v_{H1}}) \dots F(X_{v_{Hp}}) = m_{v_{H1}} \dots m_{v_{Hp}},$

$$\Phi(\mathbf{Z}_H)\leqslant F\big(X_{\nu_{H1}}\big)\,\ldots\,F\big(X_{\nu_{Hp}}\big)=m_{\nu_{H1}}\ldots\,m_{\nu_{Hp}},$$
 and so evidently
$$\Phi(\mathbf{H}_H)\leqslant gM_H\qquad (H={\tt I},\ {\tt 2},\ \ldots,\ N).$$

 $\Phi(\mathbf{H}_H) \leqslant gM_H \qquad (H = 1, 2, \dots, N). \tag{8}$ But, as was proved in the last two sections, H_1, \ldots, H_N are N linearly

But, as was proved in the last two sections,
$$H_1, \ldots, H_N$$
 are N linearly independent points of Λ_0 . It follows then from the properties of the successive minima quoted in § 10 that

 $\Phi(\mathbf{H}_H) \geqslant \mu_H$ (H = 1, 2, ..., N).(9)

$$\Phi(\mathbf{H}_H) \geqslant \mu_H \qquad (H=1,\ 2,\ \dots,\ N).$$
 I5. The inequalities (8) and (9) together imply that

 $\mu_H \leqslant gM_H$ (H=1, 2, ..., N). (10)

15. The inequalities (8) and (9) together imply that
$$\mu_H \leqslant g M_H \qquad (H=1,\ 2,\ \dots,\ N).$$
 Here, by (2), the identity

Here, by (2), the identity

$$M_1 \dots M_N = \prod_{H=1}^N (m_{v_{H1}} \dots m_{v_{Hp}}) = (m_1 \dots m_n)^P$$
 holds. Hence

 $\mu_1 \dots \mu_N \leq \mu_H \cdot \frac{g^{N-1}}{M_T} M_1 \dots M_N = \mu_H \frac{g^{N-1}}{M_T} (m_1 \dots m_n)^P;$

whence, finally, by (7),

 $\mu_{H} \geqslant c_{4}g^{-(N-1)}M_{H}$ (H=1, 2, ..., N). (11) On combining (10) with (11), the following result has been obtained.

THEOREM 5.—Two positive constants c_6 and c_7 depending only on the mapping M exist which have the following property:

232

If K and $K = [K^p]$ are a convex body in R_n and the associated body in R_N ; if m_1, \ldots, m_n are the successive minima of K in L_0 and μ_1, \ldots, μ_N are those of K in Λ_0 ; if, finally, M_1, \ldots, M_N are the associated products of m_1, \ldots, m_n , then

K. Mahler

$$c_6 M_H \leqslant \mu_H \leqslant c_7 M_H \qquad (H={\tt I},\ {\tt 2},\ \ldots,\ N).$$

16. Of the successive minima of
$$K$$
 and K , the first minima m_1 and μ_1 are the most important ones. It is therefore of interest to establish simple inequalities connecting these two numbers in which the other minima

do not occur. One naturally cannot expect these inequalities to be quite as sharp as those given by Theorem 5. 17. A *lower* estimate for μ_1 in terms of m_1 is easily found. For, from

(12)

the definition of the associated products,
$$M_1\geqslant m_1^p,$$

$$M_1 \geqslant m$$

and so it follows, since $\mu_1 \ge c_6 M_1$, that

nd so it follows, since
$$\mu_1 \geqslant c_6 M_1$$
, that

$$\mu_1 \geqslant \epsilon_{6} r$$

 $\mu_1 \geq c_6 m_1^p$.

Here the exponent p cannot be replaced by any smaller number. For the

successive minima m_1, m_2, \ldots, m_n may all be equal, e.g. if L_0 is a

critical lattice of K, and then $M_1 = m_1^p$.

18. It is not quite so easy to determine an upper bound for μ_1 , and further properties of the mapping M are needed for this purpose.

In § 4, the products

 $\tau_H = t_{\nu_{H1}} \dots t_{\nu_{Hp}}$ $(H = 1, 2, \dots, N)$

were introduced. These may also be written in the form

 $\tau_n = t_1^{\alpha_{H1}} \dots t_n^{\alpha_{Hn}} \qquad (H = 1, 2, \dots, N)$

with exponents a_{Hh} that are non-negative integers such that

 $a_{H1} + \ldots + a_{Hn} = p$ $(H = 1, 2, \ldots, N).$

Let q denote the largest of all these exponents; we call q the type of M. There is no loss of generality in assuming that

 $q = \max (\alpha_{11}, \alpha_{12}, \ldots, \alpha_{1n}).$

 $\varpi = \begin{pmatrix} \mathbf{I} & 2 & \dots & n \\ \kappa_1 & \kappa_2 & \dots & \kappa_n \end{pmatrix}$ of $I, 2, \ldots, n$ such that

Choose a permutation

$$a_{1\kappa_1} \geqslant a_{1\kappa_2} \geqslant \dots \geqslant a_{1\kappa_n}.$$

Hence, on putting

$$q_1 = \alpha_{1\kappa_1}, \quad q_2 = \alpha_{1\kappa_2}, \quad \dots, \quad q_n = \alpha_{1\kappa_n},$$
 $q_1 \geqslant q_2 \geqslant \dots \geqslant q_n \geqslant 0, \qquad \sum_{k=1}^n q_k = p, \quad q_1 = q,$

we have

and exactly
$$q_1$$
 of the suffixes ν_{11} , ν_{12} , . . ., ν_{1p} are equal to κ_1 , q_2 are equal to κ_2 , etc., and finally q_n are equal to κ_n .

19. Let, as before, X_1, X_2, \ldots, X_n be the lattice points at which the successive minima of K in L_0 are attained. Denote by

successive minima of
$$K$$
 in L_0 are attained. Denote by
$$\overline{w}^{-1} = \begin{pmatrix} \kappa_1 & \kappa_2 & \dots & \kappa_n \\ 1 & 2 & \dots & n \end{pmatrix} = \begin{pmatrix} 1 & 2 & \dots & n \\ \lambda_1 & \lambda_2 & \dots & \lambda_n \end{pmatrix}$$

$$\varpi^{-1} = \begin{pmatrix} \lambda_1 & \lambda_2 & \dots & \lambda_n \\ 1 & 2 & \dots & n \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 & \dots & \lambda_n \end{pmatrix}$$
 the permutation inverse to ϖ , and by T the affine transformation of R_n given by

given by
$$TU_1 = X_{\lambda_1}, \quad TU_2 = X_{\lambda_2}, \quad \dots, \quad TU_n = X_{\lambda_n}.$$

This transformation is non-singular because X_1, X_2, \ldots, X_n are linearly

independent, and so the same is true for the associated transformation T^* Next write

in
$$R_N$$
.

Next write
$$\mathbf{X} = g \big[TU_{\boldsymbol{v}_{11}}, \quad TU_{\boldsymbol{v}_{12}}, \quad \dots, \quad TU_{\boldsymbol{v}_{1p}} \big]$$

$$= g \big[X_{\boldsymbol{\lambda}} \quad , \quad X_{\boldsymbol{\lambda}} \quad , \quad \dots, \quad X_{\boldsymbol{\lambda}} \quad \big],$$

 $=g[X_{\lambda_{\nu_{1}}}, X_{\lambda_{\nu_{1}}}, \dots, X_{\lambda_{\nu_{1}}}],$

where g is the positive integer defined in § 13. Hence, by the same proof as in §§ 12 and 13, X belongs to the lattice Λ_0 . Moreover, $X \neq O$

because $X = gT^*Y_1$ and $Y_1 \neq O$, and T^* is non-singular.

 $\mu_{\mathbf{I}} \leqslant \Phi(\mathbf{X}),$ where, by Theorem 4,

Therefore, from the definition of the first minimum,

where, by Theorem 4,
$$\Phi(\mathbf{X}) \leq g \, F\left(X_{\lambda_{\nu_{11}}}\right) F\left(X_{\lambda_{\nu_{12}}}\right) \dots F\left(X_{\lambda_{\nu_{1n}}}\right).$$

20. This expression can be simplified. From the definition of ϖ^{-1} , $\lambda_{\kappa_1} = 1$, $\lambda_{\kappa_2} = 2$, ..., $\lambda_{\kappa_n} = n$.

K. Mahler

Hence just q_1 of the points $X_{\lambda_{p_{11}}}$, $X_{\lambda_{p_{12}}}$, . . ., $X_{\lambda_{p_{12}}}$ are equal to X_1 ,

$$q_2$$
 are equal to X_2 , etc., and finally q_n are equal to X_n , and so

 $\Phi(X) \leq g F(X_1)^{q_1} \dots F(X_n)^{q_n} = g m_1^{q_1} m_2^{q_2} \dots m_n^{q_n}$

 $m_2 m_3 \ldots m_{n-1} \leq (m_2 m_3 \ldots m_n)^{n-1}$

We apply now the relations

234

 $q_1 = q$, $q \geqslant q_2 \geqslant \ldots \geqslant q_n$, $q_1 + q_2 + \ldots + q_n = p$, $m_1 \leqslant m_2 \leqslant \ldots \leqslant m_n$,

and the obvious identity $m_2^{q_2} m_3^{q_3} \dots m_n^{q_n} = m_2^{q_2 - q_3} (m_2 m_2)^{q_3 - q_4} \dots$

 $(m_2m_3 \dots m_{n-1})^{q_{n-1}-q_n}(m_2m_3 \dots m_n)^{q_n}$

Then evidently $m_2 \leq (m_2 m_3 \dots m_n)^{\frac{1}{n-1}}, \qquad m_2 m_3 \leq (m_2 m_3 \dots m_n)^{\frac{2}{n-1}}, \dots,$

and therefore $m_{5}^{q_2} m_{5}^{q_3} \dots m_{n}^{q_n} \leq (m_5 m_3 \dots m_n)^{\delta},$

where, for shortness,

 $\delta = \frac{1}{q_1 - q_2} \{ 1 \cdot (q_2 - q_3) + 2(q_3 - q_4) + \dots + (n-2)(q_{n-1} - q_n) + (n-1)q_n \}.$

This sum simplifies to $\delta = \frac{1}{q_2 + q_3 + \dots + q_n} = \frac{p - q}{q_n}$

whence

 $m_1^{q_1} m_2^{q_2} \dots m_n^{q_n} \leq m_1^{q-\frac{p-q}{n-1}} (m_1 m_2 \dots m_n)^{\frac{p-q}{n-1}},$

where, by Minkowski's theorem,

 $m_1 m_2 \dots m_n V(K) \leq 2^n$.

Hence, finally, $\mu_1 \leqslant g m_1^{q_1} m_2^{q_2} \dots m_n^{q_n} \leqslant g m_1^{\frac{nq-p}{n-1}} \{ 2^n V(K)^{-1} \}_{n-1}^{\frac{p-q}{n-1}}.$

(13)In this inequality, the exponent $\frac{nq-p}{n-1}$ cannot be replaced by a larger

For we may choose $m_1 < m_2 = m_3 = \dots = m_n$, and then number. $M_1 = m_1^q m_2^{p-q} = m_1^q - \frac{p-q}{n-1} (m_1 m_2 \dots m_p)^{\frac{p-q}{n-1}}.$

235

On combining (12) and (13) the following result is obtained. Theorem 6.—Two positive constants c_8 and c_9 depending only on the

mapping M exist, as follows: Let g be the type of M; let K and $K = [K^p]$ be a convex body in R_n and its associated body in R_N ; and let m_1 be the first minimum of K in L_0 and

$$\mu_1$$
 that of K in Λ_0 . Then
$$m_1 \leqslant c_8 \, \mu_1^{\frac{1}{p}}, \qquad \mu_1 \leqslant c_9 \, V(K)^{-\frac{p-q}{n-1}} m_1^{\frac{nq-p}{n-1}}.$$
 21. One special case of this theorem has interest in itself. Let

 $X = (x_1, \ldots, x_n)$ and $\Xi = (\xi, \ldots, \xi_N)$ be again the general points in R_n and R_N , respectively. Denote by G(X) and $\Psi(\Xi)$ the distance

functions
$$G(X) = \max (|x_1|, \ldots, |x_n|), \qquad \Psi(\Xi) = \max (|\xi_1|, \ldots, |\xi_N|),$$

so that
$$K_0 \colon \mathit{G}(\mathit{X}) \leqslant \mathtt{r} \quad \text{and} \quad K_0 \colon \Psi(\Xi) \leqslant \mathtt{r}$$

are the generalized cubes of sides length 2 with centres at the origins of the two spaces. In general, K₀ is distinct from the associated body $K'_0 = [K_0^p]$ of K_0 . Since, however, both K_0 and K'_0 are bounded and

contain
$$O$$
 as an inner point, there exist two positive constants c_{10} and c_{11} depending only on M such that $c_{10}\mathbf{K}_0 \subseteq \mathbf{K}_0' \subseteq c_{11}\mathbf{K}_0$.

$$c_{10}K_0\subseteq K_0'\subseteq c_{11}K_0.$$
 The distance function of $K_0', \Psi'(\Xi)$, say, satisfies therefore the inequalities

 $c_{10}\Psi'(\Xi) \leqslant \Psi(\Xi) \leqslant c_{11}\Psi'(\Xi).$ Denote by

Denote by
$$T\!=\!(a_{hk})\quad\text{and}\quad T^{\,*}\!=\!(a_{HK})$$
 a non-singular affine transformation of R_n and its associated trans-

formation in R_N , both given by their matrices, and assume, for simplicity, that both are unimodular,

$$\det T \! = \! \det T^* \! = \! \mathbf{I}.$$
 Then the new functions

$$F\left(X\right) = G\left(TX\right), \qquad \Phi(\Xi) = \Psi(T^*\Xi), \qquad \Phi'(\Xi) = \Psi'(T^*\Xi)$$

evidently are the distance functions of the convex bodies

 $K = T^{-1}K_0$, $K = T^{*-1}K_0$, $K' = T^{*-1}K_0'$

K. Mahler

(14)

respectively. In particular, K', = $[K^p]$, is the associated body of K, as

 $c_{10}\Phi'(\Xi) \leqslant \Phi(\Xi) \leqslant e_{11}\Phi'(\Xi).$

236

 μ_1 and μ'_1 be the first minima of K and K' in Λ_0 , respectively. It is obvious from (14) that $c_{10} \mu_1' \leq \mu_1 \leq c_{11} \mu_1',$

22. Let again m_1 be the first minimum of K in L_0 , and let similarly

while, by Theorem 6, $m_1 \leqslant c_8 \mu_1^{'\frac{1}{p}}, \qquad \mu_1^{'} \leqslant c_9 V(K)^{-\frac{p-q}{n-1}} m_1^{\frac{nq-p}{n-1}}.$ Furthermore, now $V(K) = V(K_0) = 2^n$. We thus have found the

THEOREM 7.—Two positive constants c_{12} and c_{13} depending only on

the mapping M exist, as follows:

Let q be the type of M; let $T = (a_{hk})$ and $T^* = (a_{HK})$ be a unimodular affine transformation in R_n and the associated transformation in R_N , respectively; let

$$F(X) = \max_{h=1, 2, ..., n} \left(\left| \sum_{k=1}^{n} a_{hk} x_{k} \right| \right), \quad \Phi(\Xi) = \max_{H=1, 2, ..., N} \left(\left| \sum_{K=1}^{N} a_{HK} \xi_{K} \right| \right)$$
be the corresponding distance functions; and let m_{1} and μ_{1} be the minima of $F(X)$ and of $\Phi(\Xi)$ for all sets of integral variables $x_{1}, ..., x_{n}$ and

of
$$F(X)$$
 and of $\Phi(\Xi)$ for all sets of integral va ξ_1, \ldots, ξ_N that do not all vanish. Then

 $m_1 \leqslant c_{12}\mu_1^{\frac{1}{p}}, \qquad \mu_1 \leqslant c_{13}m_1^{\frac{n_q-p}{n-1}}.$

23. We conclude this paper with some short remarks on the connections

to representation theory. The property (M_4) connects with the mapping M a certain homogeneous

integral representation of degree p by matrices of order N of the full linear group in n variables, $T \rightarrow T^*$. The last theorem makes thus a statement on the arithmetic of such representations.

We have nowhere assumed that this representation is irreducible. For instance, M may be that mapping where $[X^{(1)}, \ldots, X^{(p)}]$ is the

point in n^p -dimensional space which has as its coordinates the products $x_{\nu_1}^{(1)}$ $x_{\nu_2}^{(2)}$. . . $x_{\nu_p}^{(p)}$, where ν_1 , ν_2 , . . . , ν_p run independently over the suffixes

 $1, 2, \ldots, n$. In this case evidently $N = n^p$, $P = p n^{p-1}$, q = p,

and R_X is simply the pth Kronecker power of R_n .

 $[X^{(1)},\ldots,X^{(p)}]$ denotes the point in $\binom{n+p-1}{p}$ -dimensional space which has as its coordinates all the sums $\sum_{(i)} x_{\nu_1}^{(i_1)} x_{\nu_2}^{(i_2)} \ldots x_{\nu_p}^{(i_p)},$ where ν_1,ν_2,\ldots,ν_p run over all distinct systems of p integers $1,2,\ldots,n$

This representation is reducible. Among its irreducible factors are the representation by the pth compound matrices studied in my earlier paper, as well as the symmetric representation. For the latter,

with
$$\nu_1 \leqslant \nu_2 \leqslant \ldots \leqslant \nu_p$$
, while i_1, i_2, \ldots, i_p run over the $p!$ permutations of $1, 2, \ldots, p$. In this particular case,
$$N = \binom{n+p-1}{n}, \qquad P = \binom{n+p-1}{n}, \qquad q = p.$$

 $N = \binom{n+p-1}{p}, \qquad P = \binom{n+p-1}{p-1}, \qquad q = p.$ For general M, the corresponding representation can be split into a sum of irreducible representations, and to each of these there belongs an

subspace R^* , defined, say, by parallel projection, generates a mapping M^* of R_n on R^* which is of the same kind as M itself. Thus M can likewise be split into components. Therefore those mappings M which correspond to irreducible representations of the full linear group deserve

invariant subspace of R_N . The component of $[X^{(1)}, \ldots, X^{(p)}]$ in this

correspond to *irreducible* representations of the full linear group deserve particular interest.

24. It is known that all such irreducible representations can be obtained from the Young diagrams belonging to the various partitions

obtained from the Young diagrams belonging to the various partitions of p. By way of example, let p=3. Now there are three partitions, viz. p=3=2+1=1+1+1, two of which correspond to the compound and the symmetrical representations already mentioned. The remaining partition p=2+1 gives a Young diagram of the form

In this case, the associated point
$$[X^{(1)},\ X^{(2)},\ X^{(3)}]$$
 is found to have

coordinates of the form $\xi_{\nu_1\nu_2\nu_3} = x_{\nu_1}^{(1)} x_{\nu_2}^{(2)} x_{\nu_3}^{(3)} + x_{\nu_1}^{(2)} x_{\nu_2}^{(1)} x_{\nu_3}^{(3)} - x_{\nu_1}^{(3)} x_{\nu_2}^{(2)} x_{\nu_3}^{(1)} - x_{\nu_1}^{(3)} x_{\nu_2}^{(1)} x_{\nu_3}^{(2)},$

 $\xi_{\nu_{1}\nu_{2}\nu_{3}} = x_{\nu_{1}}^{\gamma} x_{\nu_{2}}^{\gamma} x_{\nu_{3}}^{\gamma} + x_{\nu_{1}}^{\gamma} x_{\nu_{2}}^{\gamma} x_{\nu_{3}}^{\gamma} - x_{\nu_{1}}^{\gamma} x_{\nu_{2}}^{\gamma} x_{\nu_{3}}^{\gamma} - x_{\nu_{1}}^{\gamma} x_{\nu_{2}}^{\gamma} x_{\nu_{3}}^{\gamma},$ where the suffixes $\nu_{1}, \nu_{2}, \nu_{3}$ assume again the values 1, 2, . . . , n. But not

where the suffixes ν_1 , ν_2 , ν_3 assume again the values 1, 2, . . ., n. But not all systems of three such suffixes need be considered, because

 $\xi_{\nu_1\nu_2\nu_3} + \xi_{\nu_3\nu_2\nu_1} = 0,$ $\xi_{\nu_1\nu_2\nu_3} + \xi_{\nu_3\nu_3\nu_1} + \xi_{\nu_3\nu_1\nu_2} = 0,$

so that, in particular, $\xi_{\nu_1\nu_3\nu_3} = 0$ if $\nu_1 = \nu_3$. There is no difficulty in selecting a full system of linearly independent coordinates $\xi_{\nu,\nu_{2}\nu_{2}}$. The result is that there are for n=3 the following N=8 coordinates: $\xi_{112}, \quad \xi_{113}, \quad \xi_{122}, \quad \xi_{123}, \quad \xi_{132}, \quad \xi_{132}, \quad \xi_{223}, \quad \xi_{233}.$

Similarly, there are N = 20 coordinates for n = 4, etc. The mapping that corresponds to this Young diagram has the type q = 2. For general Young diagrams, one deduces easily from the rule defining the irreducible representation and the corresponding mapping that the

References to Literature

Mahler, K., 1955. "On compound convex bodies (I)", Proc. Lond. Math. Soc.,

Invariant Matrices and the Geometry of Numbers

type q equals the number of columns of the diagram.

John, F., 1948. "Extremum problems with inequalities as subsidiary conditions",

Courant Anniversary Volume, 187-204.

(3), 5, 358–379.