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SYNOPSIS

entation of the (real) full linear group can be associrted a
studied
weral arith-

trix repres
“one affine space, #,, into another, £y. This mappi
ry of numbers of convex bodies, and a o

With every ma
multi-linear mappi
from the viewpoint of the geomet
metical property of such mappings is proved. The result generalizes my recent work on

compound convex bodies.

IN a paper which has just appeared (Mahler 1955) I applied compound
matrices to the study of convex bodies and their geometry of numbers.
Professor A. C. Aitken, after reading this paper, suggested to me in a
letter of 23rd August that a similar theory should also hold for other
kinds of invariant matrices corresponding to the matrix representations
of the full linear group.

I show now that this conjecture is correct and establish a general transfer
principle for convex bodies. The method used generalizes that in the
paper cited, but is perhaps even a little simpler. There is, fortunately,
no need to use the complicated explicit formula for invariant matrices.

[t is nearly unnecessary to express my indebtedness to Professor
Aitken. This paper would scarcely have been written without his
suggestion.

1. Let R, and R, denote the real affine spaces of all points

oy
X=(xg, . . -, x) and =E=(&, ..., &),

respectively.  We consider these points as vectors and use the ordinary
notation for sums of vectors, or for the product of a vector by a scalar.
If S is any point set in &, then £5 means the set of all points zZX" where
X e S; and correspondingly for point sets in & y.

It is assumed that a mapping M of R, x . . . xR, (p factors) into
R, is given which has the following properties:
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(My): To every system of p (equal or distinct) points
XDO=@® 2Dy, o XD =@ a®)
in R, there corresponds a unique point
E=[XD, L XD =(, .., €y
in Ry, which is called the associated point of XV, . . . X,
(M) The mapping is linear in each point,

(XD L AXT XD, XD =0 XD XD, XD
XD XP L XD

(My): The set QO of all points Z=[XD, . . ., XD in R, obtained by
this mapping contains N linearly independent points.

(My): To every non-singular affine transformation 1" of R, there corre-
sponds a non-singular affine transformation 1°* of R such that

[Z7XW, . . TXWD]=T*XW . X0

identically in XV, . . ., X" We call 77* the associated trans-
Jormation of 1.

(My): There is a constant P such that, for all T, the determinants det T
and det 1% satisfy the equation

[det 7% | = |det 7"| *.

(Mg): The associated point of p points with rational coordinates has itself
rational coordinates.

Mappings 4 of this kind exist; e.g. the mapping of systems of p points
in R, on their compound point in K, where V =| %) has the required

properties. Other examples corresponding to matrix representations of
the full linear group will be mentioned at the end of this paper.
3. Denote by

U,=(,0,...,0), Up=(0,I,. . .,0), ..., U,=(0,0,...,1)

the 7 unit points in R,. Every point X =(x, . . ., x,) in R, has thus
the form X =x,U;+. . . +x,U,. It follows therefore from (J7,) that
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. i . . . . .
every point = on £ can be written as a linear combination with real
coefficients of the special associated points

Uy, Uy, ..., U,
[ 1!1’ 12’ ’ V7,:|’
where vy, vy, . . ., v, separately run over all suffixes

1,2 7.

3 2y e e ey

Hence, by (My), there exist N sets of p such suffixes, the sets
Vi Vire + 5 Vip (H=1,2,..., V)
say, such that the N associated points

Y”z[Uvm’ vy =+ o> U”up] (H=1,2,..., V)

on X are linearly independent and therefore form a basis of R .
4. Let#, >0, .. ., ¢, >0, and let 7, denote the affine transformation
defined by
7,0, =t,Uy, . . ., T,U,=1,U,.

By (M,), the associated transformation 77, satisfies
T;:Yl :’leu SRR T;YNITNYN:

where, for shortness, we have put

(H=1,2,... N).

Ty =1 2
7S Virp

From the form of 7, and 7 evidently
det 7y =2, . . . 2, det 7/ =7, . . . 7y
It follows therefore from (4/;) that
T eTy=0y . 1) identically in ¢y, . . ., 4,. (1)

Hence, on comparing on both sides of this equation the exponents of
ty, . . ., t,, we find that
Lxactly P of the suffixes
Vi (H=1,2,.. . , Nym=1,2,...,0 (2

are equal to each of the values 1, 2, . . ., n.

Thus, in particular, the exponent 7 in (JM/;) is a positive integer and
P=pN|n.
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5. We need two further simple properties of the mapping /. Let
again = =[X®, ..., X®]. Then, by (#,), the coordinates &, . . ., {y of =
are homogeneous multilinear forms in the coordinates of X, . . ., X,
They are thus continuous functions of these coordinates.

It is further obvious that if one of the points X, . . ., X is replaced
by its negative, then = likewise becomes — =.

6. By “body’” we always mean a sef with inner points, and by *‘ convex
body” we mean a closed bounded convex body symmetric in the coordinate
origin.

Let KW, . . ., K@ be any p (distinct or identical) convex bodies in
R,. The associated points

T=[XW L XW] where XD E LD L XPE LD,
form a certain point set

P - L Y AT
on £); denote by
K=[xgw, . .. &)

o

the convex hull of £. We call K the associated set of KV, . . ., K.
THEOREM 1.— 7 /e associated set K is a convex body.

Proof—From the continuity of 4/, X and so also K are bounded sets,
and, being a convex hull, K is closed and convex. Next, K is symmetrical
in the origin O. For K& contains with each point X"V also the symmetric
point — X @ and hence X and so also K contain with = the symmetric
point — =,

Finally, O is an inner point of K, hence K is a body. For each of
K .., K% contains a neighbourhood of O, and therefore a positive
number § exists such that the sphere [X| <& lies in all p bodies
K® .., KW The 22 points

F6U,, . .., FoU,

are then elements of these bodies, and it follows from (47,) that ¥ and hence
also K contain the 2.V associated points

ForY,, . .., TOY .
Therefore, by convexity, the ““octahedron”

E=5Y;+ ... +syYy, where [s]|+ .. 41yl <8,
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forms a subset of K. But this octahedron contains a certain neighbour-
hood of the origin because Y,, . . ., Y, form a basis of &, whence the
assertion.

The following two properties are immediate consequences of the
definition of the associated body:

[ KD s KW =5, . . s [AD .o KW for positive sy, . . .5, (3)

(D A0S IEW KW i A C KD A S KW ()

7. From now on only the associated body

K=[X, ..., K]=[K?]

Vv

2 times

of a single convex body K, p times repeated, will be considered. We
shall establish a relation between the volume (X)) of K in R, and the
volume 7 (K) of K in Ry, and we begin with a simple special case.

Let Z be any ellipsoid in &, with centre at the origin, and let K =[Z7]
be the associated body in R,. In general, I£ is a rather complicated

convex body.

THEOREM 2.—A positive constant ¢, depending only on the mapping M

exists such that
V(E)=q V(&)

Proof.—Denote by G,: |X|<1 the unit sphere in &,, and by
[P =[G"] its associated body in Ry. There is a non-singular affine
transformation 7" of R, such that Z =7, and therefore

V(E)=|det 7| V(G,).
The associated affine transformation 7°* of R, has then, by (#,), the
property that K = 7*I'Y, so that
V(E)=|det 7% | ¥ (TF).
Further, by (M),
| det 7% |=|det 7°] *.
Therefore, finally,
r(E) (TP
et re)”

=¢p 84y,

as was to be proved.

8. Let now K and K =[K?] be a convex body in &,, and its associated
body in R, respectively. By the theorem of Fritz John (1948) there
exists in R, an ellipsoid % such that

nYE C K CE.
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Let again E =[£7?] be the associated body of Z. Then, by the rules (3)
and (4), also

o
» ‘K EK CE

Hence
n PV(E) < V(K) < V(E)
and
_p
n 21V (E)<1r(K)<r(E),
so that
R (K (K
n ?— ? < ~< >p <n?® *E’)p
V(EY T T(K) V(E)

Theorem 2 leads therefore to the following result:
THEOREM 3.— Zwo positive constants ¢y and cy depending only on the
mapping M exist such that
oV (K) < V(K) <l (&)
9. We introduce now the distance functions #(.X) of X and ®(X) of
K=[K"].
If X+# O is any point in R, then there is a unique positive number /' (.X)

such that
XE€sKifs>F(X), but X&sKif s< F/(X).

Put #(0) =o. Then F(X), the distance function of K, has the following

two properties:
F@X)=|¢|F(X) forallreal z;

F(X +V) < P(X)+F(V).
The distance function ®(X) of K is defined analogously.

THEOREM 4.—1f XM, . . XD qre any p points in R,, and if
Z=[XW L X W) s the associated point in Ry, then

O(E) < 7(XW) . .. FXD)

Proof.—The assertion is obvious if the points XM, . . . X are
not all distinct from O; let this case be excluded, and let

YW o g(XW)-1X M Y = F(X )X @),
Then
F(YW)= . . =F(YW)=1,

so that Y@ . . ., V@ liein K. Therefore the associated point

(YO, YOI={F(XWD) . . . FX1E



Invariant Matrices ana the Geometry of INumboers 229

belongs to K. But then Z € sK for s > F(X®) . . . F(X W), giving the
assertion.

10. The results so far obtained will now be applied to the geometry of
numbers.

Let Z, be the lattice of all points in &R, with integral coordinates, and
let similarly Ay be the lattice of such points in £;. The successive minima
Wiy, . . ., m, of K in Ly are defined as follows.

First, there is a point X O in Z; such that /(X)) =, is a minimum,
called the first minimum of K in L, Secondly, let 2« &< », and

assume that the points X, . .., X, , in Z, and the corresponding
successive minima /(X)) =m, (h=1,. . ., £#—1) have already been
defined. Then there is a point X, in Z, linearly independent of
X, .. ., X,y such that #(X}) =, is as small as possible; sz, is called
the kth minimum of K in L, Thus X, .. ., X, are linearly in-
dependent, and
O My <. . . K, < 0.

If Vy,. .., V, are any » linearly independent points in Z, arranged
such that /(V,) < . . . < #(VY,), then always

F(Y) =my . . ., F(Y,)>m,

Further Minkowski, in his Geometrie der Zallen, proved that
2\ <oy oL Lo, V(AT < 2n (5)
Naturally, these results have their analogues for K and A,. There

. . . . —_ —_ .
exist /V linearly independent points =;, =,, . . ., =y in A, such that
OE,) =py (K =1, . . ., N) are the successive minima of Kin A,. Again,

O< Uy <. . o Sy < 0.

If H,, ..., H, are NV linearly independent points of Ay arranged such
that ®(H,) < . . . <®(H), then
dH) >p,, . ., OHY) > py.

Finally, by Minkowski’s theorem,
YN <y Ly VK) <2 (6)

11. Our aim is to find inequalities between the minima 2, and the
minima pg. One such inequality is obtained on dividing (6) by the
Pth power of (3), viz.

2N —nP

_ M py V7 (K) < NP, P

Nt my . m V(K



230 K. Manter

s v > > . “
Here V(K)/V(K)" lies, by Theorem 3, between the lower and upper
bounds ¢, and ¢;. Thus, on putting
ZN—'HP /\ ~ul’” 'I
Cyg= "0 ‘75“‘ T ]

N Cy Co
we obtain the even simpler inequality

ro_ _ P
cyomy oo om) <y py <eslmy oo omy) 7

which involves only the successive minima.

As we shall see, (7) implies V separate inequalities for the pg.  But,
in order to obtain these, it is first necessary to derive upper bounds for
these minima from Theorem 4.

12. By construction, the # lattice points Xy, . . ., X, are linearly
independent, and therefore can be written as

X, =70, ..., X,=7U,

where 7" is a certain non-singular affine transformation of £,. Let 7*
as usual be the associated affine transformation in K. Further, let

Vigw (H=1,2,. .., N;7=1,2,...,7)

be the same sets of suffixes, and

Yu=[Ups o s Uny ] (H=1,2,...,N)
the same base points of Ry, as in § 3. Finally, put
Zh':[XVm’ e 1\’1,11[’] (H=1, 2, L AV)
Then, by (1)),
To=7%Y,, .. Lp=T%Y .
Since also 7* is non-singular, it follows that the new points Z;, . . ., Ziy

are likewise linearly independent.
13. Being an element of Z,, each point X3 is of the form

n
Xp= thk Ug
F=1

with integral coefficients x,,. The associated points Z; may therefore
be written as sums

ZH:ZZII,('I")[UYI’ e ey pr]
(¢}

where v, . . ., v, independently run over the suffixes 1, . . ., 7, and where
zy @ are certain integers. Applying now (#) for the first time, we see



Itnvariant Mairices and the Geometry of Nunibers 231

that the #? points [Ul’l’ R [»”,,p] all have rational coordinates. Hence

there exists a positive integer ¢ such that all points
g[l’,,l, . (7,,1)] iy o o V=1, ., 0)
belong to the lattice A,. This, however, implies that also
&’Zu IR (QZ)‘ €A,
14. Denote, from now on, by A, M,, . . ., M, the N products

My ...y
Vit v

(H=1,2,...,N)

Hp

arranged in order of increasing size,
M, <M, <. .= M.

We call these numbers M, the associated products of nry, . . ., ne,.
Similarly, denote by Hy, . . ., H the AV lattice points ¢Z,, . . ., g%,
arranged in order of increasing distance function,
: < < <d/H .
O(H,) <o(H,) <. .. <0(H,)

By Theorem 4,

D(Z,) < F(X,.m) C F(X,,Hp) =y, P

and so evidently

iy’

®(H,) <gm, (H=1,2,...,N) (8

But, as was proved in the last two sections, Hy, . . ., H, are V linearly
independent points of Ay It follows then from the properties of the
successive minima quoted in § 10 that

(IIH> S M (H:]7 2, 0 - A/') (9)

15. The inequalities (8) and (9) together imply that

< gMy H=1,2,.. ., N). (10)
Here, by (2), the identity
M. 11” (/721 R m”u;)):<ml o)t
holds. Hence
N-1 -1
& g P
—M, ... M BN
M1 My < - M, N=HE 4 [H( 1 )

whence, finally, by (7),
g = g, (H=1,2,. .., V) (11)

On combining (10) with (11), the following result has been obtained.
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THEOREM §.— 7wo positive constants cg and ¢, depending only on the
mapping M exist which have the following property.
If K and K =[K?) are a convex bodv in R, and the associated body in
Ry if my, o o ., me, are the successive minima of K in Ly and py, . . ., uy
are those of Win Ay, if, finally, My, . . ., My are the associated products
of My, - . ., ML, then

ceMy <y <My (H=1,2,.. ., V).

16. Of the successive minima of A and K the first minima 2, and
are the most important ones. It is therefore of interest to establish simple
inequalities connecting these two numbers in which the other minima
do not occur. One naturally cannot expect these inequalities to be quite
as sharp as those given by Theorem 3.

17. A Jower estimate for p, in terms of 7z, is easily found. For, from
the definition of the associated products,

M, = mf,

and so it follows, since u; > ¢z, that
My = cgm. (12)

Here the exponent p cannot be replaced by any smaller number. For the
successive minima w2y, 7, . . ., 2, may all be equal, e.g. if Ly is a
critical lattice of K, and then A, =m].

18. It is not quite so easy to determine an #upper bound for u,, and
further properties of the mapping M are needed for this purpose.

In § 4, the products

=/ 2 H = Lo NV
TH V[]l vh,[) ( I, 2, ’ ‘\)

were introduced. These may also be written in the form
o4 « ~
=4 (H=1,2,..., V)
with exponents a,, that are non-negative integers such that
ap+ .. tag,=p (H=1,2,. .. V)

Let ¢ denote the largest of all these exponents; we call ¢ the zype of M.
There is no loss of generality in assuming that

g=max (an’ Ay o - oy aln)'
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Choose a permutation

/1 2 L. 7
o= )
Ky Ky ... K,/
of 1, 2, . . ., # such that
i, > Gy, > o oo > g
Hence, on putting
glzalKla (/2:0‘1!(2’ LR} qn:a’l.‘(”,
we have
n
= Zq o, D=t 1=9,
h=1
and exactly ¢, of the suffixes vy, vy, . . ., vy, are equal to «, ¢, are equal

to k,, etc., and finally ¢,, are equal to «,,.
19. Let, as before, Xy, X,, . . ., X, be the lattice points at which the
successive minima of A in Z, are attained. Denote by

Ky Ke o o Ky o2 ...
o= ) = )
T2 ... oz AA LA

the permutation inverse to @, and by 7 the affine transformation of &,
given by
TU=X;, TU=X;, ..., TU=X.
This transformation is non-singular because X, X,, . . ., X are linearly
independent, and so the same is true for the associated transformation 7%
in R,.
Next write

where ¢ is the positive integer defined in §13. Hence, by the same
proof as in §§ 12 and 13, X belongs to the lattice A,.  Moreover, X+ O
because X =g 7*Y, and Y,# O, and 7'* is non-singular.
Therefore, from the definition of the first minimum,
f'L] ‘:\:(I)<X>7

where, by Theorem 4,

O(X) f\;gF(ngvjl)F(‘szlz) S F(X;.vlp).



234 . Manter

20. This expression can be simplified.

From the definition of &1,

A, =1, A =2, s A =7
1 2 n
Hence just ¢, of the points X;W , X;v , . /‘(;_r are equal to A7,
11 12 1p
g, are equal to X, etc., and finally ¢, are equal to X, and so
@(X) <g F(X)U . . F(X)Ir=gmPm . . min
We apply now the relations
=G §FGT e T it gy =P,y Sy S S,
and the obvious identity
mg2 7”;13 g"—ﬁl ‘Ia(m . )’Za
(ngmy . . o, )T T U ngmy o)t
Then evidently
e 2
my < (mogmiy . . . om,) gy < (momty . . . mn)’“l Ce
n-2
Wy o o g,y < (g L mn)"‘J
and therefore
mlEm® o < ngng o)’
where, for shortness,
! \
d=—{1.(2 =g +2(gs =g +. . - + (2 =2)(gy 1= g:) + (1 =g}
This sum simplifies to
I 79
I UZR LSRR 21 B
72— 1 72— 1

whence
.

m'f‘mg .o <ml”
where, by Minkowski’s theorem,
may ...
Hence, finally,

g < gﬂzg‘ md

o . ng —
In this inequality, the exponent "7 cannot be

7 —1

number.

My=mIm? " I=m " n

fi
n=1(mymy . .

n-r P
r <l gmyn-1{2" (K ) a1,

For we may choose mz; < w2y =24 =

Py
n-1(mymy . . .

r-q
. Wln)n -1,

m, V(K < 2"

(13)
replaced by a larger

=72,, and then

r-q

72)” - 1.



Invariant Maitrices and the Geomnetry of iNVumbers 23

Ut

On combining (12) and (13) the following result is obtained.

THEOREM 6.— 7o positive constants cg and ¢y depending only on the
mapping M exist, as follows.

Let g be the type of M, let K and K =[K*] be a convex body in R, and

ts associated body in Ry, and let ny be the first minimum of K in L, and
pq that of Kin Ny, Then

1 _P-g  ng-p

§ - P E n»l n—1
my <egply g <cgh (K) gt

21. One special case of this theorem has interest in itself. Let
XN=(xy .. ., x,) and =Z=(& . . ., &) be again the general points in
R, and R,, respectively. Denote by G(X) and W(Z) the distance
functions

GX)=max (| x; ], . oo [ x, VE) =max (| & |, - - | Ex D,
so that
Ky G(X) <1 and Kg: V(=) <1

are the generalized cubes of sides length 2 with centres at the origins of
the two spaces. In general, K; is distinct from the associated body
K, =[&7] of K,. Since, however, both K, and K{ are bounded and
contain O as an inner point, there exist two positive constants ¢;q and ¢y,
depending only on M such that

o € K| € ¢ K,
The distance function of K, \P'(E), say, satisfies therefore the inequalities
ayV'(E) <W(E) <, V'(Z).

Denote by

T =(a;) and 7% =(ayy)

a non-singular affine transformation of A, and its associated trans-
formation in A, both given by their matrices, and assume, for simplicity,
that both are unimodular,

det 77=det 7% =1.
Then the new functions
F(X)=G(7Xx), ®E)=W(7*=), & (Z)=V"(7*E)
evidently are the distance functions of the convex bodies

K=771k,  K=7*1K, K'=7*1K],
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respectively. In particular, K, =[A"], is the associated body of X, as
follows easily from the definition of the associated body and from (7).
It is further evident that

10 '(E) Sié(D<:> enq)'<z>. (14)

22. Let again 7z, be the first minimum of A in Z,, and let similarly
wy and p; be the first minima of K and K’ in Ay, respectively. It is obvious
from (14) that

Cro < < e s
while, by Theorem 6,
L p-q m-p

P Py s
my <cg?, py < gV (A7) my T

Furthermore, now V' (K) =1 (K,) =2". We thus have found the

THEOREM 7.—Two positive constants ¢y, and cyy depending only on
the mapping M exist, as follows:

Let q be the type of M, let T =(ay;) and T* =(ayy) be a unimodular
affine transformation in R, and the associated transformation in Ry,

respectively; let
| N

Son P ] |\
F(X)= max ( > an ), O(E)= max ( Dansés | )
h=1,2,..,n\ | k=1 ! H=1,2,.., N\ | h=1
be the corresponding distance functions,; and let wy and p, be the minima
of F(X) and of O(E) for all sets of integral variables x,, . . ., x, and
&, ..., &y that do not all vanish. T hen
! " =P
my < Cygltt, py < gy

23. We conclude this paper with some short remarks on the connections
to representation theory.

The property (M,) connects with the mapping 7 a certain homogeneous
integral representation of degree p by matrices of order NV of the full
linear group in » variables, 7'~ 7"*. The last theorem makes thus a
statement on the arithmetic of such representations.

We have nowhere assumed that this representation is irreducible.
For instance, M may be that mapping where [ X . . X@] is the
point in z?-dimensional space which has as its coordinates the products

D Ar(,f:, where vy, vy, . . ., v, run independently over the suffixes

1,2, .. .,#% In this case evidently

N=n?, P=pnrt, g=p,

and R is simply the pth Kronecker power of &,.
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This representation is reducible. Among its irreducible factors are
the representation by the pth compound matrices studied in my earlier
paper, as well as the symmetric representation. For the latter,

(n+p—1 - . .
? |-dimensional space which

[X®, ..., X ] denotes the point in |

has as its coordinates all the sums

(i) (i) (i)
Z“i’l Xy, o Xy,

@)
where vy, vy, . . ., v, run over all distinct systems of p integers 1, 2, . . ., %
withv, < v, < ... <wv, whilez, 7, . . ., 7, run over the p! permutations
of 1,2, . . ., p. In this particular case,
Nv:(/n+p—1\’ P:</7z+]>»l \ 7=p.
.2 ) £-1r )

For general M, the corresponding representation can be split into a
sum of irreducible representations, and to each of these there belongs an
invariant subspace of R,. The component of [X®, . . . X ] in this
subspace R*, defined, say, by parallel projection, generates a mapping
M* of R, on R* which is of the same kind as A/ itself. Thus A/ can
likewise be split into components. Therefore those mappings 4/ which
correspond to zrreducible representations of the full linear group deserve
particular interest.

24. It is known that all such irreducible representations can be
obtained from the Young diagrams belonging to the various partitions
of p. By way of example, let p =3. Now there are three partitions, viz.
p=3=2+1=1+ I+1, two of which correspond to the compound and the
symmetrical representations already mentioned. The remaining partition

=2-+1 gives a Young diagram of the form
I 2
3

In this case, the associated point [X M X® X3 is found to have
coordinates of the form

OO G, O 06 G0 0@

E vy = X, Xy X o+ Xy 20y 00y = Xy X, Xy = Xy Xy Ay

where the suffixes vy, v, v3 assume again the values 1, 2, . . ., 7. But not
all systems of three such suffixes need be considered, because

& —
Svyvary T 51'3'112v] =0,

51'11'21'3 + frgvarl + giwlve =0,
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so that, in particular, &, , =0 if v; =v;.  There is no difficulty in selecting
a full system of lmgall) independent coordinates &, 5. The result is that
there are for » =3 the following N =8 coordinates:

o & < et
112 é‘1135 S122y  S123» 51327 S133

e

Easar

Similarly, there are .V = 20 coordinates for # =4, etc. The mapping that

corresponds to this Young diagram has the type ¢ =2.

For general Young diagrams, one deduces easily from the rule defining
the irreducible representation and the corresponding mapping that tke
tvpe q equals the niinber of colimns of the diagrae.
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