large alum crystal, the others were made of wood, glass or brass. The agreement between theory and experiment is as good as could be expected.

Acknowledgements: Much help has been obtained from the diagrams and data given in the books by Coxeter (Regular Polytopes), Cundy and Rollett (Mathematical Models) and Steinhaus (Mathematical Snapshots).
University of Toronto.
J. S.

A FACTORIAL SERIES FOR THE RATIONAL MULTIPLES OF e

By K. Mahler

A special case of a theorem by G. Cantor* states that every real number α can be written in a unique way as a series

$$
\begin{equation*}
\alpha=\sum_{n=1}^{\infty} \frac{g_{n}}{n!} \tag{1}
\end{equation*}
$$

where the coefficients g_{n} are integers, g_{1} being arbitrary, while

$$
\begin{equation*}
0 \leqslant g_{n} \leqslant n-1 \quad \text { for all } n \geqslant 2 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leqslant g_{n} \leqslant n-2 \text { for infinitely many } n \geqslant 2 \tag{3}
\end{equation*}
$$

One finds, in fact, that

$$
g_{1}=[\alpha], \quad \text { and } g_{n}=[n!\alpha]-n[(n-1)!\alpha] \text { for } n \geqslant 2 \text {, }
$$

and that, more precisely,

$$
\alpha=\sum_{n=1}^{N} \frac{g_{n}}{n!}+\frac{\alpha_{N}}{N!}
$$

where

$$
\alpha_{N}=N!\alpha-[N!\alpha]=N!\sum_{n=N+1}^{\infty} \frac{g_{n}}{n!}, \quad 0 \leqslant \alpha_{N}<1
$$

Our aim is to construct the series (1) in the special case when α is a rational multiple of e. For simplicity we shall, however, assume that

$$
\begin{equation*}
\alpha=\frac{p}{q} e, \text { where } p \text { and } q \text { are integers, and } 1 \leqslant p \leqslant q-1 \tag{4}
\end{equation*}
$$

The developments of other rational multiples of e may be obtained by adding suitable integral multiples of one of the series

$$
e=2+\sum_{n=2}^{\infty} \frac{1}{n!}, \quad-e=-3+\sum_{n=3}^{\infty} \frac{n-2}{n!} .
$$

1. The classical series
may be written as

$$
e=\sum_{n=0}^{\infty} \frac{1}{n!}
$$

$$
e=\sum_{m=0}^{\infty} \sum_{k=0}^{q-1} \frac{1}{(m q+k)!}
$$

We therefore shall try to find integers a_{k}, b_{k} such that

$$
\begin{equation*}
\frac{p}{q} \sum_{k=0}^{q-1} \frac{1}{(m q+k)!}=\sum_{k=0}^{q-1} \frac{a_{k} m+b_{k}}{(m q+k+1)!} \tag{5}
\end{equation*}
$$

identically in m. For this identity implies that

$$
\begin{equation*}
\frac{p}{q} e=\sum_{m=0}^{\infty} \sum_{k=0}^{q-1} \frac{a_{k} m+b_{k}}{(m q+k+1)!}, \tag{5a}
\end{equation*}
$$

giving the required series, provided that

$$
\begin{equation*}
0 \leqslant a_{k} m+b_{k} \leqslant m q+k \tag{6}
\end{equation*}
$$

for all pairs of integers k, m with $m q+k \geqslant 1$, and

$$
\begin{equation*}
0 \leqslant a_{k} m+b_{k} \leqslant m q+k-1 \tag{7}
\end{equation*}
$$

for infinitely many such pairs.
2. The identity (5) is equivalent to

$$
\begin{array}{r}
\sum_{k=0}^{q-1} \frac{p}{(m q+k)!}=\sum_{k=0}^{q-1} \frac{\left(a_{k} m+b_{k}\right) q}{(m q+k+1)!}=\sum_{k=0}^{q-1}\left\{\frac{a_{k}}{(m q+k)!}+\frac{b_{k} q-(k+1) a_{k}}{(m q+k+1)!}\right\} \\
=\frac{a_{0}}{(m q)!}+\sum_{k=1}^{q-1} \frac{a_{k}+b_{k-1} q-k a_{k-1}}{(m q+k)!}+\frac{\left(b_{q-1}-a_{q-1}\right) q}{(m q+q)!} .
\end{array}
$$

It is therefore satisfied if

$$
\begin{aligned}
a_{0} & =p \\
a_{k}+b_{k-1} q-k a_{k-1} & =p \quad(k=1,2, \ldots, q-1) \\
b_{q-1} & =a_{q-1}
\end{aligned}
$$

It thus suffices to choose
$a_{k}= \begin{cases}p & \text { if } k=0, \\ p+k a_{k-1}-b_{k-1} q=\left(p+k a_{k-1}\right)-\left[\frac{p+k a_{k-1}}{q}\right] \\ q \text { if } k=1,2, \ldots, q-1\end{cases}$
and

$$
b_{k}= \begin{cases}{\left[\frac{p+(k+1) a_{0}}{q}\right]} & \text { if } k=0,1, \ldots, q-2 \tag{8}\\ a_{q-1} & \text { if } k=q-1\end{cases}
$$

3. Since $1 \leqslant p \leqslant q-1$, evidently

Further

$$
\begin{equation*}
0 \leqslant a_{k} \leqslant q-1 \quad(k=0,1, \ldots, q-1) \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
0<b_{k} \leqslant k+1 \quad(k=0,1, \ldots, q-1) \tag{11}
\end{equation*}
$$

For $b_{q-1}=a_{q-1}$, and so this inequality holds for $k=q-1$; if, however, $k=0,1, \ldots, q-2$, then
$0 \leqslant b_{k} \leqslant \frac{p+(k+1) a_{k}}{q} \leqslant \frac{(q-1)+(k+1)(q-1)}{q}<k+2$,

$$
\text { hence } \leqslant k+1
$$

From (10) and (11),

$$
0 \leqslant a_{k} m+b_{k} \leqslant(q-1) m+(k+1)=(q m+k)-(m-1) .
$$

Hence the condition (6) is certainly satisfied when $m \geqslant 1$ and the condition (7) when $m>2$. It follows that all but the q terms

$$
\begin{equation*}
{ }_{k=0}^{q-1} \frac{b_{k}}{(k+1)!} \tag{12}
\end{equation*}
$$

FACTORIAL SERIES FOR RATIONAL MULTIPLES OF e
of the series (A) corresponding to $m=0, k=0,1, \ldots, q-1$ have the required form, and this series gives the development (1) for (p / q)e except perhaps for its first q terms. We have thus the following result.

Theorem 1: Let $1 \leqslant p \leqslant q-1$. In the development (1) for (p / q)e all but the first q coefficients g_{n} have the explicit form

$$
\begin{equation*}
g_{n}=a_{k} m+b_{k} \quad \text { if } \quad n=m q+k+1, k=0,1, \ldots, q-1, m \geqslant 1 \tag{13}
\end{equation*}
$$

where a_{k} and b_{k} are defined by the recursive formulae (8) and (9).
In other words, all but finitely many of the coefficients g_{n} form q separate arithmetic progressions when n runs over the different residue classes $(\bmod q)$.
4. In addition to the recursive formulae (8) and (9), there are also explicit expressions for a_{k} and b_{k}.

Put

$$
\begin{equation*}
c_{k}=k!\left(1+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{k!}\right) \quad(k=0,1,2, \ldots), \tag{14}
\end{equation*}
$$

so that c_{k} is a positive integer, and

$$
\begin{equation*}
c_{0}=1, \quad c_{k}=1+k c_{k-1} \quad \text { if } k \geqslant 1 \tag{15}
\end{equation*}
$$

Then, by (8), the expression

$$
d_{k}=a_{k}-p c_{k}
$$

satisfies the congruence

$$
d_{k} \equiv\left(p+k a_{k-1}\right)-p\left(1+k c_{k-1}\right) \equiv k d_{k-1}(\bmod q)
$$

Since evidently $d_{0}=0$, this implies for all $k \geqslant 0$ that $d_{k} \equiv 0(\bmod q)$ and therefore that

$$
a_{k} \equiv p c_{k}(\bmod q) .
$$

But then, by (10). necessarily

$$
\begin{equation*}
a_{k}=p c_{k}-\left[\frac{p}{q} c_{k}\right] q \tag{16}
\end{equation*}
$$

for all values of $k \geqslant 0$.
Next, on substituting this expression for a_{k} in (9), we find that
and hence that

$$
b_{k}=\left[\frac{p}{q}+\frac{k+1}{q} p c_{k}-(k+1)\left[\frac{p}{q} c_{k}\right]\right]
$$

$$
\begin{equation*}
b_{k}=\left[\frac{p}{q}\left(1+(k+1) c_{k}\right)\right]-(k+1)\left[\frac{p}{q} c_{k}\right] \tag{17}
\end{equation*}
$$

for all $k \geqslant 0$, including the case when $k=q-1$ because then the right-hand side is equal to

$$
\left[\frac{p}{q}\right]+p c_{q-1}-q\left[\frac{p}{q} c_{q-1}\right]=a_{q-1} . \quad \text { since }\left[\frac{p}{q}\right]=0
$$

The integers c_{k} increase rapidly. Therefore it proves to be preferable to use the recursive formulae (8) and (9) rather than the explicit expressions (16) and (17) for the actual computation of a_{k} and b_{k}. It may have some interest to study the arithmetical properties of these coefficients.
5. The following two tables give, (i) the lowest cases of the series (A), and (ii) a table of the coefficients a_{k} and b_{k}.

Table of series:

$$
\begin{aligned}
\frac{e}{2} & =\frac{1}{1!}+\sum_{m=1}^{\infty} \frac{m+1}{(2 m+1)!}, \\
\frac{e}{3} & =\frac{1}{2!}+\frac{2}{3!}+\sum_{m=1}^{\infty}\left(\frac{m}{(3 m+1)!}+\frac{2 m+1}{(3 m+2)!}+\frac{2 m+2}{(3 m+3)!}\right), \\
\frac{2 e}{3} & =\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\sum_{m=1}^{\infty}\left(\frac{2 m+1}{(3 m+1)!}+\frac{m+1}{(3 m+2)!}+\frac{m+1}{(3 m+3)!}\right), \\
\frac{e}{4} & =\frac{1}{2!}+\frac{1}{3!}+\sum_{m=1}^{\infty}\left(\frac{m}{(4 m+1)!}+\frac{2 m+1}{(4 m+2)!}+\frac{m+1}{(4 m+3)!}\right), \\
\frac{3 e}{4} & =\frac{2}{1!}+\sum_{m=1}^{\infty}\left(\frac{3 m+1}{(4 m+1)!}+\frac{2 m+1}{(4 m+2)!}+\frac{3 m+3}{(4 m+3)!}\right), \\
\frac{e}{5} & =\frac{1}{2!}+\frac{1}{4!}+\sum_{m=1}^{\infty}\left(\frac{m}{(5 m+1)!}+\frac{2 m+1}{(5 m+2)!}+\frac{m+1}{(5 m+4)!}\right), \\
\frac{2 e}{5} & =\frac{1}{1!}+\frac{2}{4!}+\sum_{m=1}^{\infty}\left(\frac{2 m}{(5 m+1)!}+\frac{4 m+2}{(5 m+2)!}+\frac{2 m+2}{(5 m+4)!}\right), \\
\frac{3 e}{5} & =\frac{1}{1!}+\frac{1}{2!}+\frac{3}{4!}+\sum_{m=1}^{\infty}\left(\frac{3 m+1}{(5 m+1)!}+\frac{m+1}{(5 m+2)!}+\frac{3 m+3}{(5 m+4)!}\right), \\
\frac{4 e}{5} & =\frac{2}{1!}+\frac{1}{3!}+\sum_{m=1}^{\infty}\left(\frac{4 m+1}{(5 m+1)!}+\frac{3 m+2}{(5 m+2)!}+\frac{4 m+4}{(5 m+4)!}\right) .
\end{aligned}
$$

Table of coefficients:

Manchester University.
K. M.
1905. Few people, I think, realized that (Belloc) was a considerable mathematician, but you were aware of it when you heard him talk about the technical details of bridges or about squaring the circle.-J. B. Morton, Hilaire Belloc: a memoir, (Hollis and Carter, 1955), p. 39. [Per Professor T. A. A. Broadbent.]

