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large alum crystal, the others were made of wood, glass or brass. The agree- 
ment between theory and experiment is as good as could be expected. 
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A FACTORIAL SERIES FOR THE RATIONAL MULTIPLES OF e 

BY K. M.HLER 

A special case of a theorem by G. Cantor* states that every real number a 
can be written in a unique way as a series 

00 g 
--a = n ......(1) 

n=l n\! 
where the coefficients gn are integers, gl being arbitrary, while 

0 <gn n - 1 for alln > 2 ......(2) 
and 

0 < gn n - 2 for infinitely many n > 2. ......(3) 
One finds, in fact, that 

gl = [a], and g = [n! ] -n[(n - 1)! ] for n > 2, 
and that, more precisely, N gn aN 

n! +N! 
where 

aO = N! a - [N! l = N! S n 0 oc _ < 1. 
n=I+l n' 

Our aim is to construct the series (1) in the special case when a is a rational 
multiple of e. For simplicity we shall, however, assume that 

a = - e, where p and q are integers, and 1 < p < q - 1 .......(4) 

The developments of other rational multiples of e may be obtained by adding 
suitable integral multiples of one of the series 

co 1 O ^ _ 2 
e =2 + - e -3 + n n n-=2 n3 n!' 

1. The classical series 
o 1 

e = 
n O .0! 

may be written as 
o0 q-1 1 

m=O k-0 (mq + k)! ' 

We therefore shall try to find integers ak, bk such that 

p ql 1 q 1 akm + bk 
q k-0 (mq + k)! k:0 (mq + k + 1)! 

THE MOMENTS OF INERTIA OF SOME POLYHEDRA 13 

large alum crystal, the others were made of wood, glass or brass. The agree- 
ment between theory and experiment is as good as could be expected. 

Acknowledgements: Much help has been obtained from the diagrams and 
data given in the books by Coxeter (Regular Polytopes), Cundy and Rollett 
(Mathematical Models) and Steinhaus (Mathematical Snapshots). 
University of Toronto. J. S. 

A FACTORIAL SERIES FOR THE RATIONAL MULTIPLES OF e 

BY K. M.HLER 

A special case of a theorem by G. Cantor* states that every real number a 
can be written in a unique way as a series 

00 g 
--a = n ......(1) 

n=l n\! 
where the coefficients gn are integers, gl being arbitrary, while 

0 <gn n - 1 for alln > 2 ......(2) 
and 

0 < gn n - 2 for infinitely many n > 2. ......(3) 
One finds, in fact, that 

gl = [a], and g = [n! ] -n[(n - 1)! ] for n > 2, 
and that, more precisely, N gn aN 

n! +N! 
where 

aO = N! a - [N! l = N! S n 0 oc _ < 1. 
n=I+l n' 

Our aim is to construct the series (1) in the special case when a is a rational 
multiple of e. For simplicity we shall, however, assume that 

a = - e, where p and q are integers, and 1 < p < q - 1 .......(4) 

The developments of other rational multiples of e may be obtained by adding 
suitable integral multiples of one of the series 

co 1 O ^ _ 2 
e =2 + - e -3 + n n n-=2 n3 n!' 

1. The classical series 
o 1 

e = 
n O .0! 

may be written as 
o0 q-1 1 

m=O k-0 (mq + k)! ' 

We therefore shall try to find integers ak, bk such that 

p ql 1 q 1 akm + bk 
q k-0 (mq + k)! k:0 (mq + k + 1)! 



THE MATHEMATICAL GAZETTE 

identically in m. For this identity implies that 

p oo q-1 akm - bk q - e + k + 1! ...... (5a) q m=O k=O (mq - k -- 1)! 

giving the required series, provided that 
0 < akm -- bk < mq + k ......(6) 

for all pairs of integers k, m with mq + k > 1, and 
0 <akim + bk < mq + k - 1 ......(7) 

for infinitely many such pairs. 
2. The identity (5) is equivalent to 

q-1 p q-1 (akmn + bk)q q-1 ak bkq - (k + ak 
k (m + )! k=O (mq + + 1)! k=0 mq + k)! (mq + + 1)! I 

aO q-1 ak + bk_lq - kak (bq- - a,-) + -t- k + 
(mq)! k-l (mq + k)! (mq + q)! 

It is therefore satisfied if 
a, = p, 

ak + b-lq - kak_- = (k = 1,2 ... ,q - 1), 
bq_- = a-_1. It thus suffices to choose 

,f?l~~~~p ~if k =0, 
ak = + kak - bklq = (p + kak_) - [P 

4 
ka-] qifk = 1,2,..., q-l1 

......(8) and 

b= + (k l)a if k = O, 1,...,q -2,(9 q ......(9) 
,a_- if k = q - 1. 

3. Since 1 < p < q - 1, evidently 
0 <ak <q - 1 (k =-0,1, 1)......(10) 

Further 
0 <b <k + 1 (k =0,1 ...,q-1) ......(11) 

For bq_ = aq_l, and so this inequality holds for k =q - 1; if, however, 
k = 0, 1, ..., q- 2, then 

0 < bk < p + (k + l)ak < (?- 1) (k + 1)(q - 1) < k + 2, q q 
hence < k + 1. 

From (10) and (11), 
0 < akm + bk < (q - 1)m + (k + 1) = (qm + k) - (m - 1). 

Hence the condition (6) is certainly satisfied when m > 1 and the condition (7) when m > 2. It follows that all but the q terms 
q-1 bk( 
kZ (+......(12) k=o (k + 1)! 

14 
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of the series (A) corresponding to m = 0, k = 0, 1, ..., q - 1 have the 
required form, and this series gives the development (1) for (p/q)e except 
perhaps for its first q terms. We have thus the following result. 

THEOREM 1: Let 1 < p < q - 1. In the development (1) for (p/q)e all but 
the first q coefficients gn have the explicit form 

gn = akn + bk if n = mq + k + 1, k = O0, 1, ...,q - 1, m > 1 ......(13) 
where ak and bk are defined by the recursive formulae (8) and (9). 

In other words, all but finitely many of the coefficients gn form q separate 
arithmetic progressions when n runs over the different residue classes (mod q). 

4. In addition to the recursive formulae (8) and (9), there are also explicit 
expressions for ak and bk. 

Put 

ck =k! ( +1 + + ... (k = 0, 2,..), ......(14) 

so that ck is a positive integer, and 
c = 1, ck = 1 + kCk-- if k > 1 ......(15) 

Then, by (8), the expression 
dk = ak - pCk 

satisfies the congruence 
dk =- (p + kak-) - p(1 + Ck-_l) - kdk-1 (mod q). 

Since evidently do = 0, this implies for all k > 0 that dk = 0 (mod q) and 
therefore that 

ak -pck (mod q). 
But then, by (10). necessarily 

ak = pok - c [ q ...... (16) 
for all values of k > 0. 

Next, on substituting this expression for ak in (9), we find that 

bk = + q k - (k + ) [c] 
and hence that 

bk = [q (1 + (k + l)ck)] - (k + 1) C ...... (17) 

for all k > 0, including the case when k = q - 1 because then the right-hand 
side is equal to 

[] pC- - - [q cq-1] a-1. since [] = 0. 
The integers ck increase rapidly. Therefore it proves to be preferable to use 

the recursive formulae (8) and (9) rather than the explicit expressions (16) and 
(17) for the actual computation of ak and bk. It may have some interest to 
study the arithmetical properties of these coefficients. 

5. The following two tables give, (i) the lowest cases of the series (A), and 
(ii) a table of the coefficients ak and bk. 
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1905. Few people, I think, realized that (Belloc) was a considerable 
mathematician, but you were aware of it when you heard him talk about the 
technical details of bridges or about squaring the circle.-J. B. Morton, 
Hilaire Belloc: a memoir, (Hollis and Carter, 1955), p. 39. [Per Professor 
T. A. A. Broadbent.] 
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