large alum crystal, the others were made of wood, glass or brass. The agreement between theory and experiment is as good as could be expected.

Acknowledgements: Much help has been obtained from the diagrams and data given in the books by Coxeter (Regular Polytopes), Cundy and Rollett (Mathematical Models) and Steinhaus (Mathematical Snapshots).

University of Toronto.

J. S.

A FACTORIAL SERIES FOR THE RATIONAL MULTIPLES OF e

BY K. MAHLER

A special case of a theorem by G. Cantor* states that every real number α can be written in a unique way as a series

where the coefficients g_n are integers, g_1 being arbitrary, while

$$0 \leq g_n \leq n-1$$
 for all $n \geq 2$ (2)

and

$$0 \leq g_n \leq n-2$$
 for infinitely many $n \geq 2$(3)

One finds, in fact, that

$$g_1 = [\alpha]$$
, and $g_n = [n! \alpha] - n[(n-1)! \alpha]$ for $n \ge 2$,

and that, more precisely,

$$\alpha = \sum_{n=1}^{N} \frac{g_n}{n!} + \frac{\alpha_N}{N!}$$

where

$$\alpha_N = N! \alpha - [N! \alpha] = N! \sum_{n=N+1}^{\infty} \frac{g_n}{n!}, \quad 0 \leq \alpha_N < 1.$$

Our aim is to construct the series (1) in the special case when α is a rational multiple of e. For simplicity we shall, however, assume that

$$\alpha = \frac{p}{q} e$$
, where p and q are integers, and $1 \le p \le q - 1$(4)

The developments of other rational multiples of e may be obtained by adding suitable integral multiples of one of the series

$$e = 2 + \sum_{n=2}^{\infty} \frac{1}{n!}$$
, $-e = -3 + \sum_{n=3}^{\infty} \frac{n-2}{n!}$

1. The classical series

$$e = \sum_{n=0}^{\infty} \frac{1}{n!}$$

may be written as

$$e = \sum_{m=0}^{\infty} \sum_{k=0}^{q-1} \frac{1}{(mq+k)!}.$$

We therefore shall try to find integers a_k , b_k such that

$$\frac{p}{q}\sum_{k=0}^{q-1}\frac{1}{(mq+k)!}=\sum_{k=0}^{q-1}\frac{a_km+b_k}{(mq+k+1)!}$$
(5)

THE MATHEMATICAL GAZETTE

identically in m. For this identity implies that

giving the required series, provided that

$$0 \leq a_k m + b_k \leq mq + k \qquad \dots \dots (6)$$

for all pairs of integers k, m with $mq + k \ge 1$, and

$$0 \leq a_k m + b_k \leq mq + k - 1 \qquad \dots \dots (7)$$

for infinitely many such pairs.

2. The identity (5) is equivalent to

$$\sum_{k=0}^{q-1} \frac{p}{(mq+k)!} = \sum_{k=0}^{q-1} \frac{(a_k m + b_k)q}{(mq+k+1)!} = \sum_{k=0}^{q-1} \left\{ \frac{a_k}{(mq+k)!} + \frac{b_k q - (k+1)a_k}{(mq+k+1)!} \right\}$$

$$= \frac{a_0}{(mq)!} + \sum_{k=1}^{q-1} \frac{a_k + b_{k-1}q - ka_{k-1}}{(mq+k)!} + \frac{(b_{q-1} - a_{q-1})q}{(mq+q)!}$$

$$= \frac{a_0}{(mq+k)!} + \sum_{k=1}^{q-1} \frac{a_k + b_{k-1}q - ka_{k-1}}{(mq+k)!} + \frac{(b_{q-1} - a_{q-1})q}{(mq+q)!}$$

It is therefore satisfied if

$$a_0 = p,$$

 $a_k + b_{k-1}q - ka_{k-1} = p$ (k = 1, 2, ..., q - 1),
 $b_{q-1} = a_{q-1}.$

It thus suffices to choose

$$a_{k} = \begin{cases} p & \text{if } k = 0, \\ p + ka_{k-1} - b_{k-1}q = (p + ka_{k-1}) - \left[\frac{p + ka_{k-1}}{q}\right]q \text{ if } k = 1, 2, \dots, q - 1 \\ \dots \dots (8) \end{cases}$$

and

$$b_{k} = \begin{cases} \left[\frac{p + (k+1)a_{k}}{q}\right] & \text{if } k = 0, 1, \dots, q - 2, \\ a_{q-1} & \text{if } k = q - 1. \end{cases}$$
(9)

3. Since $1 \leq p \leq q - 1$, evidently

$$0 \leq a_k \leq q - 1$$
 $(k = 0, 1, ..., q - 1).$ (10)

Further

$$0 < b_k < k + 1$$
 (k = 0, 1, ..., q - 1).(11)

For $b_{q-1} = a_{q-1}$, and so this inequality holds for k = q - 1; if, however, k = 0, 1, ..., q - 2, then

$$0 < b_k < \frac{p + (k+1)a_k}{q} < \frac{(q-1) + (k+1)(q-1)}{q} < k + 2,$$

hence $< k + 1$

From (10) and (11),

 $0 < a_k m + b_k < (q - 1)m + (k + 1) = (qm + k) - (m - 1).$

Hence the condition (6) is certainly satisfied when m > 1 and the condition (7) when m > 2. It follows that all but the q terms

of the series (A) corresponding to m = 0, k = 0, 1, ..., q - 1 have the required form, and this series gives the development (1) for (p/q)e except perhaps for its first q terms. We have thus the following result.

THEOREM 1: Let $1 \le p \le q - 1$. In the development (1) for (p/q)e all but the first q coefficients g_n have the explicit form

$$g_n = a_k m + b_k$$
 if $n = mq + k + 1, k = 0, 1, ..., q - 1, m \ge 1,(13)$

where a_k and b_k are defined by the recursive formulae (8) and (9).

In other words, all but finitely many of the coefficients g_n form q separate arithmetic progressions when n runs over the different residue classes (mod q).

4. In addition to the recursive formulae (8) and (9), there are also explicit expressions for a_k and b_k .

 \mathbf{Put}

so that c_k is a positive integer, and

$$c_0 = 1, \quad c_k = 1 + kc_{k-1} \quad \text{if} \quad k \ge 1.$$
(15)

Then, by (8), the expression

$$d_k = a_k - pc_k$$

satisfies the congruence

$$d_k \equiv (p + ka_{k-1}) - p(1 + kc_{k-1}) \equiv kd_{k-1} \pmod{q}.$$

Since evidently $d_0 = 0$, this implies for all $k \ge 0$ that $d_k \equiv 0 \pmod{q}$ and therefore that

$$a_k \equiv pc_k \pmod{q}$$
.

But then, by (10). necessarily

for all values of $k \ge 0$.

Next, on substituting this expression for a_k in (9), we find that

$$b_{k} = \left[\frac{p}{q} + \frac{k+1}{q} pc_{k} - (k+1) \left[\frac{p}{q} c_{k}\right]\right]$$

and hence that

$$b_k = \left[\frac{p}{q}\left(1 + (k+1)c_k\right)\right] - (k+1)\left[\frac{p}{q}c_k\right] \qquad \dots \dots (17)$$

for all $k \ge 0$, including the case when k = q - 1 because then the right-hand side is equal to

$$\left[\frac{p}{q}\right] + pc_{q-1} - q \left[\frac{p}{q}c_{q-1}\right] = a_{q-1}, \quad \text{since}\left[\frac{p}{q}\right] = 0.$$

The integers c_k increase rapidly. Therefore it proves to be preferable to use the recursive formulae (8) and (9) rather than the explicit expressions (16) and (17) for the actual computation of a_k and b_k . It may have some interest to study the arithmetical properties of these coefficients.

5. The following two tables give, (i) the lowest cases of the series (A), and (ii) a table of the coefficients a_k and b_k .

Table	of	series :
-------	----	----------

I dole of series.
$rac{e}{2} = rac{1}{1!} + \sum\limits_{m=1}^{\infty} rac{m+1}{(2m+1)!}$,
$rac{e}{3} = rac{1}{2!} + rac{2}{3!} + \sum\limits_{m=1}^{\infty} \left(rac{m}{(3m+1)!} + rac{2m+1}{(3m+2)!} + rac{2m+2}{(3m+3)!} ight),$
$\frac{2e}{3} = \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \sum_{m=1}^{\infty} \left(\frac{2m+1}{(3m+1)!} + \frac{m+1}{(3m+2)!} + \frac{m+1}{(3m+3)!} \right),$
$rac{e}{4} = rac{1}{2!} + rac{1}{3!} + \sum_{m=1}^{\infty} \left(rac{m}{(4m+1)!} + rac{2m+1}{(4m+2)!} + rac{m+1}{(4m+3)!} ight),$
$rac{3e}{4} = rac{2}{1!} + \sum\limits_{m=1}^\infty \left(rac{3m+1}{(4m+1)!} + rac{2m+1}{(4m+2)!} + rac{3m+3}{(4m+3)!} ight),$
$rac{e}{5} = rac{1}{2!} + rac{1}{4!} + \sum\limits_{m=1}^{\infty} \left(rac{m}{(5m+1)!} + rac{2m+1}{(5m+2)!} + rac{m+1}{(5m+4)!} ight),$
$rac{2e}{5} = rac{1}{1!} + rac{2}{4!} + \sum\limits_{m=1}^{\infty} \left(rac{2m}{(5m+1)!} + rac{4m+2}{(5m+2)!} + rac{2m+2}{(5m+4)!} ight),$
$rac{3e}{5} = rac{1}{1!} + rac{1}{2!} + rac{3}{4!} + \sum_{m=1}^\infty \left(rac{3m+1}{(5m+1)!} + rac{m+1}{(5m+2)!} + rac{3m+3}{(5m+4)!} ight)$,
$rac{4e}{5} = rac{2}{1!} + rac{1}{3!} + \sum\limits_{m=1}^{\infty} \left(rac{4m+1}{(5m+1)!} + rac{3m+2}{(5m+2)!} + rac{4m+4}{(5m+4)!} ight).$

Table of coefficients:

$\frac{p}{q} =$	= 1/2	1 3	23	$\frac{1}{4}$	<u>3</u> 4	$\frac{1}{5}$	C#2	345	45	1 6	<u>5</u> 6	7	$\frac{2}{7}$	3 7	4	5 7	<u>6</u>	$\frac{1}{8}$	38	<u>5</u> 8	<u>7</u> 8	$\frac{1}{9}$	<u>2</u> 9	49 9	<u>5</u> 9	$\frac{7}{9}$	<u>8</u> 9	$1 \frac{1}{10}$	3 1 T	1 ⁷ 0	99 70
$\frac{1}{q} = a_0 a_0 a_1 b_1 a_2 a_2 a_3 a_4 b_4 a_5 a_6 b_6 a_7 a_8$		1 1 0 2 1 2 2	2 2 1 1 1 1 1 1 1	1 0 2 1 1 1 0 0	34 31213300	1 0 2 1 0 0 1 1 0 0	² 2042002200	3 3 1 1 1 0 0 3 3 0 0	4 1 3 2 0 0 4 0	102052425422	56 514211221144	$\frac{1}{2}$ 10205221214344	$\frac{2}{7}$ 20413142431111	$\frac{3}{7}$ 30621063645455	$ \frac{4}{110631112222} $	$\frac{5}{7}$ 51314232326566	6 1522153543333	$\frac{1}{8} 1 \\ 0 \\ 2 \\ 0 \\ 5 \\ 2 \\ 0 \\ 0 \\ 1 \\ 0 \\ 6 \\ 4 \\ 5 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 1 \\ 0 \\ 2 \\ 0 \\ 5 \\ 2 \\ 0 \\ 0 \\ 1 \\ 0 \\ 6 \\ 4 \\ 5 \\ 4 \\ 4 \\ 4 \\ 4 \\ 1 \\ 0 \\ 2 \\ 0 \\ 5 \\ 2 \\ 0 \\ 0 \\ 1 \\ 0 \\ 6 \\ 4 \\ 5 \\ 4 \\ 4 \\ 4 \\ 4 \\ 1 \\ 0 \\ 2 \\ 0 \\ 5 \\ 2 \\ 0 \\ 0 \\ 1 \\ 0 \\ 6 \\ 4 \\ 5 \\ 4 \\ 4 \\ 4 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0$	3061730032217644	$\frac{5}{8}$ 5121110053651144	$7 \\ 1 \\ 6 \\ 2 \\ 3 \\ 2 \\ 0$	$1 \\ 0 \\ 2 \\ 0 \\ 5 \\ 1 \\ 7 \\ 3 \\ 2 \\ 1 \\ 2 \\ 1 \\ 4 \\ 3 \\ 2 \\ 1 \\ 8 \\ 8 \\ 1 \\ 8 \\ 1 \\ 8 \\ 1 \\ 8 \\ 1 \\ 8 \\ 1 \\ 1$	$\begin{array}{c} 35\\ 2\\ 0\\ 4\\ 1\\ 1\\ 0\\ 5\\ 2\\ 4\\ 2\\ 4\\ 2\\ 8\\ 6\\ 4\\ 3\\ 7\end{array}$	$\begin{array}{c} 4 \ 0 \ 8 \ 2 \ 2 \ 1 \ 1 \ 0 \ 8 \ 4 \ 8 \ 5 \ 7 \ 5 \ 8 \ 7 \ 5 \\ 5 \end{array}$	51107284111122114	$\begin{array}{c} 7 \\ 1 \\ 5 \\ 1 \\ 8 \\ 3 \\ 4 \\ 2 \\ 5 \\ 3 \\ 5 \\ 4 \\ 1 \\ 1 \\ 5 \\ 2 \end{array}$	81724221747554771	$1 \\ 0 \\ 2 \\ 0 \\ 5 \\ 1 \\ 6 \\ 2 \\ 5 \\ 2 \\ 6 \\ 3 \\ 7 \\ 5 \\ 0 \\ 0 \\ 1$	$\begin{array}{c} 3 \\ 0 \\ 6 \\ 1 \\ 5 \\ 1 \\ 8 \\ 3 \\ 5 \\ 2 \\ 8 \\ 5 \\ 1 \\ 1 \\ 0 \\ 0 \\ 3 \end{array}$	$\begin{array}{c} 7 \\ 1 \\ 4 \\ 1 \\ 5 \\ 2 \\ 2 \\ 1 \\ 5 \\ 3 \\ 2 \\ 1 \\ 9 \\ 7 \\ 0 \\ 0 \\ 7 \end{array}$	$\begin{array}{c} 9\\ 1\\ 8\\ 2\\ 5\\ 2\\ 4\\ 2\\ 5\\ 3\\ 4\\ 3\\ 3\\ 3\\ 0\\ 0\\ 9\end{array}$
b ₈																						8	7	5	4	2	1	$\frac{1}{0}$	$\frac{3}{0}$	$\frac{7}{0}$	9 0
$a_{9}\\b_{9}$																												0	$0 \\ 0$	0	0
л Ма	inc	he	ste	r l	Un	ive	ers	ity	<i>.</i>																					K.	M.

1905. Few people, I think, realized that (Belloc) was a considerable mathematician, but you were aware of it when you heard him talk about the technical details of bridges or about squaring the circle.—J. B. Morton, *Hilaire Belloc: a memoir*, (Hollis and Carter, 1955), p. 39. [Per Professor T. A. A. Broadbent.]

-