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An Interpolation Series for Continuous Functions

of a p-adic Variable.

Meinem Lehrer C. L. Siegel zu seinem 60. Geburtstag gewidmet.

By K. Mahler in Manchester.

The theory of analytic functions of a p-adic variable (i. e. of functions defined by
power series) is much simpler than that of complex analytic funktions and offers few
surprises. On the other hand, the behaviour of continuous functions of a p-adic variable is
quite distinct from that of real continuous functions, and many basic theorems of real
analysis have no p-adic analogues. Thus there is no simple analogue to the mean value

\

theorem of differential calculus, even for polynomials like (]7) ; there exist infinitely many

linearly independent non-constant functions the derivative of which vanishes identically;
and if a series f(x) = ¥ f,(x) converges and the derived series g(x) — X [, (x) converges
uniformly, g(x) still need not be the derivative of f(z); etec.

The main paper on the subject is that by J. Dieudonné, Sur les fonetions continues
p-adiques, Bull. Sei. Math. (2) 68 (1944), 79—95. I mention, in particular, his p-adic
analogue to Weierstrass’s theorem on the approximation of continuous functions by
polynomials, and his existence theorem for differential equations. Most of his paper deals
with the more general class of p-adic valued continuous functions on compact totally
discontinuous spaces and falls outside the subject of this note.

I had already become interested in the subject before I learned of his paper. Earlier
this year, J. I'. Koksma (who then also did not know of Dieudonné’s work) suggested to
me that there should be a p-adic analogue to Weierstrass’s approximation theorem. The
solution which I obtained finally proved to be very different from that by Dieudonné.

There is no great loss of generality in restricting onesell to functions f(x) on the set /
of all p-adic integers. The subset J of the non-negative integers is dense on /. Hence a
continuous function f(z) on [ is already determined by its values on J, hence also by the

numbers
n

O ke A R I

k=0
I prove that {a,} is a p-adic null sequence, and that
0 J;
f(x) - 1%:) [22% (n)
for all x € 1. Thus f(x) can be approximated by means of polynomials.

I further study conditions for the @, under which f(z) is differentiable at a point,
w
. o - AW
or has a continuous derivative everywhere on /. Thus, by way of example, ,}}p’"( ,)13
r=0 r
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continuous, but nowhere differeutiable, on [/ (an entirely different example was given

0
by Dieudonne); and ZPT( )has a continuous derivative for x == — 1, but is not
r =0

x
pr—1
differentiable at » = -~ 1. Two problems on differentiation are stated which I have not
succeeded in solving: they seem well worth of further study. I conclude the paper with
a result on a special infinite system of linear equations.

1. Throughout this paper, p is a fixed prime; R is the field of all p-adic numbers:
(|, is the p-adic value normed such that |p |, —1/p: [ — {&; |z |, = 1} is the ring
of all p-adic integers: and J is the subset of all non-negative rational integers. Thus J
lies everywhere dense in 1.

Limits both of real and of p-adic numbers will occur, but it will in each case be clear
from the context which kind of limit is meant.

All funetions f(z) will be defined for all 2 ¢ 1 and have values in R. We shall mainly
be concerned with funetions that arve continuous at all points of /7, or that have a con-
tinuous derivative on /.

2. With each function f(x) we associate the infinite sequence of coelficients

PR

0 — 3 -‘l)k(;i)f(n k) (e 01,2,

E=0
and the formal interpolation series

re==0 \n’/
These coefficients «, are the successive differences at x =0 of the sequence
(F0), F(L), f(2), ..., and they may also be defined by the recursive formulae
[*(n) = f(n) (n=0,1,2,...),

in which f*(n) reduces to a finite sum.
@0 L
3. Lemma 1. The series {*(r) = X% (Ln( ) converges for all x € 1 if and only if
0 J ! /
=0 \

lim a, = 0.

N0
Proof. (a) The condition is necessary because e. g. the series

o«

2 —1) = 3 (—1)a,

=0
does not converge unless its terms — «, tend to zero.

(b) Assume that lim «, — 0. For every = ¢ select a y ¢ J such that

) ~~~/[,/
: ~1
nlo,
Loy L
! hvn( . )IS a positive integer, hence
ek
; 7 : .
u ) = (h=0,1,2 ... n).
nwe—kl,

PIE—
l“m-t,her( ) '/) = 1, and
\ 0 / '

ooy ey ey ) e—y—h+ 1) w—y T
( e i oy b =1,2,...
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where /; denotes a p-adic integer; therefore also

(’"1”“?’) <1 b =—0,1,2, ... 7).
k) '

The identity

mmplies then that

(JC‘) 1 il xcl, nel,

nl o,
and so

0 as n-- oo,

()
y, == |y
“\n) , P

giving the convergence of *(x).

This prool shows, moreover, that f*(x) converges uniformly for x ¢ I, hence that
its sum is a conlinuous function because the terms are polynomials and therefore con-
tinuous.

Lemma 2. Let lima, =— 0. Then f*(z) = f(z) if x ¢ 1.

o0
Proof. Both f(z) and f*(x) are continuous on /, and they are equal when x¢ J.
Since J 1s dense in /, every x € [ is the limit of a sequence {y,} of elements of J. Then
7 Q) = () (n=1,2,3,...),
and so, by continuity,

/h( ) = lim f’ ( ,, = hl’llf lju - f( )

N0 N>
4. Theorem 1. Let f(x) be continuous on I. Then
lim a, = 0, and therefore f(r) = 2 iy ( ) if wel.
Her 0 n \ 1)

Proof. As a continuous function on a compact set, f(x) is both bounded and unvformly
continuous on I. As we may, if necessary, multiply f(x) by a power of p, there is no
restriction in assuming that

(o) p = Lif wel.
Further, if s is any positive in‘teger, there is a second positive integer ¢ = 1(s) such that
T , Do
| /(2) spritayel, fv—yl=p"

In the remainder of the proof x and y may be restricted to the set J. For every

x €./ there is a unique integer g(x) € J satlsf\'mg

. I« g A < s

@) —gla) | = ps, 0= g(x) = pr— L
This function ¢(v) on J is periodie,
g(x) =g(y) U x,y e, v =y(nod p?).
For the congruence is equivalent to |z —y |, = p~¢, and so
| @) — (@) + (@) — W) + ) — ) b
| —

= max (| g(z) — [(x) ],,, |F(2) —F() o, if Y) =8 ) =p,

whence g(x) == g(y) because distinct values of this function ave, by definition, incongruent
(mod p*).

|

Lg(e) —g(y) |

I

I\
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In analogy to @, define now

by = S(— 1)t (”) a(n— k) (n=0,1,2,..)
E-0 3

so that b, 15 a rational integer. Evidently

' I -
| Ay — bn lp =

Next let @ be a fixed primitive p’-th root of unity; thus

t
p -1 tif o - 0 t
' fptif m 0 (mod p'),
et 10 if m == 0 (mod pb).
Further put
7)’»~1
Jop = Pt 3w Mg (n) (m=0,1,2,... pt—1).
w0
Then, conversely,
pl—1 pt—% pl-1 ;,L— 1 ;nf—— 1
oy - i e o
z Jom P p { 2 2 M mrg(’,) = p ¢ ‘yg(r) w;,u(n (P ;’(i&)
m-0 m=C o0 7==0) =0

it =0,1,2, ... pt—1. Here g(n) is periodic in n with the period p’, and so is the sum
on the left-hand side. Hence

t
pt—1
gn)y =23 Jyem for all neJ,
0

whenee
" o 7)) p{' 1 i o ptf i ) 7 /¥ ” -
/771 = X ( 1)/6 ]) PRI (”m“ = - ’imZ (* i)k k/’b "
ki Yom=0 m o0 k-0 4
and fnally
,’/[ -1
by =X Jnu(o™— 1" for all nc J.
m=0

Let now K be the cyclotomie field generated by o, and let v be the ring of all alge-
braic integers in K. Not only o, but also the quolients

1) Y — ‘ .
(- ot Lo gm=2 e b (m =0,1,2, ... pt-—1)
w
and the products
Pt
Pl =3 w "ra(n) (m =0,1,2, .. pt—1)
1)

are elements of 0. The expression for b, implies therefore that
Pl —1y"h, co if neJ.

It is well-known that the two principal ideals (p) and (@ -——1) in o satisfy the
relation
() = (0 — 11D

which expresses (p) as the power of a prime ideal. Put
N={[np “(p—1~"

where, as usual, [a] is the integral part of a. Then p¥ is a divisor of (v — 1)". The rational
numbers p ~ Vb, are therefore algebraic integers and so are rational integers. Hence

[ N
[bwip =D 77,
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whenee
L it 1) (s 1), = g say,

because vV =« I

On combining this with the earlier inequality for a, — b, we obtain the result that

1]
|

ey Ly = (@ b)) b by |y = max (| a, by by [a ) =p il = on,.

Here s may be arbitrarily large, and 1, depends only on s because ¢ is a function of s.
Therefore

hima, = 0,

N0
giving the assertion.

5. Lemma 3. Let [(x) be continuous on I, and let x, y ¢ 1. Then all series

aﬂ(?/) - E [ (i/) (I'Z == 0, 17 2, .. )

k=0
converge, and further

lima,(y) =0, f(x-+ Yy) = E an(Y) (li\) .

N—>00 =1
Proof. The convergence of a,(y) follows from lima,,, = 0, since (y) = 1.
] p
Next {a,(y)} forms a null sequence because

an(y) [, = max  |a, |, 0 as n— oo
E=0,1,2,...

Finally
) / | @ m o/ ; \
g ° x4y o x Y
fl -+ y)= Xay ( , ) = Xdn X ( ) ( ’
o mo )=y o\ \m—n

() (o) =2 ) Fen(l) - 2o ()
= a ’ =3 > = N a,{y .
. § m ) P T
n-0 ) w0 m-—n w0\ ko fe n=0 n

Here the reordering of the terms is allowed since we are dealing with p-adic series, and
since {a,} is a null sequence.

6. We next establish necessary and sufficient conditions, in terms of the coefficients
an, for the existence of a derivative of f(x). The proof will be based on the following
Tauberian theorem.

Theorem 2. et {a,} be a p-adic null sequence. If the p-adic limit

g \
. . Coay (x—1
o= lim x» " ( )
i, 20 no1 &\ ‘1‘,
»
extended over all elements @ + O of J exusts, then
. . a s 2oa, [ —1 2 a
@ lim " =0; W) A=3 " ( ‘1) =3 (— 1",
o0 n—1 AR -—1 n=1 n
The proof of the assertion (i) is rather long and involved and is indirect. It will
be carried out in several steps.

7. As a first step assume that 1 exists, but that

: o | Gn
lim sup | = oo.
N0 on »

4*
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There are then infinitely manv integers n,, n,, ns, . . . such that
B J 5 1y 102y 183y
0 <<ng <ny, <<ng<<---

a, 0 for r=1,23, ...

“T b
. a]l
lim 7 == oo.
re r oy
Since, by hypothesis,
lim | a, |, = lim |a, |, =0,
N0 F—=c0

necessarily

S
lim | n, |, = 0.

Je> 00
The sequence {n,} may be replaced by any infinite subsequence. Hence there is
no loss of generality in further assuming that

a, ay . .
o T dorn=1,2,...,n—1 (r=1,2,3,...).
n Ry ' '

» r

In the limit defining 7 we may allow x to tend to zero over the sequence {n,}; thus

N, / o 1= 1 o
Jo=lim X e (n, i) — lim {an" + X i (n, Ji)]

e T VA n, < on \n—1/]

Here, by the construction of n,,

hn ("TW* 1) N (n 1,2 i, 1)
n\n 1/, = n.o, T T )
and therefore
. L,
|2y = lim = oo,
| v n )
T3>0 rop

conirary to hypothesis.
- n|.
8. As a second step, assume that 2 exists and that{ " } is a bounded sequence, but
n

not a null sequence. As we may multiply the coefficients a, by a fixed power of p and
may further change finitely many of these coefficients arbitrarily, without affecting the
assertion, there is no loss of generality in assuming that

~ a ~ a
R P I | (n—=1,2,3 ..,

noy

) a
limsup " = 1.
n

N-—>c0 Y4

The existence of the limit 2 now implies that there is a positive integer s such that

T a, [r—1" , .. —s
< 5 (nfwi)—ﬁ/‘ pi—l—;d el O<frl=r,

11 \
and this inequality remains valid if s is increased. We satisfy the condition for z by
putting

x = p*(§ + 1) where £¢ J.

Next, since {a,} is a null sequence, evidently

lim ‘" — 0.

-0

pin
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Therefore, on increasing s, if necessary, there is also no loss of generality in further
assuming that

LA T L > ps
—;I’—p < —1if p*tn, n = ps.
Hence, by (:z -“i) = 1, the inequality for 2 implies that
e P
pf—1 a, T—1 x ay (l‘*‘l) i 1 )
" . - ) = z — pS(& - : ‘
n%; n (nhi) ‘nf;s n \n—1, / , P if z=py(&+1),6eJ

“!n

4

9. We introduce now a simple congruence for binomial coefficients ( where M/

‘\7
15 a positive and NV a non-negative integer. Let
W=gotgp -t tgp, N=hothpt-+hyp
be the representations of } and NN, respectively, to the basis p; here the digits g; and &;
assume only the values 0,1, ..., p-—1. It is easily proved that

()= G ) G ot

We apply this formula to (;' i) where x = p$(& 4 1) and & ¢ J, and either

n o= p*—1,0rn=p*and p* | n. In the second case n may be written as
n = ps(v 4+ 1), where v¢ J.

Then 2 — 1 has the representation
c—Ll=dp D pDp -t )P P b gt b g
and n — 1 has in the first case the representation

e g hyp e R 0 e 0 s 0
and in the second case the representation
n—1 = {p-—10) +(p—0p-+-+(p—10p1}+ hp + he ptHt b b hyp.
Here gq, gsony - o oo @05 lyy gy oo g3 gy gy, o By ave again certain digits 0, 1, .. ., p—1.

From the congruence above it follows at once that for n < ps-——1

\

= 0 (e,

and for n = ps(v + 1)

- 661 (e

for in the second case & and » allow the representations

§ =8P+ e P b g )y v = et b pt A e

Since %’i < 1, we thus obtain the formulae
4
-1 a z—1 p8—1 a
. ( o 1) = X z(n) ="+ o(x)
y ne=1

-1 AT / n
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and
0 N / &
ap (X "“l ; E
(i) 5
nept no\n- vo0 )
pskn

Here the sign
X(n) = (~r——~ 1)”0 thy e Ry
depends only on 7 and not on 2. Further we have put

a .
== ),
and we denote by o(x) and ¢ () two p-adic funetions of .« such that
1 ‘ 1
, L ]
fo(x) 1) =—, |a(x) |, =—.

p p

Hence, on putting successively & = 0.1, 2. ..., we obtain the infinite systerm of
’ b} o ? b 7 7 P
equations
No== -+ T{0), xgt v = pu+ (L), xg+ 2 b= pub1(2),
No+ 3y F ot g = -k 7(3),

and deduce at once that

Lo |
| %y |

i

g Ly Dy e e

) g%if yo= 1,23

Un the other hand, it was assumed that

a 4 e . - .
""" Lo il ptt o, no= pry
no,

. a

lim sup R

e n 14
Henee there ave infinitely many suffixes n for which
a
p*ln and =% =1,
n o,
and so there exist also infinitely many suffixes » salisfying
contrary to what has just been proved.

Thus the hypothesis at the beginning of § 8 likewise leads to a contradiction. This
J 5 5 R
proves the assertion (i) of Theorem 2.
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11. Instead of the assertion (ii) of Theorem 2 we prove now a slightly stronger
result.

Lemma 4. L()t{ 77777 } be a p-adic null sequence. Then the limit
n

4= h m 2 e (n o 1)

on-1 1 ey,
crtended over all v € [ exists and is e(]u({,d lo

Qn

Proof. Let s be any given positive integer. There exists a positive integer N such

a ) :
that =% = p=if n > N, hence
n o p

“ @
— a - a, (x—1 o
3 (1S < s and ) ( 1) < p-s;
n=N-+1 n o, nonNg1 B\ —

here both series converge as their terms tend to zero.

Ya, (v 1‘)
¥ (
$) ,

L ono\n—1,

is a polynomial in 2, hence 1s a continuous function, and so

The fintte sum

n

. Y, [z —1y 2 s
lim 217( )ﬂ 5 _,_/ )-4 3 (— -t 22

-0 1 = n- n-1 1 \ﬂ —1 =1 n
Therefore a positive integer ¢ = [(s) exists such that
v . v
ay ( x —— l.) - a, . P
) pas.s Y (=t = ps il ), = pet.
o) s it el =

On combining these estimates, we find that

Uy, ('L - 223 -

l .
. , i —1 U < —s 3f
o\ ) 2’ (1) .. poeid

& ol = p.

Since s may be arbitrarily large and ¢ depends only on s, the assertion follows at once.

O
12. Theorem 3. Let f(x) = X a, (n) be continuous on I, and let a,(y) be defined as
=0 VY

in Lemma 3. The function f(x) is differentiable at a point y ¢ I if, and only if,

lim @y 0

N0

and then

P ) — 3 (s @)

noe=1 n

Proof. By Lemma 3, {a,(y)} is a null sequence, and

[z + y) *n% an(y) (;)

Therefore

= @ (y) 2 n—1

xz Lopoy n=1 n

fet+y)—fy 1 g ﬁy:“&0>f~4y
n

The assertion follows therefore immediately from the definition of the derivative and
from Theorem 2 and Lemma 4.
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13. Theorem 4. Let f(x) 2,‘ an (z) be continuous on I. If the derivative [’ (z) exists
and ts continuous for all x € I, then J
(i) all series a, = 3 (— 1! a';:" (n=0,1,2,...) converge;
F=1

(i) the sequence {a,} is a null sequence; and

(iii) fle) — Sd, (fl) if rel.

n=0 NS

Proof. Assume, first, that f'(y) exists for all y ¢ /. By Theorem 3, the sequence

@i (Yy) J o Qkin /?/)
{ k } lnz(:) k (n’,
is a null sequence. As this holds for each y = 0, 1,2 ...  the simpler sequences

{al-HL Azn  Q34n }
e e

17 2 7 3
are likewise null sequences when n = 0,1,2,... . The series a, therefore all converge,
and f'(y) is given by
© Y
) =2 W sy (y) it yel.
k-1 k n=0 n,

Hence the formal interpolation series

5 v — o 4 ".’E
f* (/I) ""né‘oan (ll)’

which for = ¢ J reduces to a finite sum, satisfies the equations
R (x) = [(x) if veld.

Secondly, let ['(x) exist and be continuous for all x ¢ /. By Theorem 1, f'(x) can
then be developed into a convergent interpolation series, and this must be exactly the
series [**(x) because [**(x) coincides with f'(x) for x ¢ J. Therefore, again by Theorem 1,
the assertions (i1) and (iii) follow at once.

14. By way of example, let us consider two special functions. First, let

f(r) = 2}) (p) = 2 Ay ( )whem Ay = {pr it n :.pr’

ro — 0 otherwise.
Hence

() = 2, Wpin (/i) - 2 % (![)T 14 ,7/;) )

and so, in particular,

@y ) ros oy - € ‘ e ‘3( X ‘ O L "
Pt 2[9 ( r ])s') =1 +p (.p.ﬁtt o ]7“) - P \],)wi*i - ])") T =1 s ()
where
o) —} (5 0,1,2..)

e | an(x) | . ! . o .
Iherefore { a )f} is not a null sequence, and so, by Theorem 3, f'(x) does not exist.
n |

Thus while [(r) evidently is continuous, it is nowhere differentiable on 1.
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In his paper, Dieudonné constructed already a function of the same kind by an
entirely different method. Let x = g, + g,p 4 g,p* + - -+ be the p-adic development
of we I;the digits gg, g, g5, . . . assume only the values 0, 1, .. ., p — 1. Then the function
f(x) defined by

fo) =g +gip +&p* + -+
is continuous but non-differentiable on 7 provided that p = 3.
15. As a second example take

f(‘r)’i’ZPr( ! >’2(ln(;) where an:{p on=p —1,

ol \pt—1 o\ 0 otherwise,
so that
/ x
wn = 3 v, )
p'gn+1p pr—n-—I1
First let x = -—1. Evidently
—1
a(—1) - 3 pr( g 1) = (—1prr1t 3 P
pT=n+1 14 pl=n+1
and therefore
aps(—1) - p
. == —— 2 LT eem .
p r:»s+1p 1—p
Hence {a,, (;1) } is nol a null sequence, and f'(— 1) does not exist.
Assume next that 2 += —1. Then ani(lﬂ:)“ may be written as
an(x_): 1 Zp“]l’_mn(x%—l)
n z 41 P n p—n

Here the summation extends over all suffixes r = s 4 1 where s is the integer defined
by p* = n << pstt. Now it is obvious that

pr—n
n »

n) is a p-adic integer. Therefore it follows from the series that

w@) _ pem 1

ny s et T onfed )

x
and (,)r o

and hence {a"’i—)} 1s a null sequence; thus f'(z) exists. It is not difficult to show that
f/(z) 18 in fact continuous if x == —1.

One can also easily verify that all series @, converge, but that {a,} ist not a null
sequence.

16. I have not succeeded in solving the following problems which deserve further
study?).

/o

. . e HANE .
Problem A. Let {a,} be a null sequence, so that [(z) = X ay (n) s continuous on 1.
n=0 g

Further assume that, (i) all series

a, = 3 (—— 1)kt a.’l‘l:" (n=0,1,2/...)
k-1

1) 1. W. 5. Cassels has just shown, by means of a very beautiful counter-example, that both problems A
and B have negative answers. The problem of finding necessary and sufficient conditions, in terms of the a,, for
the continuity of f'(x) remains therefore still open. (16 November, 1956}

”

Journal fiir Mathematik. Bd. 199. Heft 1/2. b
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converge, and (i) {a,} is a null sequence. Does this hypothesis imply that |’ (x) exists and is
conttnuous on I?

Problem B. Let {a,} satisfy the same hypothesis as in Problem A. Is it true that then

limn |a, |, =07

N> 00

If this limit is zero, then the conditions (i) and (i) are satisfied, and f(x)= 5 Uy (2)
has a continuous derivative on [/, as is proved without difficulty. n

17. 1 conclude this paper with an application of a theorem by Dieudonné and
Theorem 4 to a special infinite system of linear equations.

In his paper, Dieudonné established a general existence theorem for differential
equations in the p-adiec field. The simplest case of this theorem states:

If g(x) is continuous on 1, then for every ¢ > 0 there exists a function {(x) continuous
and continuously differentiable on i which is such thai {'(x) = g(x) and |f(x) |, < & for
all vel.

For write again x as a p-adic series x = g, - g,p -+ g,p? + - -+ and put

Iy =gyt &P+ "+ Guap"

Frurther let s be any fixed positive integer. The sequence of functions

n—1

() = 2 (s — @) g(2x) + (2 — 2a) g () (n=ss+1s+2...)

k=s
can then be shown to tend to a limit function f(x) with the required properties, provided s
exceeds a certain bound which depends only on ¢ and the given function g(x).
With the help of this theorem, we show the
Theorem 5. Let {a)} be any null sequence, and let & be an arbilrary positive constani.
There exists a second null sequence {a,} such that

<)

Sy T g g <e (= 0,1,2,...).
k-1 k

o /

Proof. The function g(x) = ¥ a, (z) 1s continuous on /. Let f(x) be the function of
n =0 /
Dieudonné satisfying j'(x) = g(x) and |f(x) |, <<efor x € /. This function can itself
be expanded into an interpolation series f(x) = X a, (}f) with coefficients a, that likewise
n=0

form a null sequence. Since

n

a2 (0 () i,

these coefficients satisfy the inequalities | a, |, << &. Since further f(x) has the continuous
derivative g(x), it follows from Theorem 4 that the coefficients a, also satisfy the linear
equations of Theorem 5.

The result so proved suggests that there may be an interesting general theory of
infinite systems of linear equations in infinitely many p-adic unknowns.

Eingegangen 6. Dezember 1956.



