ACTA ARITHMETICA
VI (1961)

On the representation of integers by binary forms

by
D. J. LEwis* (Notre Dame, Ind.) and K. MAHLER (Manchester)

Let F(x,y) be a binary form of degree n >3 with integral coeffi-
cients of height 4 and with non-zero discriminant, and let m be an integer
distinet from zero. H. Davenport and K. F. Roth, in 1955, proved a gen-
eral theorem on Diophantine equations of which the following result
is a particular case.

The equation F(x,y) = m cannot have more than

(4a)27*|m|? -+ exp (643n2)

integral solutions x,y.

This result is of great interest because it gives an explicit upper bound
for the number of solutions. The proof depends on the deep ideas which
Roth introduced into the Thue-Siegel theory of the approximations of
algebraic numbers.

We establish in this paper a better upper bound for the number of
solutions of F(x,y) = m. Our proof does not depend on Roth’s method,
but uses instead the p-adic generalization of the Thue-Siegel theorem
discovered by one of us in 1932. We consider only primitive solutions
z, y, i. e. solutions where x and y are relatively prime; but this is not an
essential restriction.

Already in the original paper M, of 1933, it was proved that the equa-
tion F(x,y) = m has not more than

0t+1

solutions where ¢ > 0 is a constant independent of m, and ¢ denotes the
number of distinet prime factors of m. Since d™ = O(m[) for every
¢ >0, this estimate is better than that by Davenport and Roth for all
sufficiently large |m/|; but it does not show the dependance on the coeffi-
cients and the degree of F(x,y) of the number of solutions.

* National Science Foundation Fellow.



334 D. J. Liewis and K. Mahler

This lacuna will now be filled in the present paper. Our main
result in that there are not more than

ey (an)eaVn -t (eyn)t L

pairs of integers x, y with » # 0,y >0, (¢, y) = 1 for which F(x,y) %0
has at most ¢t given prime factors py, ..., p;. Here ¢4, ¢,, and c¢; are posi-
tive absolute constants which can be determined explicity and are not
too large. In particular, if |m| is greater than a certain limit which depends
on the coefficients and the degree of I'(x, y), the number of primitive so-
lutions of F(xz,y) = m is not greater than

(egn) !

This wpper bound depends only on m and on the degree of F(w,y), but
is independent of the coefficients of this form.

Our proof makes very essential use of the ideas of the old papers
M, and M,. It is based on three new theorems (Lemmas 1 and 2 and
Theorem 1) which perhaps have a little interest in themselves. Lemma 1
is an improvement of one by N. I. Feldman, while its p-adic analogue
Lemma 2 is due to F. Kasch and B. Volkmann.

1. Throughtout this paper, the following notation will be used.
C is the field of complex numbers.
P is a prime.
P, is the field of p-adic numbers.
¢, s a finite algebraic extension of P,, with the divisor p.
la|  is the ordinary absolute value in C.
lal, is the p-adic value in P, normed such that |pl, = 1/p.
\al, is the p-adic extension of |al, in C,; thus

al, = lal, it aeP,.

Piy ..., p; are finitely many distinet primes.
Cy.s Pzy lalp,, and |al, , for r =1,...,t, are defined in analogy
to P,, C,, v, |al,, and |a|,, respectively.
Let

2 ng—h,
f(@y,y ..., ) g E Oy g
hl 0 hg=0

be a polynomial in one or more variables with coefficients in C. Then

H(f) = max |ap,. a4l
0 <hp<ny

0<hs§ns
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is called the height of f. Similarly, if the coefficients of the polynomial
lie in P, or C,, we call
H,(f) = max ]ahl.“hsbo and }Ip(f) = max Iahl.“hs‘p
9<h1<“1 Q<h1<n1

0<<hg<ing 0<hg<ng

the p-adic height, and the p-adic height, of f, respectively. Further heights
H, (f) and H, (f) are defined correspondingly.
The resultant R(f, F) of two polynomials

f(@) = apa” a0 .. 4a, and  F(x) = AN+ A2V T+ Ay

with coefficients in an arbitrary field is defined as usual in terms of a de-
terminant. Provided that a, # 0, the descriminant D(f) of f(x) is then
given by

D(f)y = (—=1)"""DPay ' R(f, ),

where f'(x) is the derivative of f(x). A simple calculation allows to show
that D(f) may be written as the determinant

D(f) =
na, (n—1)a, ... 2,y Wy 0 0
: : : : Sl —1rows
Fp -3 0 0 na, (m—1)ay ... 2@, 5 @,
ay 2a, e =)y,  na, ... 0 0
. . . . : o
0 0 @y 2a, . (n—1)a,_; na,

2. One can establish simple upper bounds for |D(f)| and [D(f)|, when
f(x) has coefficients in C or Oy, respectively.
First let f(x) be in C[x]. By Hadamard’s theorem on determinants,
it follows immediately from the last expression for D(f) that
D) < n I a2 (= 1) ay o X
Ay |2 (2002 ey, P
Here
[nag|24- [(n—1) ay >+ A @ [?
lay |2+ 2@, 2 4. ..+ [na, |
Hence

< H(f)*(13422... -+ n?) < H(f)?n-n?.

|D(f)|2 < p20 ) (%3H(f)2)("”1) | (n—l),
and therefore
1) ID(f)] < »™ H(f)* .
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Secondly let f(x) be in C,[#]. From its definition, D(f) is a homo-
geneous polynomial in a,, a,, ..., @, of dimension 2(»—1), with numerical
coefficients which are rational integers. Hence

(2) ID(f)ly < Hy(H™

3. For the moment, let f(x) have coefficients in an arbitrary field
K, and let  be a zero of f(x) in K. Then f(«) is divisible by #— {; denote

by

1
g(w) = py F(@) = bpa" by T . 4 by
the quotient polynomial. Since, formally,
1 1 C+Cz+ B (1+w+w2 )
- ”wfaﬁ g =ittt
it is easily seen that
k n
(3) b= Y a0 = — Na (k=0,1,...,n—1).
%=0 n=k+1

First assume that both ¢ and the coefficients of f(x) lie in C. On apply-
ing the first or the second formulae (3) according as |{] <<1 or [{] >1,
it follows immediately that

(4) H(g) < nH(f),

a result due to C. L. Siegel.
Secondly, let both  and the coefficients of f(w) belong to C,. The
same method now leads to the inequality,

(5) Hy(9) < Hy(f).

Next, these formulae, together with (1) and (2), immediately give
the estimates

(6) |D(g)] < (n—1"*H(gy"* <a™"H(fy"™* it f(&)eCla], (O
and
(7 ID(g)ly, < Hy(9)" ™" << Hy(fy"™" i f(x)eCy[x], (eC,.

The discriminants of f(x) and ¢(x) are connected by the identity
D(f) = D(9)f' (&),

as follows at once on expressing the two discriminants in terms of the zeros
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of f(xz) and g(=), respectively. By means of (6) and (7) we arrive then at
the estimates,

, (1D ()™ .
(8) I7 (O 2;{@;@'“‘1'1"(57::“2 it f(@)eClx], (eC, () =0,
and

, (DA

4. These two lower bounds imply the following two lemmas.

LEMMA 1. Let f(x) be a polynomial in C[x] of the exact degree n and
with the discriminant D(f), the height H(f), and the zeros (i, ..., , in C.
For every z in C,

(ID(HD"
If(z)] > 2n—1%2n»-7/2H(7c)n—~

s minjz—¢,|.
I<rn

LeMMA 2. Let f(x) be a polynomial in Cy[x] of the exact degree n and
with the discriminant D(f), the p-adic height H,(f), and the zeros Cq, ..., C,
in Cy. For every z in O,

D 1/2
DO e,

Both lemmas will be proved in the same manner, using the inequa-
lities (8) and (9).
Proof of Lemma 1. Without loss of generality, the minimum

(&), =

0 = min|z—,|
I<rn

is attained for the zero { = {,, hence
0 = |g—0ul = l2— 0.
The decomposition
f(@) = ap(@—E1) ... (@ —Cur)(@—0)

implies therefore that .
F@) = lag| 8 H le—&l.-
Renumber now the zeros (i, ..., {n_1 ;uch that, say,
<2 it »=1,2,...,N,
E=0 Cos it v = N1, N2, .., 01,

where we put N = 0 if none of the first inequalities hold, and ¥ = n—1
if none of the second ones is satisfied.

Acta Arithmetica VI 22
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By the definition of 4,
k—¢l =0 (v=1,2,...,n—1),

[z

v=1 y=1

whence

\i‘

V

W/

\\'/

[ &)

|

)‘
:l =

m

Further, if » = N-+1, N-+2,...,n—1, hence [{—{,|>26=2[z—{], then
—C) = =0+ (=) === =1 = $[{—={)]

and therefore

n—1 n-—1
[]1z=tl =270 [ ie—¢l.
y=N+1 y=N+1

Hence

n—1

HEZ—51\2 o ”Hiz AR

v=1

Here the identity
n-—1

(10) af]&—2)=7©

v==1

holds, and so the assertion follows immediately from (8).
Proof of Lemma 2. Now, without loss of generality, the minimum

8, = min [g—¢,l,
I<r<sn

is attained for the zero { = (,, hence
d, = lz—Caly = |2—Cly-

Therefore, by the same decomposition of f(x) as above,

n—1

@)l = laoly 8y [ [12—8ly-

Renumber again the zeros (y, ..., {, ; such that, say,
.y <o, if »=1,2,..., N,
|l =6, it v=N+1,N+2,..,n—1,

with conventions for N similar to those above.
As in that proof,

le—3Clp =96, (v=1,2,...,n—1),
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so that
N

N
[] =—tly =& []lc -
y=1 v=1

Further, if » = N+1, N-+2,...,n—1, hence |[{—{]|, > 6, = [z—(|,,
then
=Gl = (=0 +(E=0), = [E=4ly,

and hence

-1 n—1

[] e=cl= [[i—cl.

r=N+1 v=N-+1

le~c ly = ch—alp.

=1

Therefore

N

The assertion follows now immediately from (9) and (10).

5. From now on we impose on f(«) the restrictions that its coefficients
are rational integers and that

(11) a =0 and a, #0.
Then not only f(x), but also
(@) = ay+a,@+...+ a,x"
is of exact degree n. Let
F(z,y) = " +aa" 'y +...+a,y"

be the binary form associated with f(x). Evidently

w .

(12) P(a,y) = y"f (—;f) - w”f*(i“’—),
and, conversely,
f(@) = F(x,1), f*(@)=F(1,ux).

It is obvious that
H(F) = H(f) = H(f").

Also, as is easily verified, f(#) and f*(x) have the same discriminant.
We therefore put
D(F) = D(f) = D(f")

and demand »from now on that
(13) D(F) £0.

Thus D(F) is a rational integer distinet from zero.



340 D. J. Lewis and K. Mahler

Denote by py, ..., p; finitely many distinet primes. Then, for each
suffix v =1, ...,1, let P, be the p.-adic field and |a[,, the p,-adic value.
Further denote by C, a finite algebraic extension of P, in which f(w)
and hence also f* (@) and F(x, ) split into products of linear factors. Also
let p, be the prime divisor of €, , and let |al, be the p-adic continuation
of |a|, in C, so that

laly, = lalp, if aeP, .

Finally write &, ..., , for the zeros of f(») in C and y, ...,
for its zeros in C,_; all these zeros are distinet from 0 because it is assumed

that a, 0. It follows that

n n

f@) = a [ [w—2) =a] [w—cu)

r=1 y=]1

for all rational numbers # and y since such numbers lie in all {41 fields
C, 0y ..y Oy,

6. Let from now on « and y be rational integers distinct from zero.
By means of the two Lemmas 1 and 2 we shall establish simple lower
bounds for |F(xz,y)| and |F(z, y)|p, in terms of » and y. We begin with

the absolute value.
For shortness, put

(1D (F))'"

‘/‘]‘ = 2n—1n2nv7/2H(F)’n-—2

and write
lw7yl :max(lml,lyl), sza’x(17lcll7“-7wnl)-

From Lemma 1 and by the identities (12),
!

|
. L@
(14A) |F (%, 9)] = Aly[* min | — —¢,/,
1<r<n |
(14B) |F (2, 9)] = A" min | > ——1.
1<v<n @ Cv

We must now distinguish several cases.
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)

Next let |z| > |y| and therefore |x,y| = |v|. First assume that

If |#| < |y| and hence |z, y| = |y|, from (14A)

. -
(15A) |F(2,y) = Alz, y|* min (17 @—Cv

1<r<n

1
>—2~ for all suffixes »=1,2,...,n.

Then (14B) implies that

1 A @ i
(15B) |F (@, y)| = Alw, y™ ‘__>"_Ix’?/l min (1, __Cpl .
1<r<n Y |
Secondly, let
1 Y 1
min | = — =|=——| say, b —
sl PRl L RN Bl
Since
1 1
R 2»’
CN g
we have
1 +( 1) 1 y 1 1 11
T iy Cw x Iy 2¢ 20
and h(,nce
'y 1| 1(mc)’ 1 1|2
}w el ooty \y YT 20 o |y M
Therefore in the present case,
A
(15C) |F(2,y)| = Iwyyi min “"‘“Cv
1<r<n

For all integers # # 0 and y = 0 one of the estimates (15) holds;
furthermore, o > 1. Hence it follows that

(16) A (1

|F (2, )| Z55 lw,yl min —¢,

I<rgn

) for all integers « %0, y #0.

7. A lower bound for |F(x, y)|, may be obtained in a very similar
way. It suffices, for our purpose, to consider integers # %0 and y # 0
that are.relatively prime.

Since F(x,y) has rational integral coefficients, the p,-adic heights

Hp,(F) = Hzo,(f) = Hp,(f*) (v=1,2,...,1)
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are all at most 1. For shortness, put

4, = (ID(F),)'*  (r=1,2,...,1)
and
o, = max(1, |Crllp,9 X} lCmIp,) (v=1,2,...,1).
From temma 2 and by the identities (12),

n . &z
(17A) IF(2, y)lp, = A, (Iylp,)" min | — —C,1
1<rn | Y -
Wy 1
(17B) [E (%, y)lp, = A (|2]p,)" min | = — .
1<r<n | & Ctv P

Again several cases will be distinguished.
If p, does not divide y, (17A) implies that

™

J)

Next let p, divide y and hence not divide x. First assume that

(184) P (@, ), > 4, min (

I<vr<n

1 1
v = for all suffixes »=1,2,...,n.
'/‘v C‘IV pf UT
Then, by (17B),
1 A,
(18B) [F(2y Y)lp, = Ao — = min wl| |
o, 0y 1<r<n b
Secondly, let
. 1 K
min |~ — = |=— say, be <
1<rsn | B Crv Pr L@ N Pz (28
Then
v | 1 [y 1)\ |1 1
X |p, C‘IN € C‘rN Pz i CrN br o,
so that
1 l @ 1 1 |
v -2 .(__ ) L re .
& | x C‘[N y bz Oy 0z i'/ br

Therefore in the present case,

A, | @ |
(180C) |E (%, y)lp. = —3 min (1 {;'—Cw L

07 1<r<n
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For all integers # 0 and y = 0 that are relatively prime one of
the estimates (18) holds; furthermore o, > 1. Hence

J

for all such integers, and for all suffixes v =1,2,...,1.

A,
(19) [F(z, y)lp, = —5 min (1’

07 1<r<n

&
- _—Ctv
)

8. On forming the product of the relation (16) and the ? relations
(19), we obtain the inequality

i
20 B, [ [1F@ 9, >

¢
b
2 M|w, yln min ( ‘ )]—] min (1, - '_‘C'rv )7
1<r<n Ly | 1 iosn Y oy
where M denotes the expression
¢
T\ (1172 1/2
T 28 ...0f 2"n™ TR H(F) ooy ... 0%

It has advantages to replace M by a simpler, although slightly smaller
number, as follows.
First, D(F) is a rational integer not zero; hence

t
(21) IDE) [ [\DE)p, > 1
T=1
Secondly,
H(F 2H (F 1
@2) o<ty JBHE D o1,
|ty | o Ay 1Py

For in the case of the complex zeros (, of f(x),
L= —ag (@ ayl o Fa, L),
Hence, if |£,] > 1,
H(F) 1 H(F)|G|
"{N Cv A{_ Cv “+"' = T e 4
laol > ! ) |aol (12,] —1)

giving the assertion for o.
Next let £, be a p,-adic zero of f(x), and let n = a,(,,. Then

16, <

N ay " agay " . ag e, =0,
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and so 7 is an algebraic integer and hence also a p,-adic integer, whence
the assertion for o,.
By hypothesis, a, is a rational integer not zero; therefore

¢
|| nlaolp, =1.
=1

The estimates (22) imply then that
00y ... 0y < 2H(F).

On combining this with (21), it follows that

1
M > .
= (ZH(F))z_2’nn2n—7/2H(F>’n—2

From now on we shall be concerned only with the case when n > 3
and therefore certainly

n? > 22,
Hence M allows the lower bound
M > (2n?H (F))™",

and we arrive at the following result.
THEOREM 1. Let

F(z,y) = a2 +a 2" 'y+...+a,y", where a,+#0 and a, #0,
be a binary form of degree n == 3 with rational integral coefficients and discri-
minant distinct from zero; denote by a = H (F) the height of F(x,vy). Let
Py .-+ Dy be finitely many distinct primes; let P, , for v =1,...,1, be the
p.-adic field, and let C,_ be a finite algebraic ewtension of P, in which the
equation F(x,1) = 0 has n r00ts Cy,y ...y Cony let further Zy,..., 5, be the
n roots of the same equation in the complex field C. If x and y are any two
rational integers which are relatively prime and distinct from zero, then

t
F@ )l | [1P@, 9, >
T=1
t

) min (1 ,
I<rn
=1

@€
- —'er

= (2n*a)™" |2, y[* min (17
Y

I<r<n

@
"‘_Cv
Y

J

9. For shortness, put

t
D@, y) = |F@,9)| [ [[F(@, 9, & = (2n2a)".
7=1
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Let further y and 4 be two constants depending on # which will be chosen
later and are such that

y >0, =0, y+d4=mn.
Any pair of integers z, y is said to be admissible if

x F£ 07 Y -7&0’ (w’y) = 1’ F(w’y) #0 and hence f(g) >0

Our aim is to find an upper bound for the number of admissible pairs
x, y for which
i D@, y) =1,

thus which have the property that the integer F(x, y) # 0 possesses only
the given prime factors p,, ..., p;. It has some advantage to study a slightly
more general problem, and we ghall therefore also establish an upper
bound for the number of admissible pairs », y satisfying

(23) D(x,y) < |o,yl°.
By Theorem 1, such pairs have also the property
, t
—_—— Ct) min (1,
Y ' I P2

and hence even more the property

min (1,

I<rsn

&
*—é-'w
Y

) <klw, g~

7=1 b

(24) min (1,

I<vrn

X
_—Ct
Y

)” 1min (1, l[o—ylaly,) < ko, y|™"

T=1 Srsn

For the latter inequality is weaker than the first because

| x .
— G

2 —ylnly, = 1Ylp,

=

X
H_C”
i P

T

10. The solutions of (24) can be subdivided into »'*! classes which,
in general, need not all be disjoint.

Let ¢ stand for any one of the n zeros {y, ..., ¢, of f(x) in C; also,
if t=1,...,t, let {© stand for any one of the n zeros &, ..., &y of f(®)
in Ovr‘ Thus there are n'*' distinct sets of ¢+1 zeros

(2,0,..., 9.
It is obvious that every solution x, ¥ of (24) satisfies at least one of the

n'*! inequalities

(25) - min (1,

t
€r | .
T o) [ minga, lo—yeol,) < ko, 1
T=1

that correspond to these sets of t41 zeros.
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11. Let p denote a further constant depending on » which will be
chosen later and is such that

o< B<y.

_r—#

B

and denote by v the smallest positive integer for which

Put

1
v = - (t+1).
o

Assume now that x, vy is any admissible solution of (25) with

(26) 2, y| > K.
Since ¢ >0 and k¥ >1, we have
klo,y| ™" =k~ (klw, y| =) < (klw, 17
Hence there exist t+1 non-negative numbers ¢g, ¢4, ..., ¢; depending on

x and y such that

l mm( ) = (klar, y| )"
(27)
min(1, lw—?/c(r)lp,) = (klx, yIm (r=1,2,..,1

and therefore also

| mln(l, 1_, "'C]) klw ?/l ﬁ)¢o(l+a)
(28) 'y

min (1, lo—yt®,) < (klo, y| )" (z=1,2,...,1).
From (25) and (27) it follows that

Yot o1 +...+p =1
Write

v(1+0)p, = g+ V2 (r=20,1,...,1)

where ¢, ¢,, --., §; are non-negative integers, while y,, vy, ..., 7y are real
numbers such that

O<y,<1 (r=0,1,...,1).
Then

Z —v(1+a)2<p, Z% o(1+0)—(t+1) =

=0 =0
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This means that there exists at least one set of ¢+1 non-negative
integers fo, f1y ..., f¢ for which

fotfite.tfo=v, f<g¢g (v=0,1,...,0)

and therefore also

f’[ ~ T
— < % <(A+o0)p, (r=0,1,...,%).

The inequalities (28) imply then that also

‘ |
min (1, ‘f — \) < (kla, y| Pyl
(29) Ly 1

min (1,le—yZ,) < (klz, y| " (v =1,2,...,0).

From its definition, the set of t--1 integers fy, fi, ..., f; has only

v+t
¢
possibilities. Therefore every solution #, y of the two conditions (25)

v-+1
t

On combining this result with that of § 10, we find:
LEMMA 3. Every admissible pair x, y satisfying the two inequalities (23)
and (26) is a solution of at least one of the

N = (U ': t) nit

sets of inequalities (29) that are obtained if (i) the set of zeros (¢, %, ..., oy
of f(®) runs over all its '+ possibilities, and (ii) the integers fo, fiy ...y fi

v4-1
t

and (26) satisfies one of the ( ) possible sets of inequalities (29).

run over all ( ) solutions of

=0, 120, ooy 120, Jobfibe bl =0,

12. The following result holds.

LuMMA 4. Let the notation be as before, and let further s be one of the
integers 1,2, ...,n—1 while B, 0,9 and = are four constants such thal

n
Put
(S%Jro) (s+%) 1+0-%

K — (4(1/) min (1, ©—B#) % 60— B

’
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and denote by Iy, I'y, ..., Iy non-negative constants such that
Loy+1I'+...4+ 1Ty = 1.

Let there exist admissible pairs of integers x, y for which

min (1, % —C!) < (xlw, y|72)"

(30) |2,y > K,

min(1, !w‘“?/C(’)lv,) < (#|@, ?/I—B)Pr (r=1,2,..,1),

and let y, Yo be such a pair with smallest |z,, y,|. Bvery admissible solution
x, 4y of (30) then satisfies the inequalities
(31) %o, Yol < 1@, Y| < (%P |2, Yol 2nle.

With a slight change of notation, this lemma is essentially the Hilfs-
satz 3 of the paper M,, pp. 709-10. However, this Hilfssatz is proved
in M, only with the following two restrictions.

RESTRICTION A: The zero [ of f(x) is a real number; further, for
T=1,...,1 the zero [ of f(®) is a p,-adic number.

RESTRICTION B: The polynomial f(x) is irreducible over the rational
field.

The lemma remains valid without these restrictions. In fact, the proof
of Hilfssatz 3 is given on pp. 693-709 of M;. An inspection of this proof
shows that the Restriction A is entirely unnecessary and is used nowhere.
It was imposed for the insufficient reason that non-real numbers
in ¢ and non-p,-adic numbers in C, cannot be approximated arbitrarily
closely by rational numbers.

The Restriction B is required in the paper M, only once, in the proof
of Hilfssatz 1 on pp. 696-699. However, a very slight alteration of this
proof makes it again valid for all polynomials f(x) with integral coefficients
that have non-zero discriminant. The proof so changed can be found,
with all its details, in the paper P, pp. 22-25, where it is used to prove
an even more general result than Lemma 4.

13. We also require the following result.
LEMMA 5. Let the notation be as in Lemma 4. Let further »,, y, and ®,,
Y, be two admissible pairs satisfying the conditions

BB el <

— F — < |o

” 7 1Y 2y Yals
and, for j =1 and j =2,

. ( ‘ &y
min |1, | ——¢
(32) l |y

min(1, lwi_yié‘(t)lp,) < (%@, ?/il—B)F’ (v=1,2,...,1).

) < (=lwz, y;17B)",
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Then

1 B-1
|2y Yol = o [@1y Y1l .
»

The proof of this lemma is given in the paper M,, pp. 39 -40. Although
this proof again imposes the Restriction A, this restriction once more
is not required and may again be omitted.

From now on, assume that

B >2.
The assertion of the lemma takes then the form,

1 1
T B-2

(33) (2%) BE [my, vl = {(2%) P77 |@y, vl

which is more convenient for the following application.
Let

}BAI

Loy Yo3 L1y Y15 +ovy Try Yr

be finitely many admissible pairs satisfying the inequalities (32) and
with the additional properties that

Xy &5 . . .
— — i K<<
Yi Yi
and
A <@y Yol < 1@y Yl < vvv @y Y| << B

where A and B are two constants such that
1
(2%)B% < 4 < B.
By (33),
__r S

(2”) B |wf+1’ yi+1| = {(2") B l‘vh ?/7'”13—1 (.7 = O’ 1: LERE] ”""1)-

Therefore,
1 1
(2%) B2 [ — {(2”) B2 @ yol}(B_l)r

and so also
o S
(2%) BB ={(2%) BPAjB-0 >1.
Hence
1
log((2%) BB
log o0g((2x) : )
T B—2
(34) r < log ((2%) A) '

log(B—1)
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14. We procede now to the closer study of the number of admissible
pairs x, y that satisfy one of the systems of inequalities (29) to which our
problem has already been reduced. To do so, we apply the Lemmas 4
and 5 where we put

B=§, x=k Iy=">—, ry==—, ..., Ft:-ﬁ.
v )
This choice of parameters is valid because g will soon be fixed as a quan-
tity greater than 2, and it is obvious from the definition that k is greater
than 1.
For convenience, we shall from now on not distinguish between two
admissible pairs of the form

z,y and —m, —v,
and of two such pairs only one will be counted, say that with y > 0. It
follows that if «,, ¥, and x,, y, are two distinet admissible pairs, the
rational numbers @,/y, and w,/y, are likewise distinct.
Denote by

v v v

S = S(LO, _fi, ,ji)

the set of distinet admissible pairs @, y that satisfy (29). This set we divide
in three disjoint subsets S, S,, and §;, as follows.
8, consists of those admissible pairs in S for which
2

, y| < (2k)°77,

8, of those pairs for which
2

2k)7 <o, yl <K,
and 84 of those pairs for which
lz, y| > K.

Let N,, N,, and N, denote the numbers of elements of 8,, S, and §;,
respectively.
We note that the pairs x, ¥y in S, and §; satisfy the inequality (26)

because
2 1

k)P > kP,
15. The Thue-Siegel method does not seem to lead to any non-
trivial estimate for N;. It is, however, obvious that

4
(35) N, < 2(2k)°P2.
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For every pair x, y in S; has coordinates of the form
2

@y = FL1,F2,..., [(F2k)° 7],

9

and only the pairs with positive y need be counted; also |z, y| < (2k) P2
Evidently

|F (2, y) < (m+1alx,y™ for all # and y in C.

It follows that, if m can be written in at least one way as

m = F(x¢,y) where x,y is a pair in §,,

necessarily
2n

m| < (n+1)a(2k)=2, = C say.

Oon,versely, if |m| = O, all admissible representations of m in the form
m = F(x,y) belong to either S, or S;.

16. For the two remaining numbers N, and N, upper bounds are
obtained by means of the formula (34). Its right-hand side augmented
by 1 evidently is an upper bound for the number of admissible pairs
@, y for which |x,y| lies between A and B and which satisfy (29).

First put

2
A = (2k)**, B=K.
1
Then A > (2k)#~2, and we shall soon fix the parameters such that the
second condition A < B is also satisfied. It follows then from (34) that

1
logl(2k) P K
log 0g{(2k) 1 )

log{(2k)"*}
log(8—1)

In a similar way, Lemma 4 enables us to find an upper bound for N,.
By the lemma, every pair @, y in S; satisfies the inequality

(36) Ny < +1.

1 on3

%0y Yol < |, Y| < (k7 |2, yol)

where |x,, y,| is an integer greater than K. We may therefore put

an3

1
A = |®g,y Yol, B = (kﬂ |w0yy0')—0—7
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1
and then the inequalities (2k)”* < A < B are again satisfied. Hence
by (34),

1 and

1og L8 HEH) 2(k1 70, 90l) * )

log{(2k) P |m, o)
log(f—1)

+1.

(87) Ny <

17. Both estimates (36) and (37) take a more explicit form on fixing
the parameters. We shall discuss two different choices of these parame-
ters, one corresponding to 6 = 0, and one to a rather large value of 4.

For shortness, put

Yo !

3 and a=-——+3s.

Then
a = min
h=1,2,..,n (h-[-l + )

Wn—1 <a<Vint+1-—1.

and

As a first choice of the parameters, put

1 1 1
== — = 0 =20 6 — — S —
p=a+t w7 ", ’ n’ 2 (an—+1)
so that
1
O—B9 =— <1
p 2n <
The constant K of Lemma 4 becomes then
(yvo) ) 1v0-

— (40:) O—po % O—pd

where
k = (2n2a)".

Now V4n+1 < 2l/ﬁ+1, hence

Vin+1—1 - 1
s < Vin41—-1 <Vn < e+ ,

2 2
whence

" +9 > " i—8 =
s+1 s4+1 2
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On the other hand,

_n +9 =a—(s—9) <a because P <1 <s.
s+1
It follows that
n L
s+1
(a—1)n < < 2an
O — pd

Further

2an?

3
3+%=2an3+2n+3=2an2( —|————|— ),
so that

2a%3<3+ﬁ<2an2(1+ 1 + - 3 )21_2(1%2
R Tx3 | axixsr) M

For o assumes its smallest value when n = 3, s =1, and then a = .
For the same reason,

1 2 3a
a—1l=all——) Zal|ll—=]) =—.

Therefore, finally,

dan X 2an? < - < 2an xZant.

The exponent of %k has the trivial lower and upper bounds,

8 1+9—(s/B) ( 1 1)
—— AL = < 2n.
\<\(1 a)><2n< o—pd < {1+ Y - xX2n < 2n

Since k > 1, it follows then that

6 a2n3

(4a)" " < K < (4a)5 K.

A simple upper bound for k is obtained as follows. Since n = 3,

logn log3
logn _log3
n 3
because
a (1
——(M)<O it x >e.
de \ =
Hence

n (\: 410gn/log4 < 4(n10g3)/(3]0g4) :g 411/3 < (4(1)"/3,

Acta Arithmetica VI %3
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and so

n?\" o2
- (4&)” (HZM) < (4(1)”%2” < (4(,/)"]-2%2/3 < (431)712/3“”2/3 — (4a)n2

This inequality implies that

8
2n3x 2. —a2n‘

k2” < (4a)2n3 = (4(1) e < (4(,!)

and so, since ‘
.S <,
finally
§02n3 6a2n3
(dap"™ < K < (4a)™
18. The right-hand sides of (36) and (37) can now easily be evaluated.
In the formula (36),

~1

k)2 K < K < (4a)°",

Also
n2\"
k = (4a)" (—2—) > (4a)"
and hence
1
(2k)6-2 > 4a

because f—2 < n. It follows that

log{ (4a)°“"}
10g(4a)

+1.
P log(p—1)

Since f > a, we find that

. log(6a%n3)
38 N, < ——= 1.
(38) ® 7 log(a—1) T

19. Put

L= kllﬂlwoa Yol

then

L >K.
The upper bound for N, may be written as

-1 .
log{(2k)5—2 L'}

log —
log{(2k)f—2k~ P L}
log(p—1)

Also this expression will now be simplified.

Ny <

+1.
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13 - - 5
Since > a =, we have

1 ;En2+l (1z+ )2

1o 2 B Y )
(2k)—2kp < 4k* k < 4(4a)( 3 < (4a)5 < (4a)'3 < (4a)3n?,
so that, by the lower bound for K,
1 1 “a~n3 i afn /23 .
L= K= (™" = (4a)f™ 5 = (a5 = (da™

1 1
> (2k)B-2 kb,
It follows then that

1
(2kyp—2k L = L'"*,
hence that

log(L*"*)
Tog(E)
o lea@®
log(p—1)
whence
. (4%3)
0
, &\ log{8n3(an 1)}
g ST < +1.
log(8—1) log(a—1)
Here v
min ( n h)<n+1 n—2 - 1
a = < = = NnN—— —_——
h=12,, n-1 h+1 2 2 - 2,
and hence
n—2
an+1 < (n—3Hn+1 = n2— g S n2.
Thus, finally,
log (8n°)
39 _ N, <——— 11,
(39) * S Jog(a—1) +
On adding (38) and (39), we obtain the further estimate,
. log (48a*n®)
40 N,+N, < ———~
(40) 2Ny Tog(a—1)

20. We had chosen
1
ﬂ = a-} »/;;, Yy = n.
The quantity ¢ is then given by

y—pBf nE—an—1
O == = ,

B an-+1
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and v is the smallest positive integer satisfying

1
v = — (t1+1).
o
Let us now apply Lemma 3 to the equation
D(x,y) =1.
But instead of considering only the admissible pairs », y with
(26) @,y >,
et us impose the stronger condition
(41) v, y| = ki3,

In other word, we assume that 2,y belongs to one of the subsets S, or
S, of S, and we exclude the elements of the subset ;.
The inequality (40) gives an upper bound for the number of such

admissible pairs. We have exactly the same bound for all (v_:t> choices
of the ¢-+1 integers fo, f1, .-+, fi, and for all #'*' choices of the t--1 zeros

£, W, ..., 9 of f(x).
We obtain thus the result that there are not more than
log (48a*n®
(42) [_Og_(_a_n_) 2] ("‘H) it
log(a—1) ¢

admissible pairs x, y for which
2n

D(w,y) =1, |,y = (2n2a)p.

Here again only one of the two pairs @, y and —», —y, say the pair with
y >0, has been counted.

21. The integer » was chosen such that

1 1
S ) <0< (Rl
and hence that

1
(43) 041 < (—- 4—1) (t-+1).
o
Hence, when t is small, it is advantageous to use the obvious estimate

m) o0 (_1_ +1)t (11

t] = o !

(44) 0<(

T

for the binomial coefficient. If, however, t is large, there is a better estimate
which is obtained as follows.
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By Cauchy’s theorem, applied to the function (1+42)"*,

vt) (12"
t] " 2mi Ak ?
C
where ¢ denotes, say, the circle of radius o with centre at z = 0, described
in positive direction. Therefore,

1 1+ (140"
0 (H—t) 9 _ A
< = o 0 QHI Qt ’
and on choosing o = t/v,
v4-1)"+
0 <(v+t) < (v+1) .
ot

Hence, by (43),

Since

1t
(1—{—5) <e

for all positive integers ¢, it follows then that

1 t+1
(45) 0< (”*t) < e(t—l—l){(; —I—l)(a—l—l)l/"} .
Here, by definition,
_ nP—an—1 41— n? 1 1= n?
T an+1 T an+1’ @ T on—an—1"

On substituting these upper bounds in (42), we obtain the following
result.

THEOREM 2. Let F(x,y) be a binary form of degree n =3 with in-
tegral coefficients and non-zero discriminant satisfying

F1,0) #0 and F(0,1) #0.
Let a = H(F) be the height of F(x,y); let
. 1
a = mm (h—l—1+ ) /3_—‘(1—{“‘7;5

,,,,,,

and let py, ..., p; be any finite number of distinct primes.
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(i) There are mot more than

B+2 an_
26-2(2n° @)f—2 -

log (484’ n®) 2]{ n3 ( n? )(an+l)/(n2~an—1)]t+1

+e(t+1)[ ,nﬂ__a/n_l (171/—{—1 [

log (a—1)
pairs of integers x, y satisfying
®z#0, y>0, (v,y)=1, F(x,y) #0,

for which F(x,vy) has no prime factor distinct from p,, ..., p;.
(ii) There are not more than

log (484 n®) nd n?  \(@n+1)/mP—an—1))t+1
e(t+1)| ——— +2 )
log(a—1) ni—an—1 \an+1

pairs of integers x, y satisfying
2n

x#£0, y>0, (v,9)=1, F(z,y)#0, |z,yl = (2n2a)f-2,

for which F(x,y) has no prime factors distinct from py, ..., p;.
(iii) If p is a sufficiently large prime, there are not more than

[]0g(48a2n8) ] ( n? )
) A Sakaiitav) | S P%
log(a—1) n2—an—1)

pairs of integers :, y satisfying

» # 0, y >0, (x,y) =1,
for which FF (x,y) is equal to p or a power of p.

22. The upper bounds in the second and the third parts of the theo-
rem are of particular interest because they do not depend on the coef-
ficients of the form, but only on its degree.

Computation shows that the factor

log (48a2n?) ]
[ log(a—1)

is equal to 37 for n = 3, 26 for n = 4, and 22 for n = 5. With increasing
n it first decreases to a minimum 16 and then increases again, first to
17 and 18 and then to 19. The latter value it retains for all sufficiently
large n.

The expression

n? ( n2 )(an+1)/(n2—an—l)
?

n2—an—1 \an-+1
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that occurs both in the first and the second part of the theorem as a factor
of the basis of the (t-+1) st power, is about 47.7 for n = 3, 13.1 for n = 4,
and 9.1 for » = 5. It has the limit 1 as » tends to infinity and is always
less than 2 when n > 43.

In a weakened, but simpler form, the theorem may thus be sta-
ted as follows.

There exist four positive absolute constants ¢, ¢,, ¢35, and ¢, 1. e.
numbers which do not depend on the binary form F(x, y), on the primes
P1y -y Py, O on their number ¢, such that the upper bound in the first
part of the theorem is not greater than

Cy (CV’L)%‘/;L + (%")LH ’

that in the second part is not greater than

t
(esm) H’

and that in the third part not greater than
CyMn2.

We see, in particular, that if m is an integer of sufficiently large ab-
solute value and with exactly ¢ distinet prime factors, there cannot be more

than
t+1

(c3m)
pairs of integers x, y satisfying
x #~0, y >0, (#,y) =1, F(x,y) =m.

23. As a second choice of the parameters, let

ﬁ=a+ ’ Yy =oa+ 5, 5=’n—a-——-——-,

LU
n 2(an-+1)

Since the consideration in §§ 17-19 do not depend on the values of y and
d, we obtain the same upper bounds (35) for N, and (40) for N, N,
as before.

On the other hand, ¢ now has the value

_r=F _ 1
B 3(am+1) "

g



360 D. J. Lewis and K. Mahler

v41

Hence, by (45), the binomial coefficient ( ¢

) satisfies the inequality

1 3(an+1))E+1
0< (”jt) < e(t+1){(3an+4) (1+ 3((1—”“7) } .

1 3(¢m+1)
1+ — <e.
( + 3(«m+1) <

Here

The following result is then obtained by repeating the discussion in
§§ 20-21.

THEOREM 3. Let the notation be as in Theorem 2.
(i) There are not more than

B+2 an 28
26-2(2n* a)F—2 -+ e (¢-+1) [%?.%fw)) + 2]{en(.3an+ 4))!
o

pairs of integers m, y such that

¥ # 0, y >0, (¢,y) =1,

¢ n—a— o
0<|F@, ) [[1F@, 9y, <lo,yl "
=1
(ii) There are mot more than

log (48a*n®) 1

pairs of integers m, y such that
2n

x #0, y >0, (®,9) =1, @, y| = (27"2“)‘3___2.7

t 4
n—a— —
0 < |F(z, )| [ 7@, ), <lz, 9l >
T=1

If ¢, denotes a further positive absolute constant, the upper bound
in (i) has the form

oy (@)™ (egn® )+,
while that in (ii) has the form
(05n5/2)l+1'

24. We conclude this paper with an application of Theorem 2.
Let

P11y -9 Piry Pary -+ -y Pasy P31y +++y Pat
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be r-s-+1t fixed distinet primes of which the smallest and the largest
are P and @, say. Further let

{wi'} = {xlla cevy Tupy Dory ooy Vagy X1y ooy w3t}
be a system of r-+ st non-negative integers such that
(46) Pt e DI Dt L Pa® = Pt L Pl

Our aim is to give an upper bound for the number of solutions {w;} of
this equation.

Denote by n > 3 an integer which will soon be chosen equal to 12.
For each pair of suffixes ¢ and j = 1 or 2 write

@i = nXy+ Yy
where X,; is a non-negative integer while Y;; is one of the numbers

0,1,...,n—1; further put

X X — X2 o,
x = ppt ... P, Y = Pt ... Pty

Y g ¥ Yas
g = Pt ... Pt Uy, = Qeq? ... Pag -

The equation (46) becomes then

31 3t

(47) "+ @,y = Py .. Py
where evidently
a >0, a, >0, x>0, y >0, (r,y)=1, @az"+ay" >0.
The binary form on the left-hand side of (47) has the height

@ = max(ay, ,)
which satisties the inequality
(48) a < Q(n—l)max(r,s).
Also the pair of coetficients a, and a, has only

n e

possibilities.
For each pair of coefficients a, and a, we divide now the solutions
x, y of (47) into two classes €, and C, according as

2n 21

5-’1’/', ,!/l < (2an(rn,~l)ma.x(r,s))m or iwy .l/i > (2n2Q(.n,r--l)max(r,s))m,
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and we denote by NV, and N, the numbers of elements of ¢, and C,, respec-
tively. We further choose for n the value
2n
n =12, so that a =6, f >6, B——4-2 < 6.
An upper bound for N, is found as follows. In explicit form,

’ X Xy 5 max (r,s
Max (PRl ... Pty Pzl ... pa) < 2880Q0mexe

so that

6log 288 - 66 max (r, s)lo

max (Xq;+...+ Xy Xor- X)) < Mt (ry s)log@ .
log P

This implies that each of the integers X, ..., Xi», X5 juvy Xos is smaller
than the expression on the right-hend side and so has at most
1 log@

12 Co(r+8) —— log P

possibilities where ¢, is a positive absolute constant. It follows then that

/ ]‘}:v E%}f%?
Mo \gg ST epf

An upper bound for N, is obtained immediately from Theorem 2.
It has the form
N, << dit?

where ¢, = 12¢, is another positive absolute constant.
As the solutions of (46) satisfy 12"*° equations (47), it follows finally
that the equation (46) has not more than

OgQ} r+s+ Og+s+.t+1

it

solutions {;}; here ¢; is a further positive absolute constant.

It would have great interest to decide whether this upper bound can
be replaced by one that is independent of the given r--s- ¢ primes, thus
of P and @, and depends only on the number r+ s+t of the primes.

For the last result, compare also Chapter 1, §§1-4, and Chapter 3,
§ 3, of the book on tmnscendental numbers by Ge]fond, and p. 724 of
the paper M,.
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