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In a paper of nearly thirty years ago (Mahler 1937) I first studied approx-
imation properties of algebraic number fields relative to their full system of
inequivalent valuations. I now return to these questions with a slightly
improved method and establish a number of existence theorems for such
fields.

The main result of this paper (Theorem 1) states that every ideal has a
basis such that all the valuations of all the basis elements lie below Limits
which can be given explicitly in terms of field constants and arbitrary para-
meters. Both this theorem and some of the consequences derived from it
seem to be new; at least I have not found them in the recent treatments of
algebraic number fields by E. Artin (1959), H. Hasse (1963), S. Lang (1964),
or O. T. O'Meara (1963).

The paper of 1937 depended on Minkowski's theorem on the successive
minima of convex bodies (see e.g. Cassels 1959). The present paper, on the
other hand, is based on a classical inequality from the reduction theory of
quadratic forms, or alternatively, on a basis theorem in the geometry of
numbers which was not yet known in 1937. The new approach is more power-
ful and enables one to construct ideal bases rather than just a system of
independent elements of the ideal.

I collect in § 1 the tools from the reduction theory of quadratic forms
and from the geometry of numbers which are used in this paper. The next
sections similarly contain the facts from valuation theory and ideal theory
which are needed.

In a further paper I hope to treat algebraic function fields of one vari-
able in a similar manner.

1.

Let F(x) = F(xlt---,xn) be a symmetric convex distance function
in M-dimensional real space, K the convex body K: F(x) g 1, and
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the volume of K. As usual a lattice point denotes a point with rational inte-
gral coordinates.

A theorem due to myself (Mahler 1938) and H. Weyl (1942) states that
there is a positive constant yn depending only on the dimension n of the space
and not on the special distance function F(x) or the body K, with the
following property.

There exist n lattice points

of determinant

such that

(1)

gk= (glk.gzk. " ••gnk)

l.-'-.gnl

§ In i * * * * Snn

. g y c . - - - ,

{h = 1 , 2 , • • • ,«)

= 1

For all n the constant yn may be chosen equal to

(2)

and for large « it is of lower order than »! It would be of importance to
determine the exact value of yn at least for small n.

Let in particular
n n

* (<Phk =

be a positive definite quadratic form of discriminant

<Pnl. * * ".

and let
F(x) = \V<P(x)\

be the positive square root of &{x). The body K is now the ellipsoid

K : 0{x) ^ 1
of volume

Hence in this case the inequality (1) takes the form
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n

(3)

where, by (1) and (2),

(4) c, = ^ j s -

For small dimensions n better values for cn are obtained from the reduc-
tion theory of positive definite quadratic form; see v. d. Waerden (1956),
Kapitel 1. By this theory, one finds that one may choose

(5) c2 = | , c3 = 2, c4 = 4, c5 = 10, ce — 42, c, = 250;

here the values of c2, c3, and c4 are best possible. Further

cn ^ ( | ) V ( | + 2)'(})«"-««"-«Wi for w s> 5,

but this upper bound is for large n not as good as (4).
While this paper is based on the inequality (3) for quadratic forms, a

different choice of the distance function F(x) might possibly be advanta-
geous.

2.

Throughout this paper,

K = P{§), where F{&) = 0,

denotes a fixed algebraic number field of finite degree n ^ 2 over the ratio-
nal number field P. Here the polynomial F(x) in P[x] is assumed to be
monic and irreducible over P.

Together with K we consider its isomorphic images in the complex
number field C. Let #(1), • • •, #(B) be the zeros of F(x) in C numbered such
that

are real, but that
#(r'+J'> a n d 0<ri+-»+» ( / = 1, 2, ••-,r2)

are non-real and complex conjugate. The isomorphism

then maps K onto a subfield KU) oiC; let f"', for every f in /<, be its image
in K"K Then

and there are just
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distinct absolute values

in K. With each such absolute value ]f ( " | we associate as usual an infinite
prime divisor q(J), and we use the notation

We further put

r = ' s o " 1 .

Then

(6) £«q =

where both the sum and the product extend over all the infinite prime divi-
sors

of K. These rM absolute values |f |q form all the inequivalent continuations
to K of the absolute value \x\ in P .

3.

In addition to the r^ absolute values, K has countably many inequiv-
alent non-archimedean discrete valuations, the r-adic valuations

Iflr
where r runs over all the finite prime divisors of K.

To each such prime divisor r there belongs a unique (positive) prime

in P of which r is a factor, and then the t-adic valuation |f | t is a continua-
tion to K of the />-adic valuation \x\p of P. Conversely, when fi is any (posi-
tive) prime in P, the £-adic valuation |x|, has a certain finite number re of
inequivalent continuations |f|t where

t = i(1», r(2), ••-,r ( r»)

runs over aU distinct prime divisor factors of p in K.
For each finite prime divisor t denote by et its order and by ft its

degree, and put % = exfx. The valuation |£|, can be written in the form

(7) |f|t = p
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where wt(|) is the order of f with respect to r. The function Wt(|) assumes
exactly all rational integral values when f runs over the non-zero elements
of K.

Next,

(8) wt{pt) = et, N(x) = p{x.

Furthermore, if p is a prime in P, and t runs over all the r9 distinct prime
divisor factors xU) of p,

(9) 5>r = », n \t\? = ms)\,.
UP t/n

From now on the letter to will be used to denote all the prime divisors of
K, both finite and infinite; on the other hand, q will be restricted to the in-
finite and r to the finite prime divisors.

For the whole of this paper the product formula

(10) I I \S\y = 1 for all | ^ 0 inK
P

will be fundamental.

4.

Denote by Kp the completion of K relative to the valuation \£\p.
Thus, Kp is the real field R for to = qU), 1 ^ / ^ rx\ it is the complex field C
for to = qu>, r x + l sS / ^ r^; and it is the r-adic field for to = r.

An adele is an infinite dimensional vector / = {ip} where to each prime
divisor to there corresponds a component ip of / which may be any element
of Kp, subject to the condition that

\ip\p 5i 1 for all but finitely many to.

If ip ^ 0 for all to and

\ip\p = 1 for all but finitely many to,

1 is called an idele, and then

is the volume of this idele. The same notation is used for an adele.
Such adeles and ideles will play only a subordinate role in this paper.

Of much greater importance will be the notion of what I called a A-function
in my former paper (Mahler 1937), but which I shall now call a ceiling,
a term suggested by my colleague B. H. Neumann.

A ceiling is a positive valued function A (to) of the variable prime divisor
to with the following properties.
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(A) At all infinite prime divisors q, A(q) may assume arbitrary positive
values.

(B) At every finite prime divisor r, A(t) is of the form

w = p;'x'et

where ez is the order of t, px is the corresponding rational prime, and lt is any
rational integer.

(C) X(p) is equal to 1 except at finitely many prime divisors p.

From this definition, there exist to A(p) infinitely many ideles / of
volume ||/|| = 1 such that

Up) = \ip\p for all p.

This property might also have been used as the definition of a ceiling.

5.

If X(p) is any ceiling, put

so that

(12) QA > 0, 3tA > 0, OA«RA = 1.

Further denote by aA the finite divisor

(13) aA = n &
t

and by [aA] the (fractional) ideal in K which consists of all field elements ot
that are divisible by aA, i.e. which satisfy the inequalities

|a|t ^ A(t) for all t.

Then oA and [aA] have the same norm

(14) JV(oA) = N([ax]) = YlN(x)1* = n ^(i)~*r = = - = »*•
t i ^ A

This relation between aA and [aA] is one-to-one, and every ideal a ^ (0)
is of the form a = aA for at least one k(p).

A basis of aA, or more exactly of [aA], is a set of n elements â , • •• ,«„
of K that are linearly independent over P and are such that every element «
of [aA] can be written in a unique way as a sum
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with rational integral coefficients xx, • • •, xn. The discriminant d(a\) of both
a* and [aA] is then given by

(15) i(oA) =

where d =£ 0 is the field discriminant, and the upper suffixes denote the
conjugates over C.

Two ceilings A(p) and fi(p) are said to be associated if

A(r) = ^(r) for all t,
hence if and only if

OA = V

Except when K is an imaginary quadratic field, there are always infinitely
many ceilings that are equivalent to a given one.

A ceiling is called principal if there exist an element 8 ^ 0 of K and a
positive integer H such that

X(p)» = |0|p for all p.

It is true only for imaginary quadratic fields that every ceiling is principal.
Under multiplication the ceilings form an abelian group of which the

principal ceilings form a subgroup.

6.

The following two simple properties of ceilings will be applied repeat-
edly in this paper.

LEMMA 1. Let f ^ 0 be an element of K, F a positive constant, and l(p)
a ceiling satisfying

|f |, ^ Fk{q) for all q, |f | t ^ A(r) for all x.

Then

| | |q ^ r-c-KAfa) for all q, |f|t ^ r-nA(r) for all x.

PROOF. By the fundamental equation (10) and by the property (D),
for every divisor p0,

if #• = {.n if i?}"1. w * = {n m**}-1.
hence
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= ^ i f * o = q o >

Up*)/
^ q

Since wj, ^ 1, the assertion follows at once.
It is clear that the hypothesis of the lemma can hold only if F ^ 1.

LEMMA 2. Let the hypothesis be as in Lemma 1, and let r0 be any finite
prime divisor satisfying

Then

Iflt. = A(r0).

PROOF. If for any finite prime divisor x

Ilk < W.
then from the property (B),

This would imply for r = r0 that

\i\Xo < x(ro)p

contrary to Lemma 1.

7.

We procede now to the proof of the main theorem of this paper. Let
X{p) be an arbitrary ceiling, a A the corresponding finite divisor, and & , • • • ,
p~n an arbitrary basis of [a*]- We form the function

(16) <P(x) = 0(xl, • • - ,* . ) = 2 a(<?)-2|zi&+ • • • +*-A.l5
q

of the real variables xx, • • •, xn; here the q-adic values are defined by

where upper suffixes denote again conjugates. Naturally $ depends on the
choice of the basis /?].,•••,/?„•

Write

#i+'> = yjfi+fl+iy^-fi+fl (/, = 1, 2, • • •, n; j = 1, 2, • • •, rt),

where the y's are the real and the imaginary parts of the /?jf1+". Then 0
becomes a sum of n squares of real linear forms,
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and hence takes the form of a positive definite quadratic form. From this
representation, it has the discriminant

where A denotes the determinant of order n in which the A-th column, for
A = 1, 2, • • • ,« , consists of the consecutive elements

Ph i Ph > > Ph • Yh > 7 » > > 7» •

Denote by 6 the determinant of the » x » matrix with elements

+ 1 if A = 1, 2, •••,roa

+i if A = r 1 +1, ^ + 2 ,
+ 1 if A = r ^ + 1 , r ^+2
- * if A = ^ + 1 , ^ + 2
0 in all other cases.

Then

^ and A = A+r2,
• , » a n d A = A—r2,
•, n and k = h, and

b = (-2i)\

On multiplying the matrix of A on the left-hand side by {bhk), we obtain

h ' > Pn
(-2»7»J =

p\n).---.P, •t«r

and hence

Since £>$ is positive, it follows then finally from (17) that

(18) D9 = 2-2'.|i|.

8.

We now apply to 0 the inequality (3) of § 1. By this formula there is
a n » x » matrix (gw) with rational integral elements and of determinant 1
such that
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(3) I T * ( f t * . g», •••,gn*)^ cnD
k-1

with the values (4) or (5) for cn. Put

(19) « * = i / W . ^ = I A ( q ) - 2 | a 4 (A = 1,2, • • • , « ) .
»=i q

Then a1( • • •, an form a basis of [oA], and

m* = ^ (g« , A*. • • \ &«) ( * = 1, 2, • • • , « ) .

Hence, by (3) and (18),

(20) ohm, • • • mn ^ 2r»'cn\d\.

The equation (19) for mh may be written in the form

To this formula we apply the theorem on the arithmetic and geometric
means, where we note that «q is equal to 1 for rx and equal to 2 for r% prime
divisors q. Therefore

{mm-^M?"*?*)}1"1 £ - .
where

n A(q)-2M«» = o r , n i«fciq
2*"=^fe)2, n v = 2-^..

q 1 q

It follows that

(21) n i«*i*" =
q

where the square root is taken with the positive sign.
On the other hand, at is an element of a basis for [aA], hence does not

vanish and is divisible by aA, i.e.

(22) |a»|, < A(t) for all r.

Therefore

We now multiply this inequality with the inequality (21) and apply the
fundamental equation (10). The result is that
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and that theref;re

(23) mk ^ 2-2rt/B» (k = 1, 2, • • •, n).

We finally substitute this lower bound for all but one of the factors mk

in (20) and then obtain also an upper bound, viz.

(24) mk ^ 2-2f«'fl»-<»-1> cn\d\

Since, by (19),

it follows that

( * = 1,2, • • - , » ) .

for all q,

for all q,

(k= 1,2, • • • , » )

or, say,

(25) | a i | , ^ a ( q ) for all q

where from now on C denotes the field constant

(26) C = 2-r«'BM-("-1"2|cni|i.

For the smallest values of n the following table for C is obtained from
(5).

C = (y) ,

n = 2, rt = 0, r2 = 1, C =

w = 3 , ^ = 3, r2 = 0, C =

n = 3, r t = 1, r2 = 1, C =

n = 4, f l - 4 . r2 = 0, C = - ,

2id
"32"

n = 4, r1 = 2, r2 = 1, C =

« = 4, rx = 0, r2 = 2, C = {-) •

On applying Ltmma 1 to the formulae (22) and (25), we obtain the
further pair of inequalities

(27)

(28)
l«tlq ^ C-<--1'A(q) for all q
K l , ^ C—X{l) for aU t

( * = 1,2, • • • , » ) .
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We also see that always

and we may make use of Lemma 2. By combining these results we arrive
at the following theorem.

THEOREM 2. Let A(p) be an arbitrary ceiling of K, and let a* be the
corresponding divisor. Then there exists a basis ax, • • •, an of the ideal [aA]
such that

for all q

C—A(r) ^ |«J( g A(t) for all t J * ' ' ' ''

Furthermore; if px is the rational prime divisible by r,

l«*lt = Kx) fa aU c satisfying pt > C"\

COROLLARY. 7"Ae norms of the basis elements satisfy the inequalities

\N(*k)\^C*N(ak) (k = 1 , 2 , - . . , » ) ,

C* denotes the field constant

C* = »-*"'

This last result is contained in (14), (21), and (24). For small n, C* has the
values

C* = if n = 2; C* =
i

if » = 3; C* =
64

if n = 4.

The basis at , • • • , «„ given by Theorem 1 will from now on be called a
X-basis; and we shall later make use of the vector

« = (a,,--•,<»„)'

which has the basis elements as its components.

9.

As we remarked already, except when K is an imaginary quadratic
field there are always infinitely many associated A-functions. Hence, apart
from this special case, theorem 1 establishes the existence of infinitely many
different A-bases of any given ideal [oA] = a. It has some interest to note
that these A-bases do not represent the most general type of basis of an ideal.
This is obvious from the following theorem.

THEOREM 2. There exists a finite set

M = { K 1 ( K 2 , • • •, #cm}

of elements of K with the following property.
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/ / ax, • • •, «B is any X-basis of K, then the quotients

5 (h, k = 1 , 2 , • • • , « )
a*

belong to M.

PROOF. The principal ideals (aj and (at) are multiples of [aA] and so
can be written as

Here, by the Corrollary, gA and g* are integral ideals satisfying

1 ^ N(Qh) ^ C*. 1 ^ iV(gt) ^ C*.

Hence both numerator and denominator of the ideal quotient

9*

are bounded. Since this quotient is a principal ideal, it must then be equal
to one of finitely many principal ideals

where the y's depend only on the field K and are all distinct from 0.
Assume, say, that

and that therefore a unit r) exists for which

By Theorem 1,

** q
Hence

|jj|q ^ Cn\y/I\q
1 for all q.

Now the y's are finite in number, are distinct from zero, and they depend only
on K. Therefore there exists an upper bound for all the absolute values
|»?|q of T] that also depends only on K. Hence ij is one of finitely many units

that likewise depend only on K. The set M of all products
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VfV* (/* = 1 . 2 , • • • , « ; » ' = 1 , 2 , • • • , » )

evidently has the asserted properties.
This construction will in general give for Af much too large a set. There

would be some interest in establishing an algorithm for determining the
smallest possible set M that belongs to a given field K.

The classical theorem on the finiteness of the ideal class number of K is
a trivial consequence of Theorem 2. For let a be an arbitrary (fractional)
ideal ^ (0) of K; let i{p) be any ceiling such that [a*] = a, and let a2, • • •, <xB

be a A-basis. Then the ideal

is equivalent to a, and it has only finitely many possibilities because all its
generators lie in the finite set M.

10.

Let / = {ip} be an arbitrary adele of K, and X(p) any ceiling. We
shall prove that the adele can be approximated by a number a of the field
such that all the valuations |«—ip\p are at most of the order of A(p). We
begin with a weaker result.

LEMMA 3. There exists an element (I of K such that

l/»-*tlt ^ •*(*) f o r a11 r-

PROOF. Denote by 9t* the set of those finite prime divisors t for which
at least one of the two numbers |*t|t and A(t) is distinct from 1, by & the
set of all rational primes p of the form p = pt f°r some r in ^* , and by &
and J? the sets of all finite prime divisors t for which pt does, or does not,
belong to &, respectively. Let further II be the product of all primes £ in 0>.

From these definitions,

(29) |f,|, = A(r) = |/7|, = 1 for x e 0t.

Choose for k so large a positive integer that

Wi\\\ ^ 1 for all r e 0t\

the finitely many numbers IPit, where \B0t, are thus t-adic integers. By
the approximation theorem for finitely many distinct t-adic valuations of K
there exists then an algebraic integer y in K such that

\Y-n"it\t ^ \IP\tX(x) for all
On putting
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fi = n-*Y.
it follows that

\P-it\t ^ A(t) for all i e 3t.

On the other hand, it is obvious from (29) that

|0 -« r | t = | /7-»y-H|, ^ max(|/7-»y|tf Ink) = 1 = A(t) for a U t e l .

These two sets of inequalities prove that /S satisfies the assertion of the
lemma.

11.

The system of inequalities

(30) l*-*tlt ^ *•(*) f o r ^ r

has not only the solution a = /? just constructed, but is more generally
satisfies by all elements a of K which are of the form

(31) a = fi+x1ax+ • • • +*•« , ,

where a , , . . . , aB form a A-basis, and xlt • • • ,xn are arbitrary rational in-
tegers. For we have

1**1,^1 and |a f c | t^A(t) for all t (* = 1, 2, • • • , « ) ,

and hence, by the construction of fi,

(32) | « - H | t £ max (|/J-«t|,. |*4ojt) ^ A(t) for aU r.

We can now choose the rational integers xx, • • •, xn in such a way that
also the absolute values

|«—*q|q, where q = q'1*, q<«>, • • •, q(r»',

allow simple upper estimates in terms of the values A(q). For this purpose
we note that, if upper indices as usual denote the conjugates, the numbers

are real if 1 <; j' <^ r,, and they are complex if rx+l ^ j' ^ »•«,. The discri-
minant

x<n), • • - , « !

of the A-basis is known to be real and distinct from zero. It follows then that
there exist real numbers f1( • • • , ! „ such that
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/?»>-•„,„ = (lt^+ • • • +f.«W for / = 1, 2, • • ., roo.

We finally fix the rational integers zlt • •', xn in (31) by the conditions

- i = S * * + & < + * (* = l ,2 . . . . , f i ) .
Then

|a-*q«,|,«, = |(*1+f1K)+ • • • • + (*B+IB)«<»| <
fS n • |max (|a<»|, • • •, |o<»|) (/ = 1, 2, • • •, rj,

and hence

(33) |a-»q | , ^ ^ A(q) for all q.

By combining the estimates (32) and (33) we arrive at the following result.

THEOREM 3. Let i = {ip} be any addle and X(p) any ceiling of K. Then
there exists an element a of K such that

nC
la-tqlq ^ — A fa) for all q, | a - t t | t ^ A(t) /or a« t.

COROLLARY. These formulae imply that

Hence to every addle 1 there is a field element a with the property that the volume
of the addle a—/ is not greater than (»C/2)B.

Theorem 3 seems to be new; it is stronger than the approximation
theorems in the books on algebraic numbers which have been referred to in
the introduction.

12.

As an application of Theorem 3 we give here a short proof of a
well-known density theorem (see e.g. Lang 1964, V, § 1, or O'Meara 1963,
§ 33 : 5.)

Denote by X(p) an arbitrary ceiling, by t a parameter such that

(34) t ^ 8nC

and by L(t) the number of field elements oc satisfying

(35) |a|q ^ M(q) for all q; |a|, ^ A(i) for all t.

We shall prove that

(36) L{t)
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Put

where as usual the square brackets denote the integral part. Then, by (34),

(37) _L^_L_1<T^_L.
v 8«C ~~ 4«C ~ 4»C
For each suffix / = 1, 2, • • •, n denote by gt any one of the integers

0, =F1. -F2, • • •, =FT,

so that the system g = (gx, • • •, gn) of these « integers has

\4nC/

possibilities. With each system g we associate an adele 1 = l(g) = {ip} as
follows. For every infinite prime divisor q = q(i> put

| 2nQr
JA(q(J)) if 1 ^ / ^ rlt

and for every finite prime divisor t put

ix == 0.

By Theorem 3 there exists to this adele an element a = a(|f) of K for
which

\-rt)*\" I ̂  o *\H / 1L ' I T 1 = 7 = 'oo>

|a|t ^ A(t) for all t.

Now, by (34) and (37),

max

and so it follows from (38) that a is a solution of (35).
On the other hand, the numbers, <x and a* say, that belong to two dis-

tinct systems of integers g and g*, are themselves distinct. For let j be a
suffix for which gt ^=gf and hence \gf—gf\ ^ 1. Then both for j ^ rx

and for j > rlt
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nC
| au>_a*u>| ^ 2wC • 1 • A(q<J>)-2 — A(q«») > 0.

By means of our construction we have thus obtained ( 2 T + 1 ) * distinct
solutions of the inequalities (35), and so we have proved the assertion.

13.

If x is a real variable, let as usual

sgn x = + 1 if x > 0, sgn 0 = 0 , and sgn x = — 1 if x < 0.

THEOREM 4. If X(p) is any ceiling such that

A(q) # 1 for all q,

then there exists an element & yt 0 of K for which

sgn(|0|, ,-l) = sgn(A(p)-l) for aU p.

PROOF. Denote by I so large a positive integer that

for every q either X(q)1 > Cn or X{q)1 < C~".
The powers

HP)", s = l , 2 , 3 , . - - ,

are again ceilings; for each s denote by oc^Zs), • • •, xn(ls) a A"-basis.
By Theorem 2, all the quotients

k = 2, 3, • • • , » ,

h'e in the finite set M. Hence the system of these n—1 quotients has only
finitely many possibilities, and there exist two positive integers s and t
such that

g> ^1 = ^§ for* = 2,3,
«i(&) «i('O

Put

Then d ^ 0 lies in if, and

(39)

As before, denote by a^ the finite divisor belonging to X(p). Then ô * and o"
are the analogous finite divisors that belong to A(p)" and X(p)lt, respectively.
Since as ideals
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[of] = (%(&). • • •, o.(b)) and [ojf] = (ot^fl), • • •, «.(«)).

the principal ideal (#) satisfies the equation

and hence also the equation

(#) = [air0]-
It follows therefore that

|,?|t = A(t)"-'» for aU r,

whence

(40) sgn(|0|t-l) = sgn (A(t)-l) for all r.

Next, for all q,

(ft= 1,2, • • • ,») ,
hence, by (39),

for all q.

If A(q) > 1, then A(q)' > C and hence

|#|4 ^ C-A(q)' > 1;

if, however, A(q) < 1, then A(q)1 < C~" and therefore

Thus, in either case,

(41) sgn(|tf|,-l) = sgn(A(q)-l) for all q.

The assertion of the theorem is contained in (40) and (41).

14.

Let
where s 2: 1,

be a finite set of distinct prime divisors which, in particular, contains all
infinite prime divisors. From the definition of a ceiling it is obvious that
for all suffixes a = 1, 2, • • \ s there exists a ceiling, k,(p) say, with the
following properties.

(a) UPa) > 1-

(b) K(P)< 1 if peS.p^p,.

(c) Mp) = l i f ptS.
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Denote by #„ a field element given by Theorem 4 for the ceiling ka(p).
Thus

It follows then from a theorem by Minkowski (see e..g. Hasse 1963, § 28)
that the regulator

does not vanish. Hence no relation

0f. • • • 0*. = l

with rational integral exponents xl,-'-,xn not all zero can hold.
In the special case when S consists only of the infinite prime divisors,

this result contains the main part of Dirichlet's unit theorem: There are
r = ?„,—1 independent units in K. In the general case the result just proved
is due to Artin and Whaples (1945).

15.

Let X(p), ft(p), and v(p) be three ceilings connected by the equation

v(p) = X(p)fi(p),

and let a*, a^, and o, be the corresponding finite divisors. Then

ft,, = oAfl, and [<!„] = [ftA][ft«].

Denote by fit, • • •, /?„ and ylt • • •, yn a ^-basis and a r-basis, respectively,
and by

P= {fit.--•,$«)' a n d Y= (Yi.---.ynY

the two column vectors of which these bases form the components.
Since the components of both /? and y are linearly independent over the

rational field, there exists a unique matrix

with rational elements such that

(*2) y» = i « » A (A = 1 , 2 , • • - , » ) ,

of in matrix form,
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The matrix U is non-singular, i.e. its determinant

M = det U

does not vanish. For from (42),

N K ) = \u\N(aM),
whence

(43) |M|=|M

16.

We can further obtain some information about the single elements
ww of U. Denote by a the smallest positive integer such that

aax, = a sav,
is an integral divisor. Then

aav = aa/t, [oa,] = [o][aj
and hence

[aa,] is a subset of [o^].

There exists then a n n x n matrix

V = (ife)

with rational integral elements such that
n

«y» = 2 ° » A (A = i, 2, • • • , » ) .
*-i

On comparing this formula with (42) and remembering that U is unique,
it follows that

(44) aU = V is a matrix with rational integral elements.

Next, on changing over to the conjugates, the formulae (42) imply that

irf (*.,•=. l . 2 , - . • . » ) .

For fixed h, this is a system of n linear equations for

with

(45)

the determinant

Ao =
AV--./*11
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Therefore, by Cramer's rule,

(46) «„ = ^

where J M denotes the determinant which is obtained from Ao on replacing
the A-th column of the latter determinant by the new column

Now, by Theorem 1,

\fiH>\ £ Q*(q«>). |y<»| <L Cr(q»>) =

Hence, on developing AM into a sum of n\ terms

Here

so that by (45) and (46),

(47) |«M| g _ max X(q) (h, k = 1, 2, ••-,«).

The properties (43), (44), and (47) enable us to find all possible matrices
U; in particular, we obtain upper bounds for both the numerators and the
denominators of the elements «M of U where these bounds depend only on
the ceiling A(p). We therefore arrive at the following result.

THEOREM 5. To every ceiling A(p) there exists a finite set

of matrices £/"> = («<»>) with rational elements, all of the determinants TN(a*),
which have the following property.

If p(!p) and v(p) are any two ceilings satisfying the relation

v(p) =

and if h, • •', 0n and yx, • • •, yn are a p-basis and a v-basis, respectively, then

where Uil) = (u$) is some element of SA.

(A = l , 2 , . . . , « ) ,
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17.

As an application of Theorem 5, consider the infinite sequence of
ceilings

(48) X,(p) = io{p)n(p)1 (I = 0, 1, 2, • • •),

where ?^{p) and p(p) are two fixed ceilings. For every suffix I denote by
« , ! , • • • , a l n an arbitrary A,-basis, and by

Ut = (ulM) (I = 0, 1, 2, • • •)

the uniquely determined nxn matrix with rational elements for which
n

(49) «,+!,»= 2 «,,»**,,* (A = 1, 2, • • - ,«) .
*=i

By Theorem 5, the sequence of matrices

(50) Uo, Ult U%,---

consists then of only finitely many distinct elements, and these lie in a finite
set which depends only on /i(p) and not on ^(p). In the special case when

= t*(t) = 1 for all r,

this result goes back to Minkowski (1899).
Minkowski also decided in this special case for which fields K the

matrix chain (50) can be periodic; by this we mean that there exist two
positive integers L and L' such that

UM = Ut for I ^ V.

In the general case I solved this problem in my paper (Mahler 1937) by
proving (in a slightly different notation) the following theorem.

In order that to the sequence (48) of ceilings there exist a sequence of
i.t-bases a.ltl ,•••, a, „ for which the sequence (50) of matrices is periodic,
it is necessary and sufficient that the ceiling fi(<\) be principal.
I also showed in this paper that to every ceiling /i{p) there exist principal
ceilings that are arbitrarily close to some integral power of p(p).
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