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While LiouviLLE gave the first examples of transcendental numbers, the
modern theory of proofs of transcendency started with Hermite’s beautiful
paper “Sur la fonction exponentielle” (HErmITE, 1873). In this paper, for a
given system of distinct complex numbers w,, @y, ..., ®,, and of positive
integers Qg. ;. ..., 0,, With the sum o, HERMITE constructed a set of m+1
polynomials

Wo(2), Wy (2), ... U, (2)
of degrees not exceeding o — 94, ¢ — ¢4, ..., 0 — 0, respectively, such that all
the functions

Wy (z) e — A (z) e”*F OZk<I=m)
vanish at z=0 at least to the order o+ 1. On putting z =1, these formulae
produce simultaneous rational approximations of the numbers 1, e, €%, ..., ¢™
that are so good that they imply the linear independence of these numbers and
hence the transcendency of e.

In a later paper (HermiITE, 1893), Hermite introduced a second system of
polynomials

Aolz), A (2), ..., A,(2)
of degrees at most g, — I, ¢, — 1, .... ¢,,— 1, respectively, for which the sum

m

> Aplz) e
k=0

vanishes at z = 0 at least to the order ¢ — 1. On putting again z = 1, one obtains
now a linear form

ag+ae+ - +a,e”
of small absolute value and with small integral coefficients, from which again
the transcendency of ¢ may be deduced. Surprisingly, HERMITE himself never
took this step, and I was seemingly the first to use the polynomials A4,(z) for
this purpose (MAHLER, 1931).

In the present paper I once more wish to exhibit the usefulness of Hermite’s
polynomials A,(z) for the study of transcendental numbers. 1 shall prove a
number of explicit estimates, free from any unknown constants, for the simul-
taneous rational approximations of powers of ¢ or of the natural logarithms
of sets of rational numbers.
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1. Let wy, Wy, ..., 0, @ be m+ 2 integers satisfying
O=wy<w,<w, < <w,=Q,
and let
§ |
M= ]l(w,—w), M= lem M,, N= lm (0,—m),
1=0 ’ k=0,1,....m 1+k
I+k k,1=0,1,..., m
where Icm denotes the least common multiple. Let z be any complex number,
¢ a positive integer, and
1 if h=k,
5hk:{

0 if h=+k,

the Kronecker sign. Denote by C, and C_, two circles in the complex 3-plane,
both with centres at 3 =0, and of radii less than 1, and greater than £, respective-
ly. Then put

1 e3d3 1 e3d3
Aplz) = : - , Ry2)= . p” .
2 B+ o, — ) 2l I—[(ﬁ“wl)ewm
0 o 1=0

Co 1=

These definitions imply (see, e.g. MAHLER, 1931) that A,,(z) is a poly-
nomial in z at most of degree ¢ ; that

R,(z)= Z Apy(2) res (h=0,1,...,m),
k=0

and that the determinant
AOO(Z)7 s AOm(Z)
D(z)=| L | =Czmt e
AmO(Z)» ERE) Amm(z)
where C £ 0 does not depend on z.
2. By the paper quoted, R,(z) may also be written as

1 1 -1
Rh(z):z(mﬁtl)gj‘dt1 fdtz j dt, d(t) ¥,
0 0 0

where the expressions @ and ¥ are defined by

_ (1 _ tl)Q+(5h0—1(tl . [2)94'5»-1*1 (tmvl _ tm)e+5h.m—1“1t§n+5hm“1

D(1) -
lﬂ(@"‘éhz‘ D!
=0

and

Y(t)=wo(l =t )+ oty =)+ = + O (ly 1 = L) + Ol
respectively. Here the quantities
L=ttty —ty, oty —t
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are non-negative and have the sum 1. Therefore, by the theorem on the arith-
metic and geometric means

O=(I—t)(ty—t5) . (ty1 —

b b S (m+ )70,
so that
0= o@B)=(m+1)""" V(ele—1")"
Further
0=rYHsQ
and

1 51 tm—1

jdtl Jdt2 J dt,, = L

m!
0 0 0

It follows then from the first mean value theorem that

|R ( )] - IZI(m+ 1)e eQ|z|
Z) =
RIS ol (m )t DE Dol (g — Im

3. From the integral, 4,,(z) is the polynomial

Lzl
Anl(2)= Z A,
=

1 3 d3
A=\ G=0.1....0)
II 3+wk w)Q‘*'&m

Co 1=0

If we choose for C, the circle
3= —
=

then on this circle,

e E L B R
w 1

m+1
The formula for 4§} may also be written as

m o 1 Sj_Q_‘shk d3
() @~ 0n1 .
A= I_Io —wy) i S
k

for k=+1.
m+1

1+

m ( 3 o+on; °
1+ ‘ )
o II:_IO Wy — @,
I+k
It follows therefore that

|A(J)!<M 0. 1 27 ( 1 >—(Q+6hk)< m >—mg—(1—(§hk)
21 m+1 \m+1 >
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and so, by 0<6,, <1, that
AG) = My em™"e(m 4 1) e,

4. From the original integral,

m d \"¢ Ont ZQ+6hk 1
Ap(z) = ot —— S —
wl2) ,Uo(a”‘ @t dz> (Q+Op— 1)

I*k

This formula may also be written as

m 1 d >—Q"5M zeton—1

A= [l =opee [T 1+ L0 )" T

I*k I+k

0— 5 ~ d* Z@+ o= 1
Z < hl)((l)k“wl) * dzl}(

= i 0+ 8, — 1!

or, what is the same,

Ap(2) = l—l(wk W)~ ont. 1—1{
=0 =0
I+k I+k

Here the binomial coefficients are integers; the differences w, — w, are divisors
of N; and hence the operator has the form
A

5 () enmor ] S

l+k
where
Jo- 915925 --- (go=1)
are certain integers that also depend on h and k. It follows that
B +6M.g+6hk—1 . ZQ+§M(—1*1
Ankl2) H(w" O) T L NS A

l*k
Here, from the definitions of M and N, the factor

ME®N - 1’1 (wk_wl)—e~ém
I

is an integer. Therefore the product

api(z)= MeNe*! 0! Apil2), =

say, is a polynomial in z with integral coefficients af).

Since
2 7
ahk(Z):MQNQHQ! Z AL’%.*,
. !
Jj=0 J:
these integral coefficients can be written in the form
A(J)

a(})_.MQNQ+1 '_
].
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and so satisfy the inequality
MONe* Lol (m+ 1)m+ e
Mg m™e '

lagl <

It is further obvious that
MENeH Lol (m+ 1)m*Deplzl

lan(2) = M mme
because '
4 IZIJ
e < 2]
j;O j!
In analogy to a,,(z) put also
ru(z) = MeN®* 19! R,(z) (h=0,1,...,m).
Then
r(2) =) aplz) e (h=0,1,...,m).
k=0
From the identity for D(z), the new determinant
aOO(Z)a LR aOm(Z)i
dz)=| : N
amO(Z)’ LR amm(z)

where again ¢ %0 is independent of z.
We note that, by the estimate for R,(z),

MeNe*1|z|m+ De eIzl
m! (m+ 1) De=bp m-

5. The inequalities just proved can be simplified by means of some simple
lower and upper bounds for M,, M, and N.

First, the factors of M, are integers distinct from one another and from

zero, and of these factors k are positive and m — k are negative. It follows there-
fore at once that

[r(2)]

lIA

-1
ngk!(m—k)zzm!<’:) > 2 )

Secondly, N is the least common multiple of certain positive integers not
greater than 2, and hence

N<lem(l, 2, ..., Q)< el 042
where the numerical inequality is taken from the paper (Rosser and
SCHOENFELD, 1962).
Thirdly, an upper bound for M may be obtained by the following method
due to B. H. NEUMANN.
For each suffix k and for each prime p let y,(p) denote the largest integer
for which

puk(p)l Mk .
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Hence
Mk — rlpuk(p) .
p

Since |, — ;| £ Q, a power p' of p cannot be a divisor of some factor w, — w,
of M, unless

p'<Q and therefore p=<Q.

The largest possible value of t is then

[logQ}
T =

log2 1’
because 2771 > Q.

One counts as usual how many of the factors
w,—w, where 0ZI[<m, [+k,

are successively divisible by p', by p?, by p?, etc., and finally by p°; the sum of
all these numbers is equal to u,(p). Now M, has just m factors w, — w,, and so
none of these numbers can exceed m. Also these factors of M, lie in the interval
from o, — Q to w, of length Q, and this interval contains the multiple 0 of p'
which is not a factor of M,. Therefore at most

oo 2)

factors of M, are divisible by p', whence

(p) = Y. min (m Fi]) .
t=1 p

We replace this inequality by the weaker but more convenient one,

. Q 1 Q
Hi(p) < min (m> []) + Z [T} =u(p) say.
14 (=2 P

M* = rl pu(m.

psQ

Let

Then all products M and so also their least common multiple M are divisors of

M*, and hence it follows that
M < M*,

w-5[2]

t=1

6. Put now

so that, by a well known formula,

Q= ﬂ e
. ‘p§Q
It follows that
e 20

A
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where A denotes the product

A= pv(p)-u(p)’
p=Q

A
\_/

From the definitions of u(p) and v(p

v(p) — p(p)
if p>—,
so that
[£]-m
A=T]p”
ps
and therefore also
1
logd= Y (Qﬂ —~(m+1)logp>
p= £ p

In the paper (R()SSER and SCHOENFELD, 1962), it is proved that

for x>1

1

——ee >1 +E —
p; 8% 2logx
and

Y logp<1.02x for x=1,

PEXx
where E is a certain constant satisfying
E> —134.
Assume for the moment that
Q=e*m>m,
and therefore
Q 1
2log— =24, —— £0.25,
m Q
2log—
m

while trivially

m+ 1
m

<2.
It follows then that

Q 1 Q
logA>Q<log-— —1.34 — —)—(m—i— 1)1.02—
m Q m

2log—
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or
Q 1 1
logA> Q log‘—<].34+ + 1.02) ,
m Q m
2log—
m
and here
1
134t gt mil LO2S 1344025 +2.04 =363 < .
2log— "
m

Hence, finally,

Q 11
log A >Q<log—- — —) ,
m 3

Q\* -4
A>(~—) e 3 °
m

This inequality trivially is valid also for

that 1is,

Q<e’m,
because then
11 0 11
2———)Q Q -0
A§1>e( 3) >(A> e 3 .
m

7. Thus it has been proved that always

Q! Q\ye UL
Mg,w*g—m<s2!<——> PR
A m
Here
Q!<e[/§QQe_Q

and therefore

8
T2
M<el/Qm®e’ .
But 2> 1, hence
e]’Q=el +%log{1+(971))§e%({2+ 1)+%(Q~1):e!2’

and so finally

11
-
M<mPe3 .

On combining this inequality with the earlier one for N,
11
MQNQ+ 1 < MgNZQ < (m.Q 6"3_9)9 (61'04Q)ZQ
and hence

MeNet 1 < pfe 6%
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8. For the moment put
MONe* ol (m+ 1)m+ e MeNet!
a= =

Mg mme C T it D g

by what has been proved in §4,

max|ai| < a, max|a,(z)] = a el max|ry(z)] < rfz|" "D 2P
SR J s

Thus upper bounds for a and r imply upper bounds for |a}], lan,(z)], and
[ry(z)]. Such upper bounds are obtained as follows.
To begin with a, we apply in addition to
M =2""m! and MOeN?*"! < pPeede

the formulae
[/ 2moote t<ol<e|/goe®, m!>| 2mmm"e ™.
We find then that
m?¢ 0P g /g 0% e (m 4 1)m* e
27" ) 2mmm™ e~ ™) mme

:< eZQ )1/2( 2mem—1(m+1)m+1 o 69)9.

(2m)e m2mt ene

a<<-

Here
er <15, 2n>6

and hence
2
e 750 < 750 <.§,<4'
(2m)? (L+5) 1+5¢ 2

Further the function

Zmemfl(m+ ])m+1

2m+3

m

of m assumes it maximum when m =2, and this maximum has the value
[ —— < ]3 .
2

The final result is therefore
a<2(13gm“e®?)e

and it follows that

rgl;fleaﬁ,f}ll <2(130m?e®?), max [a,(2)] < 2(13gm? %2y el?l
SRy J B

.
(0— 1)!>l/-‘ngge‘~’,
0

8. Since
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we similarly find that

mQQ e6QQ
r<
m o -m . m+1e-1). 2, o\
)/ 2rmm™e™" - (m+1) o%e
Q
m
oM Qf mmne m? o092 p2m >e
= + 1 m .m
(2n)%‘~rnm(m+1)""“)‘9”1’-(3'"" e
Here m > 1 and ¢ = 1. Further
m™"(m + 1)(m+ 1)(9—1)=mme+a—1<1 + _L)(m+ 1)(9*1);mma+e—l e? 1 > m"e
m
because
1 m+1
<1 + ~> >e;
m
and also
m+1
n) 2 >1.
It follows that
m
em 2 mme 3+ m
m+ 1 ¢ < ( Q—l ) =1,
5 eQ

(27’[) mm(m+ 1)(m+ 1)(Q—l)emg

since

S

e lzl4+(e-)=0z0",
The final result is then that

mQ e6Q e2m 0 mQ eSQ ]
r< mm Qm é mm Qm >

here we have used that

m=<Q andhence e"=<e“.
Thus it has been established that

mQ eSQ ]
max |r,(2)] << e > lzl(m+ De p@lz|
h m Q

9. As a first application, denote by w a positive integer and put
z=—.
w

Let further ¢>1, ¢, 49,, ..., g, be m+ 1 arbitrary integers, and let

Dk

o
q

g=2mq max
k=1,2,..., m

e

14 Math. Ann. 168
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and

where we have put

qgo=q=1
Since w, =0, trivially
g=0,
and hence
g= _max ‘mlskl = k:?}?,).(.., &kl
The powers
o1 o2 Om
e®,e®, ...,e?

are irrational numbers, and hence
e>0.

We shall now establish a positive lower estimate for &.
For this purpose we note that the (m+ 1)? numbers

1
aﬂahk(;‘)’ = Ay say

are integers, with the determinant

Agos - Aom
: : |*#0.
Ao s Amm
On putting
1
co"r,,(—) =R,
)
we have
Ry=Y Ape®
k=0

The estimates in §§ 7—8 now take the form
1
max |Apel < 2(1300m?e®?)2e®

and

(k=0,1, ...,
(hk=0,1, ...
(h=0,1, ...
(h=0,1, ...
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10. Since the determinant of the integers A, is distinct from zero, and
since the integers

go21, qi--sqm
do not all vanish, there exists a suffix & such that

Y A *0
k=0
and that therefore
Z wedi] 21
With this value of h, put
R ) R
=— Y A E=—— %4 .
Q= q ; hkbk > 2mq kgl hk €k
From the definition of ¢,
Ry= S Ape® — iA,,k(ﬂ % >=Q+E.
k=0 k=0 q 2mq
Here
1
Q9lz —
q
and

&
<
|E[ = 2q II:’&}(X |Ahk| .

Assume now that

max |R,| < —.
W | hl = 2
It follows then that

El =z —

' I__ )

and hence that
max |A4,,|=1.
& i | hkl =

Thus the following result is obtained.

If

IIA

m?e8? \e 2 4
ey 2ed
m™ o™ o™ 2q

then

1
£>{2e°(130m?e®?)e} !
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This result can be slightly simplified. Since all three integers w, £, ¢ are at
least 1,

2
2e° <22 < 22 < o290
so that
Q 80 0o 2 2 1002 ]
m = e
2<mrenm>ew<<n;lnmm>'
m" o™ w m™ o™ w
Further
1
2—8— > {4e® m(130wm?e®?)e} g7 > (52e0om® et "0g 1.
mq
Here
52 <e*,
and so

€ > (Qm?* 1 o2+ 5)~eg=1

2mgq

Thus the following result holds.
Lemma 1. If ¢ is chosen such that

Q102 \e
m-e 1
<7) S _"
then
1213 q
max e“’—-i >(me9+1e69+5)~gqv1.
k=1,2,...m q

11. When applying this lemma, one naturally will choose the integer ¢
as small as possible because this improves the estimate. It is now convenient
to distinguish between the two cases ¢ =1 and ¢> 1.

The case ¢ =1 holds exactly when

S

w= (mQ—merq);[ ,

and then, by the lemma,

Dk

max e“'——qi
q

k=1,2,....m

> (wm9+ 1 eGQ+ S)A 1 qm 1
Next, excluding this case, let
1

W< (mQ—meIOQq);,

so that the smallest possible value for g is at least 2. This value ¢ satisfies the

inequality
< erIOQ )Q 1 ( mQ elOQ )Q—l
_— —_— < .
mm Qm ™ q mm(Q _ 1)m ™

1A
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It follows that
1 1

) ot
00 =2(0— o < — (m% !0 g,
m

and that therefore

1 1

2 : o

meQJrl eGQ+5 < (erloS?)m mQ+leGQ+5qm(g 1) <
m

| ==

1
Q2 62+6 m—1)

<(m%e 109) m?e q
The lemma implies then in this case that
oK q _m+1 0 —1- [
max le® — dk >e(4Q—6)g(erIOQ) m g mig=1)
k=1,2,...,m q

Here we once more use that ¢ =2, hence that

1 1 1 2

—1-—2 = —1
q m(Q“l)zq m m(e—l)>q m.g me

where, by the choice of g,
2 m? 109 2
q " mo >< . m
m™ o™ w
Evidently Q =m, and so, by this inequality,
2 20
me e

Q2 (1)2

q

v

Assume, in particular, that also 2= 2. Then

2 20+20 20

40 —6=2, W2 Oeg me> - > because e?>g.
4q 2 2 2 Q
e w w

Thus, in this second case, we arrive at the estimate

max
k=1,2,....m

o k
e -4—|>

Our result may be expressed as follows.
Theorem 1. Let @, Wy, ..., Opy G5 G1» ---» > and Q be 2m + 3 integers satis-
fyving the conditions

wzl, g2, 0<ow;<w, < <w,=Q, Q=2.

If

v

A (mQ-meloﬂq);,
then

602+5\—1 1

max >(wm?tle ) e

k=1,2,..., m

e

o Ak
q



14 K. MAHLER:

If, however,

1
w<(m!2—m610!') q)m ,

and if ¢ denotes the smallest integer satisfying

erIOQ 0 1
— )<,
then
(3 20 m+1 1
L e _mrl, -t
max |e® — —|>—(m?e'%?) ™ g ™
k=1,2,....m q w

The interest of this theorem lies in the fact that w, w,, ..., 0., ¢, q4, ..., G,
may all be variable and are subject only to trivial restrictions. The assertion
is particularly strong when w,w,, ..., w, are fixed, while ¢,q,, ..., q,, are
allowed to tend to infinity. For then the parameter ¢ likewise tends to infinity
and is given asymptotically by

logg

¢ loglogq "
Hence a positive constant ¢ depending only on w, w, ..., ®,, exists so that

@ g«

max ew ﬂ >q m loglogq
k=1,2,...,m q
for large q.
If also w, w;, ..., w,, are variable, the theorem is much less strong. However,

some consequences seem still worth of being mentioned.
12. Theorem 1 implies an analogous theorem on the simultaneous approxi-
mations of logarithms. Its proof is based on the following elementary lemma.
Lemma 2. If x and y >0 are real numbers such that

Ix—logyl=1,
then
Ix —logylze ™ ?[e*—y|.
Proof. By the mean value theorem,
e—1
t

=¢* where 0<9<1.

Hence, on putting t = x —logy,
e -y $(x~logy)
— =ye <ey.
x —logy Y =y
Here
x+ 1

logysx+1, y=e

whence the assertion.
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This lemma we apply to each of the m pairs of numbers

xzﬂ, y:& k=1,2,...,m),

w q

for which, evidently,

X Q, e ¥ 2ze 92,

IIA
lIA

Qe
)

We next note that Theorem 1 remains valid if the conditions
O<w,<w, < <w,=0

are replaced by the weaker hypothesis that the integers w,, ..., ,, are all
distinct and have the maximum €. By combining the theorem with the lemma
we obtain therefore the following result.

Theorem 2. Let w, Wy, ..., Wy, G5 415 ---> Gms 2 be 2m 43 positive integers
satisfying the conditions

wpFw, for k+l; Q= max w,=2.
k k=1,2,....m

If w satisfies the inequality

1

w g(m""" o102 q);,

then

k=1,2,...,m q [0}

If, however,

and if ¢ denotes the smallest integer satisfying
m!) el 02 \e

18-Q m+ 1
(erwQ)— m

lIA

1
q 9
then

o —1-1

e m
q .

Wy
max —
k=1,2,...,m

q

13. We deal in detail with one special application of Theorem 2. For this
purpose denote by

P1=2,p2=3, ..., P
the first m primes in their natural order. We apply the theorem with
4=1,4,=pp s 4= Dnm
and choose for w, @, ..., ,, any m+ 1 positive integers for which the fractions
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W, om L .
——, ...,—= are approximations of logp,,...,logp,,, respectively, that are
) )

already so close that

1
(A) max |logp,— &] < —log Pm
k=1,2,...,m w 2 DPm—1
Further put again
Q=max(wy, ..., w,)
and assume that
m=10.
From the hypothesis (A),
[logp, — logp)| = log for k=1,
. m—1
and
logp, =log2>log for all k.
m—1
Hence
) w 10} W
“% - Kk =<-% —logpy+ 1) + (logpy+ 1 —logp) + (10gpk - %)
1 1
> — —log Pm + log P — —log =0
2 m—1 Pm-1 2 Pm-1
and
—->10 2 10 >log2 10 3 >0.
o g 2 g—— Pm . g 2 g
The hypothesis (A) implies therefore that
O<wy<w, < <w,=Q.
It also implies that
w=2,
because, if w were equal to 1, it would follow that
3
logp, — ——‘ > |log2—1|> —log— —log Pm
2 Pm-1

for all choices of the integer w,, contrary to (A).
Next we have w,,=m =10 and therefore

Q>2.

Thus all conditions of Theorem 2 are satisfied, and this theorem may be
applied.
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From (A),

1 3
Q<w<logpm+*log P =~w—log< Pm |
2 p 2

m—1 Pm—1

Here, by Bertrand’s law on prime numbers,
1
Pm—1> 5 P>
and by the paper (ROSSER and SCHOENFELD, 1962),
Pm<}/2mlogm.
Therefore the quantity Q allows the upper estimate
Q< wlogmlogm).

It follows that
Q- 100 % 1 1
(m ™ me Vi < Eexp W(IO—F logm) - wlog(2mlogm); .
Here the right-hand side does not exceed 2 if

mlog(2m)
(10 +logm) log(2m logm) °

(B) o=

and so, for such values of w, the second case ¢ =2 of Theorem 2 cannot hold.
Therefore, by this theorem,

w -
tIngk_ 7kl>(wm9+1 e7Q+7) r
m w

.....

In this estimate,

om?*t "2 < e"mwexp{(7 + logm) - w log(2m logm)}
) _
<e'm m log(2m) exp { m(7 + logm) log(2m) }
(10 4+ logm) log(2m logm) 10+ logm
2
,
<e Togm exp{mlog(2m)},
where, by m = 10,
2 2
e <2,000- 5 <(2m)’.
logm 2

Hence it follows from (B) that
w
logp, — 2% > (2m) ™3
k={r,‘§‘,’.‘..,mi ogpe— —_~|>(2m)
A stronger result is obtained if w is restricted to the smaller range
m

(© w (7 + logm) log(2m logm) '

IA
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Now

7 2 m
QL ,TRHT T m Lm_ £ me
wmee €M T Tlogm) log@mlogm) ¢~ (logm)? ’

where, by m = 10,

e'm*em 2000m? e™ S m
5 < 5 e,
(logm) 2
It follows thus from (C) that
max {lo e P
k=1,2,...,m EPm— 7, moee

The two right-hand sides

2m) ™% and m e ™
in the estimates just established are smaller than the right-hand side
1

3 log——p"’—, =] say,

Dm-1
of the hypothesis (A). For
Pm<|/2mlogm<m?,

because
1
logm§log2+?(m—2)<%l.
Therefore
1 P 1 m? 1
A= —1 m —log—r— > — -2
z 5 ng,,.—l > 5 ogmz_1 > 2log(1+m ),

where, by m= 10,

2 4 -6

1 1
710g(1 +m” %> ?(m‘ —mt—m O~ ) > —m”
Hence
1
A>—m2>m"3,
™ m
giving the assertion easily.

We may then omit again the hypothesis (A), and we are also allowed in
including the trivial denominator w = 1. Then, on combining the preceeding
results, we obtain the following theorem.

Theorem 3. Let m=10; let p, =2, p,=3,...,p,, be the first m primes,
and let o, w, ..., ®,, be m+ 1 positive integers. Then

mlog(2m)

e (10 + logm) log(2m logm) °

k=1,2,....m

logpk—%|><2m)-m-5 if 1Sw<
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and
Wy l -5 - . m
1 - > " I1fw= .
kz?,l?,)f.,m 08P o | moe yolsos (7 + logm) log(2m logm)

These two inequalities are rather weak, but it does not seem to be easy to
obtain much better ones. For larger values of @ the position is worse.
14. Next put

o, =Lw,=2,...,0,=m, hence Q=m.

The general estimates for a), a,,(z), and r,(z) can in this special case be a little
improved. For now evidently

-1
Mkzk!(m—k)!:m!(':) >2""ml, M=m!,

and by the paper (ROSSER and SCHOENFELD, 1962),
N< e1.04m .
The formulae in § 4 become therefore
|a;Ij’Z| § 2mg el.O4m(g+ 1) Q‘ m~mg(m + 1)(m+ 1o ,
Iahk(z)l é ome el.O4m(g+ 1) Q' m~mg(m + 1)(m+ 1)e e|z| ,
|r,,(z)| § (m!)g— 1 el.04m(g+ 1)(m + 1)—(m+ 1)(e— 1){(Q _ 1)’} —m‘ZI(m+ e emlzl .
These estimates can be further simplified if we assume from now on that m is

already sufficiently large, but that ¢ may be any positive integer, small or
large. For

1 1
i1 1\™
o!<el/og®e ?, 0°<3°, <1+-> <e,
m

while

(m+1)">1

1.04

becomes arbitrarily close to 1. Since 2e*-%* <e!-74, it follows that

. 1 \™¢
i S 2 e 0t e g gre e+ 1) (14 )
m

o+1 1 1 1

§{261.04 e pme Qm(m_‘_ l)ﬁ}mg Qg<el.75m(g+ 1) QQ

and hence

(1) lagil < et TImer gt ay, (z)] < et TIMETD gt el

15. Next, the estimate for r,(z) may be written as

[r(2)| < R|z|™* Deemlzl |
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where R denotes the expression
R = (m!)g— 1 el 0dm(e+ 1)(m + 1)~(m+ 1)(e— “{(Q _ 1)|}‘m
which does not depend on z. Since

2——TE 1 m+1
ml<el/mmrte™, (o—1)!=]/ g% ¢, <1+%~> >e

0
we find that

e—1 m
Réeg_l m 2 m(Q*l)e m(e—1), el 04m(g+1)(m+ 1) (m+1)(e—1). <2Q >2 Q—mgemg.
T

Here

1 )f(m+ 1)e—-1)

@ D 4 1)~ D=1 — == 1) <1 + — <m~@ D=1
m

so that after a trivial simplification,

_et m
R < ele=D=me=D+1.04me+ 1) +me=(e~1) " 2 <29 >2 o me<
T

0o—1 m

<em+ 1.04m(o+ l)mﬁT—< Q 2 Q~mg
- 2n

On omitting the factors that are smaller than 1,
R<e1.04m(g+2) Q—m(g—%),

whence

(2) |”h(2)i <el.04m(g+2) Qfm(g~§)lzl(m+ 1)e emlz( .

If also g is sufficiently large, this inequality can be further simplified to

(3) ,rh(z)l <e1~05mQ Q~mg lZ|(m+ 1)e em|z| .

16. As a first application of the last estimates, let g be a very large positive
integer, and let y be the integer defined by

1 1

9=y4+0, wh ——=S0< + —.
e’=y+ where ;= +2

In the identity
z)= Z ahk(z)ekz
k=0
substitute
z=g, &=y+9.
Then

B9 = Y an@) o= T Yaulo) ().

k=0 k=01=0
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or, say,
m
ru(g) = Z bu o'
1=0
where b, denotes the expression
< k k—1
by = Zahk(g) I o
k=1
In particular,
byo = Z and9) y
k=0

Here, by §4, the determinant d(g) with the elements a,,(g) does not vanish.
Hence a suffix h exists for which

b,o*0.
Let h from now on be chosen in this manner.
17. Since
e
alz)= Y a2’
j=0
we have

=, Bato ()

so that b,, is an integer. By the estimate (1),

(¥) 1.75 +1
i < 17 ome ) e,

Further
4 . k m k m
WAESCERIE ( )gz", z( )g Y 2t <omtt,
j=0 l k=1 l k=0

Hence, for all suffices [,

Ibhl[ < el.75m(g+ 1) Qg(g+ l)g 2m+1 ,ym
On the other hand, b, is a non-vanishing integer, and hence
lbrol = 1.

Let us assume for the moment that
1
|5l < _3_ {el.7Sm(Q+ 1) Qg(g+ 1)g 2m+1 ym}—l
and hence that

1
Sl < —.
||<3
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We find then that
(@] = 1byol — 18] Y. byl 101~ >

1=1

1 m -1
>1_§{e1.75m(g+ I)Qg(g+1)92m+l,ym}—1, zel.7Sm(g+ 1)Qg(g+1)g2m+ l,yrn(_) .

I=1

Here

.-»
b8
—
W=
~—7_

L

Il

po| =

3 -
and so it follows that

1
> —.

Ira(@)l 3
However, if both m and ¢ are sufficiently large, then, by (3),
Ir(g) < et-03me

If now m and g are chosen so as to satisfy the inequality

Q—-mg g(m+1)g emd

(D) el-05me o me g(m+ De gms < %

E

a contradiction arises. The assumed upper bound for ¢ was therefore false,
and so (D) implies instead the lower bound

. 1
(E) IO| g ~3_ {el.7Sm(g+1) Qg(g+ l)g 2m+1 ym}—l .

Denote by « and f two positive absolute constants to be selected imme-
diately, and take for m and g the integers

m=[aloggl+1, o=[fg]+1,

where, as usual, [x] is the integral part of x. Then m and ¢ will exceed any
given bounds as soon as ¢ is sufficiently large, and so, under this hypothesis,
we were justified in applying the formula (3).

The inequality (D) is equivalent to

L g 1
gZeL05g1+meQ 2mg.

Here, by our choice of m and g,
m>ologg, o¢>pg,
and therefore

1 g 1
o

The remaining factor

ome
is arbitrarily close to 1 as soon as ¢ is sufficiently large. Thus, for such g,
ale 1 1,1
1.05 m e 1.06+ p +

el 05y meedme < kg
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Assume now that

1L
106+ + 5

(F) Bze
The condition (D) is then satisfied because

g 1
o

2me,

0> Bgze T T gty e

Also, for all sufficiently large g,
el.75m(g+ 1)<el.76z1ﬂglogy, QQ<(ﬂg)1.005ﬂg<el.01ﬂglogg’

1 alogg+1
(g+ 1)g<el.01ﬂglogg’ ,ym<<eg+ 7) <e1401aglogg’

3 x 2m+1 <ealogg<e04011910gy.

The lower bound (E) for ¢ takes therefore the form

Ial >e” (1.76aBglogg+ 1.01Bglogg+1.01Bglogg+0.01aglogg+ 1.01aglogg)
b

that is,
—(1.76ap+2.02p+1.02a)g

[0] >¢

We finally fix the constants o and f so that (F) is satisfied, while at the
same time the sum

6=1760f+2.028+1.02x

becomes small. After some numerical work one is led to the values

p=7, a=135,
when

11
¢ T T <9527, <324,

We arrive thus at the following result.

Theorem 4. Let g be any sufficiently large positive integer, and let y be the
integer closest to e°. Then

led —yl>g~3%.

By means of more careful estimates, the constant 33 in this theorem can be a
little decreased. However, it does not seem to be easy to obtain any essential
improvement of the theorem. Previously, by means of a different method, I had
proved the analogous estimate with 40 instead of 33 for the constant (MAHLER,
1953).

18. We finally apply the formulae (1) and (2) to the study of the rational
approximations of 7.
Denote by p and g any two positive integers such that

14

1 1
n=-—+0, where — —— <6<+ —.
q 2q 2q
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It is trivial that there exists arbitrarily large integers of this kind.
In the identity

r(z) = Z ap(z) e
k=0

put now
z:%l, =i,
so that
i o i\
r"<7>:k:0“""( 2 )‘
Here

or, say,
i 2
ahk<7) Zchklé
1=0
where
e /i PN\ Jj=1
_v(/ (j)(i) (ﬁ)
Chkl jgl<l>ahk ) p
Therefore

where we have put

In particular,

Cro= Tt =5 Tat(5) (L) #= 3 a2 ) #

k=0 j=
. . ip\ . ip
Here, similarly as before, the determinant d S with the elements a;, Tq
q

does not vanish. Therefore, from now on, we may again assume that h is
chosen so as to satisfy the inequality

ChO:’:O’

19. The expressions

4

¥ cua= () 2077 g0

j=1
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and

m

(q* Cy = Z (29)° cpi i

k=0
are integers in the Gaussian field Q(i). In particular, (2q)¢ C,, is a Gaussian
integer different from zero, and hence its absolute value is not less than 1.

Therefore
[Chol = (2g)¢.

Assume now that m is already very large, while no such restriction need
be imposed on g. We are thus allowed to make use of the estimates (1) and (2).

Since .
(J).ng, (9_1)21 for I<j<e,
[ j—1

it follows from (1) that
3 Q_l> i 1.75m(e+ 1 1N rpy™!
al <3 (2 )2 e mern (L) (2]
lhkl jgl ]_l 2 q

1
L n+osn+ — <4,
q 2

Here

IIA
lIA

and therefore
N 1.75 +1 . -1
Cpprl < et 7omer ) ge. 5e

and
IC,l < L"_;;_le1.75m(g+ D ge. 5
Let now, for the moment, ¢ be so small that
0] < {(m+ 1)et73mer ) g2 5e2g)e} =1,
hence that
o] < 1.

(3)

2 |Chol =101 2. 1Cwl 101" >
=1

>(2g) 0~ {(m+ 1) e T gelogey Y e
=1

1.75m(e+ 1)QQ 5¢
b

and since

it follows that

15 Math. Ann. 168
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On the other hand, by (2),

; (m+1)g mn
Tl _ _ (T -
rh<2>l<ex.04m(g+2)g m(e 2)<2> e? .

Hence, if m and g satisfy the inequality

(m+1e mn
(G) el‘o“'"‘“z)@_'”(g_%)(%) s é%(?.q)_g,

a contradiction arises, showing that the assumed lower bound for é cannot be
valid. The inequality (G) implies therefore that, on the contrary,

(H) 6] = {(m+ 1) e 75m@* D g2(10g)} "

20. From now on let g be very large. If m is then defined by
m=[Alogq]+1
where />0 is a constant to be selected immediately, also m will be arbitrarily
large, as required in the preceeding proof.
The inequality (G) is equivalent to

o+2

1 (m+1)e n 4
o (B 24 (T \me= yze-1 me—1)
ez{3 e 5 e (29) .

Here the factors

1
<i> me—3% gnd 2m(ee— Y]
3

are arbitrarily close to 1 and so may be assumed to have a product

L e et2
(i me=5 gmie—5 o ot
3 :

We may similarly demand that
<.z>i.'.':;f? - <_>
2 2 '

1 - 1
m  Alogg’

Next

and hence
_e _e
qM(Q—%) < ete—3)
Thus (G) is for large g certainly satisfied if
et2 4 L3 14
=3 (l)“” T 201 i D)
b
2

1.05
gze °®
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that is, if

1

1.050+2.1+1.010logZ + 2 +2
QZe( e 1.0 eog2+2+l)g_%

Here

g-<1.571, log% <0.452, l.Ollog% <0.457.

The condition for g is therefore satisfied if

] 1
(3.671+1,507¢+%)
A Q—,L.
eze i

or equivalent to this, if
1
% < <g - -2—> logo —(3.671 + 1.507¢).
This inequality again is easily seen to hold if
o=14, A=135.
On substituting the values
o=14, m=[135logq]+1
in (H), we finally obtain for large ¢ the following result.
Theorem 5. If p and q are positive integers and q is sufficiently large, then

‘n— —p—i >q %,

q
This result is not as strong as the estimate

42 for q=2

n—£'>q‘
q

which I have previously obtained by means of a different method (MAHLER,
1953a).
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