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Shidlovski’s deep theorem on Siegel E-functions satisfying systems of linear differential
equations is applied in this paper to the study of the arithmetic properties of the partial
derivatives :
Cu(z) = 1 Ji}k J(2)! (k=0,1,2,3)

=) = il lal' L p\=lp=0 A A
of the Bessel function Jy(z). As a by-product, expressions involving Euler’s constant y and
the constant {(3) are obtained for which the transcendency can be established.

Let w; = f1(2), ..., w,, = [,.(2) be a finite set of Siegel E-functions (see Siegel 1949,
p- 33) which satisfies a system of linear differential equations

m
¢

r_ ' . o o
Wn = o +h241(Ihk?Ulf, (]' - 17 IR ))’l),

where the coefficients ¢,, and ¢, are rational functions of z. Denote by a + 0 any
algebraic number such that all coefficients g,, and g,,, are regular at the point z = «.
A beautiful and deep theorem by Shidlovski (1962) states that the maximum
number of function values F1(@)s s fonl2)

that are algebraically independent over the rational number field, is equal to the
maximum number of functions L1 oo fon?)

that are algebraically independent over the field of rational functions of 2.

In a number of papers, Shidlovski and his students have applied this theorem to
the study of special F-functions. The present paper gives a further application of
his theorem to such functions.

My main aim is to construct certain expressions which involve Euler’s constant y
and the constant {(3) and which can be proved to be transcendental numbers. The
simplest transcendental expression containing vy is given by

where, as usual, Jy(z) and Yy(z) denote the Bessel functions of the first and the
second kinds of suffix 0.

In a certain sense the results proved in this paper are quite trivial consequences
of Shidlovski’s work, and they do not even imply the irrationality of y or of {(3).
However, they deserve perhaps a little interest because, up to now, nothing was
known about the arithmetic behaviour of these constants.
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CHAPTER 1

1. Let z and v be two complex variables. Differentiations with respect to these
variables will be denoted by a dash, and by the symbol ¢/0v, respectively. The letter
C denotes the complex number field; G(z) is the field of rational functions of z with
coefficients in C; M is the field of meromorphic functions; and E is the ring of entire
functions of z.

In Siegel’s notation, let

DN (—z2jay
BE =1+ X o+ ) (0+2) .. v 40)°

(1)

Then K, (z) is an entire function of z, and a meromorphic function of v, and it is
related to the Bessel function of the first kind J,(z) by the equation
=2y

It follows that K, (z) satisfies the linear differential equation

2r+1
w” + —V—zt— w +w = 0. (3)

If v is not an integer, two further integrals of this differential equation are given by

the functions KH) — =K (2
. K z —2_2V‘K—r 2
and L,(z) = K, (2) - = (‘) W

The Wronski determinant
W(u,v) = uv’' —u'v

of any two integrals « and v of (3) has the explicit form
W(u,v) = exp (— f%ﬂ dz) — cp¥-1,

where ¢ does not depend on z. Since the integrals u = K,(2) and v = K*(z) and their
derivatives allow series in ascending powers of z of the form:

M) = — — ©
K@) =1+..., K,(2)= 2(v_|_1)+...,
Ki¥)=22+..., K¥(@E)=—2vz214 |
it follows that
W(K,, KT) = K,(2) K'(2) — K}(2) K} (2) = — 202>,
Hence, by (4),
W(K,, L) = K,(2) Ly(z) = K}(2) L,(z) = 27> (3)
2. This paper is concerned mainly with the functions

1 /0\* 1 /0\*
40 = 4y () KOlo B0 = 35 (35) Lols =012 (0)

and in particular with those that belong to the suffixes
k=0,1,23.
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Frequently, when the actual value of the variable z is immaterial, we shall write 4,
and B, instead of A4,(z) and B,(z) and do similarly for other functions of z.
Each B, can be expressed in terms of the functions 4;. For let

Z = 2logz.

Then, if |v| is sufficiently small, we have the convergent series

K0 = S A4 LE) = X B, v = 3

k=0 k=0
from which it follows, by (4), that
- 13 ke < (_Z)k il [ 3 k
S Bie)vk = X A, )vEF—-1 2 TV > AR) (=) ).
E=0 2 k=0 E=0

Since for each k the coefficients of v* on both sides of this equation must be the same,
we obtain the general formula

k+1 Zh
By(z) = 1 (Ak,+1(z)+ (=1F ¥ 54, h+1(7‘)) (7)

2 h:O h!

Thus, for the lowest values of £,

By(z) = A,(z) + 4y(z) logz,

By(z) = - [A z)logz+4,(z) (logz)?],

By(z) = A;(2) + Ay(z) log 2+ Ay (2) (log 2)* + §4(2) (log 2)?,

By(z) = —[43(2) logz+ A,(2) (logz)* + §4,(2) (log 2)? + 54 (2) (log 2)*].

3. More generally, let

w=w(,v)= 3 w,vk
k=0
be any integral of the linear differential equation (3) which, for sufficiently small |v|,
can be expanded into a convergent series in powers of v with coefficients w; that are
functions of z. Then

Z /1 2 + 1
k=0 =
© 1 2 ®
and therefore p (w}'ﬁ-g wi+wk) Ve Z S gkl = 0.
k=0 “ k=0

Here the coefficients of all the different powers of v necessarily vanish identically
as functions of z.

Hence the system of functions w,, = w;(z) satisfies the following infinite system
of differential equations:

" ]- ’
Wy + - Wy + Wy = 0,

b)

” 1 ’ “
Wi+ Wi Wk W g = 0 (k=1,2,3,..).
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We shall be concerned here not with this infinite system, but only with the finite
subsystem @ of its first four equations

" ]' ’
Wy + 2 Wy +wy = 0,
Q: )

1 2
0w, w - ‘ = ( P = 2.
u,;—{—zwk—fu,‘,—}-zwk_l (U 1,2,3).

The solutions of ¢ will be written as row vectors
W = (Wg, Wy, Wy, Wy),
where the usual definitions hold for sums and scalar products of such vectors.
From the series in powers of v of the functions
K, (2)v* and L,(2)v* (k=0,1,2,3),
it follows at once that @ possesses the following eight special solutions,
k zeros
f .
AL(z) = (0,0,...,0, 4y(2), A4(2), ..., 45 ;.(2)) (k=0,1,2,3),

I zeros
e ee——

B,(z) = (0,0, ...,0, By(2), By(2), ..., By_.(2)) (k=0,1,2,3).
We assert that these eight solutions of @ are linearly independent over G. For, on
putting v = 0 in (5) and applying (6), we find that

4 14 1
AyBy— A4y B, = /:T

therefore the vectors A, and B, certainly are linearly independent. The assertion
for the eight vectors follows now from the triangular form of the two square matrices

A, B,
A

1 and B,
A, B,
A, B,

We immediately deduce from the linear independence of the vectors A, and B,
that every solution w of ¢ allows a unique representation

3
W = 2.‘4 (“hAh'*_thh)r (8)

where the coefficients a, and b,, lie in C.
4. Let w = (w,, wy,w,, w;) be again any solution of ¢). It is evident from the
differential equations of ¢) that every derivative

) h=0,123;
\j=0,1,2,..

of the components of w can be written as a linear form in the eight functions
W, ’IU}; (k =0,1,2, 3)3 (9)

with coefficients in G(z) that have denominators which are powers of z.
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Surprisingly, these eight functions (9) are not algebraically independent over G(z).
For denote by L,{w} and L,{w} the two differential operators
L{w} = z(wywi; —wow,) +w}
and LW} = 2(wyws — w,wj + wywy — wywy) + (2wywy — wh).
On differentiating with respect to z and eliminating the second derivatives of the

components by means of the equations of @), it is found that all terms cancel out.

Hence

d d
az IatwVh = g Lalwi = 0

There exist then two complex numbers
O, =C{w} and C, = Cy{w},
which are independent of the variable z but depend on the vector w, such that
Lyw} = () (10)
and Lyw} = C,. (11)

The eight functions (9) are thus connected by two independent algebraic relations
(10) and (11). These relations allow to express

7 - P 'f
wy and  w;
as rational functions of the six functions
’ 14 D
Wo, Wy, Wo, Wy, Wy, W, (12)

where the coefficients of these rational functions lie in G(z) and their denominators
are powers of zw,.
Equation (10) is due to Belogrivov (1967, p. 56).

5. The two constants C;{w} and C,{w} can be expressed in terms of the coefficients
a;, and b, that occur in (8). This may be done as follows.
By (8),

h

w, = X (a; 4, ;+b;B, ;) (h=0,1223). (13)

j=0

Here, for each suffix &, 4, and z4; are elements of E, while B, and 2B, by (7) ave
polynomials in log z with coefficients in E.

If p is any such polynomials in logz with coefficients in E, denote by [p] its
‘constant’ part, i.e. that term which has no factor log z. The formulae (7) show that

[Bo] = Ap [B1] =0, [B2] = A3> [B3] =0,
[2Bj) = zA;+ Ay, [:Bi] = — Ay, [2Bi] =245+ A, [2Bjl = — A,
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Therefore, from (13),
[wo] = aydy+byA;,
[wi] = a; Ag+(ag+by) 44,
[wy] = ay A+ (ay+b,) Ay +agAy+Dy A,

[ws] = ag Ay + (ag+03) A +a, Ay + (ag+by) Ag,
and

[zwg] = 2(ag Ay + by A7) +by Ay,

[zwi] = z(a o+ (@g+0;) A7 ) +(bydg—by4,),

(4] = 2(ag Ag+ (a +b) AL+ g Aj b by A3) + (by Ay — by 2l 1 by ),

[z05] = 2(ag Ag+ (az+bg) Ay + ay Ay + (ag+by) A3) + (by Ag— by Ay + by Ay — by A).

It is also obvious that L,{w} and L,{w} are polynomials in log z with coefficients in E
and that the differences

Ly{wi—[Lyfw}] and  Ly{w}—[Ly{w}]

are of the form plogz where p is a polynomial in logz with coefficients in E. It
follows that the two equations (10) and (11) cannot hold unless

Liw} = [Ly{w]] and  Lyw} = [Ly{w}].

The left-hand sides in these two equations are independent of z. Their values can
thus be determined by putting z = 0 on the right-hand sides.

Now [L,{w}] and [L,{w}] evidently are the same quadratic forms in the expres-
sions [wy,] and [zwy,] as L,{w} and L,{w} are in w,, and zwj,. Tt is further obvious from
the definition (6) of 4,(z) that

Ay(0) =1, A;(0) = A,(0) = A4(0) = 0,
hence from the explicit formulae for [w,] and [zw;] that
[wh]z:() =y, [zw;t]z:O = bh (h = O: 17 25 3)

On substituting these values in [L,{w}],_, and [Ly{W}],_,, it follows then finally, by
(10) and (11), that
C{W} = (aghy —a,bo) + a3 (14)

and CotW} = (agby— a, by + ayby — azby) + (2aya, — a3). (15)
By way of example,
ClAgl =1, Gy{Ag} = 0.

6. It is convenient at this point to prove a simple lemma.
A field of analytic functions f(z) of the variable z is said to be closed under
differentiation if with f(z) also its derivative f’(z) belongs to the field.

LemmA 1. Let F be an extension field of C(z) which is closed under differentiation.
Let f be an element of some extension field F* of F such that f is algebraic over F, while
its derivative f' lies in F itself. Then f is an element of F.
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Proof. The hypothesis implies that there exists a polynomial
P(x) = an+ Pjan'4 ...+ P,
in F[x] of smallest possible degree n > 1 such that
P(f) = 0. (16)
We derive from P(x) a second polynomial
P*x) = [na" 14+ (n—1)Ppam—2+ ...+ 1. P,_1f +[Pia"t4...+ P]].

By the hypothesis, also P*(z) lies in F[z], and further

P*(@) = d};(f) if ¢ satisfies ¢’ = f". (17)
Now, explicitly,
P*x) = (nf"+ Py)at plus terms in lower powers of z,
so that P*(x) has lower degree than P(x). Moreover, by (16) and (17),
P¥(f) = 0.

The definition of P(x) implies then that P*(x) is identically zero, hence that its

highest coefficient
nf' +Pi= 0.

On integrating this equation, it follows that
1
f= ~ P, plus a constant,
which proves the assertion that f lies in F.

7. The two equations (10) and (11) implied that

’ ’
w; and  w;
were rational functions of
7 !’
Wy, Wy, W, Wy, Wy, Wy, (12)

with coefficients in C(z) and with denominators that are powers of zw,.

It is essential for the later application to find when these six functions (12) are
algebraically independent over C(z). That this is not the case when w, = 0 and hence
L{w} = 0is trivial. A simple result is, however, obtained when L {w} = 0.

THEOREM 1. Let W be any solution of @ such that L{w} + 0. Then the six functions
Wy, Wy, Wy, Wy, W), Wy
are algebraically independent over C(z).
CoroLrARrY: Since Li{Ay} + 0, the six functions
| AO’ Al’ A2’ A37 A(I)7 A;

are algebraically independent over C(z).
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The proof of theorem 1 is split into a number of separate steps which we state as
lemmas. For the first two of these steps we can refer to the literature.
Levma 2. The two functions
w, and wy
are algebraically independent over G(z) if w, %= 0.
This assertion is a very special case of a theorem on Bessel functions which goes
back to Liouville. For a proof see, for example, the book by Siegel (1949, pp. 60-65).

LumMa 3. The three functions
wy, wy, and wy

are algebraically independent over G(z) if wy % 0.

A more general result which contains this assertion as a special case is proved in
the paper by Belogrivov (1967, pp. 56-58).

For the remaining three steps, detailed proofs will be established in the next
sections.

8. Leyma 4. The four functions
Wy, W, Wy, ahd  2(Wows— Wy ws) -+ oy
are alg}ebmically independent over C(z) if wy £ 0.
Proof. Assume that this assertion is false. Put
§ = 2(WoWh— Wy Ws) + Wy,

and denote by F, the extension field
F, = Gz, wy, wg, w;)
of C(z). Here, by (10),
! — zwywy —wi+ 0
1 e T T .

(13)

2w,
Hence F, is identical with the larger extension field
Al J N ,/

F, = Gz, wy, wy, wy, wy),

and theretore, by @, F, is closed under differentiation.

By lemma 3, and by our hypothesis, the three functions w,, wy, and w,, but not
also the four functions w,, wj, w,, and s, are algebraically independent over C(z).
This implies then that s ¢s algebraic over F.

On the other hand, by the equations of @,

A5t — iy e (= st — P e W
Q1= (wowh—wyrw,) + 2 (1w, — Wam Wy — i | —wy | — g =y J+u0u1+u,0wl
"o v ot
= Wy, — Wo Wy,
ds  wi-0,
so that, by (13), — =21 (14)
' dz z

Thus ¢’ lies in F,. It follows then from lemma 1 that s itself is an element of ¥,.
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There exists then a rational function

R = R(z,2, Yy, ¥y)
in G(z, 2y, ¥y, ¥;) such that

s = R(z>?’007w(’)5w1) (]5)
identically in z.
, . JR oOR oR oR
Put R*(z, 20, Yy, ¥y) = P o, Yo+ e Uy + 7, Uy

where %, and u, denote the expressions

o~ 2

-ty —u _ Yo%y — Xy +701

Yo = = Yo~ Lo, U=
z 2%,

Let further W = (W, Wy, Wy, Ws)
be any second solution of ¢ for which

Sl (. — T
LW} = Cy = Ly{w}.
If we choose
o - -
Xy = Wy, Yo = Wy, Xy = Uy,

it follows immediately from @ and from the analogue of (13) for w that
Uy = Wy, Uy = Wy.

The definition of R* leads therefore to the equation

R*(z, Wy, e, wy) = &R(Z,Eo,ﬁé,‘ﬁﬁl). (16)
In particular, R*(z,wq, wg, wq) = &= Rz, wy, wy, wy),
whence, by (14) and (15),
% ’ wi— 01
R#(z, w, wh, w;) = —° _— (17)

identically in-z.
In this equation, w,, wy, and w, are by lemma 3 algebraically independent over
C(z); the equation implies therefore that also

Rz, g ) = =0 (18)

identically in the indeterminates z, x,, ¥, and ;.
Put now
5= 2(Wy 10 — Wy Wy) + 16y 1y
and repeat for § the calculation which lead to the formula (14) for s. We find then

that also
ds  wi—C,

dz~ 2z 7

hence, by (18}, that
o ds
R*(z, wy, Wy, W) = -

dz’
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Finally, by (16), this implies that
_ ds

1. R(zy @T}o’ @& wl) = a;

dz

identically in z. On integrating, we obtain therefore the relation
2(W 1y — W W) + Wy Wy = R(z, Wy, Wy, 10y) + W}, (19)
where ¢{w} denotes a quantity that depends on the special solution W of @, but is

independent of z.

9. The proof of lemma 4 will now be concluded by deducing a contradiction from
this relation (19).
For this purpose, it suffices to choose the special solution W suitably. We take

W = ayA,+b,B,,

where @, and b, are complex numbers on which, for the present, we impose only the

conditions B B
Ao+ 0, LW} =a2+dyb, =Cp, by +0. (20)

Here the expression (14) for L,{w} has been applied.
The choice of w means that

wy = agd,, Wy =dyA,+b, By, w,=dyA,+b,B,.
Thus the left-hand side (1.h.s.) of (19) becomes
Lhus. = ag{z(AgAs— AgAy) + Ay A} +@yby{z(Ay By — Ag By) + A, By}
Here, by §2,
By = A4,+A4,logz, B, =—{A4,logz+ Ay(logz)3},
and B — A;+Aglogz+21Ao, B = —{Ailogz+A6(logz)2+§Al+§ 4, logz}.

Therefore, after a trivial calculation,
Ay By — AyBy)+ Ay By = —2(A, A} — Ay 4,) + A3} log = —logz,

because, by §5,
AdgAi— Ay 4) + A3 = LA} = A} = 1.

Hence, finally, Lh.s. = a2 E(2) —a,b, logz,
where E(z) = 2(AyA;—Agd,)+ A, A,

denotes an entire function of z.
Next, the right-hand side (r.h.s.) of (19) has the explicit form

r.hes. = R(z, Gy Ay, Gy Ag, (G@y+b,) Ay + by Aylog z) + c{w}.

Here, by lemma 3, 4,, 4;, and A, are entire functions which are algebraically
independent over C(z); hence also the four functions

A,, Ay, Ay, and logz
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are algebraically independent over C(z). Since R is a rational function of its argu-
ments, equation (19): Lh.s. = r.h.s., cannot hold unless R is an entire linear function
of its last argument. This means that R has the form

B(z, 2y, 4y, 1) = 10(2, Tg, Yo) + 112, Ty, Yo) T4
where 7y and r, are rational functions of z, x, and #,, which do not depend on x,.
The equation (19) becomes now
@ E(z)—dyb,logz =
= 10(2, g Ay, g AG) +74(2, 09 Ay, @y Ag) {(@g+by) Ay + by Aglog 2} + c[W)
and requires that B B
ri(z, oAy, agAg) by Aglogz = —ayb, logz,
hence, by b, & 0, that

g Ay, Gy dy) = — 0 = -
ry(z, g Ay, dyAg) A, w,

Since, by lemma 2, 4, and A4; are algebraically independent over C(z), 7, has then
the explicit form s

(2, %, Yo) = — @,
Lo
However, it follows from their definitions that R and r; do not depend on the special
choice of the constant @,, while, on the other hand, it is possible to satisfy the condi-
tions (20) for every choice of @, distinct from 0 and ,/C;. Hence a contradiction arises,
so proving the truth of lemma 4.

10. LemMmA 5. The five functions
Wy, Wy, Wy, Wy, and ws

are algebraically independent over G(z) if L,{w} % 0 and hence wy % 0.
Proof. Assume, on the contrary, that these five functions are algebraically
dependent over G(z), hence also the five functions
Wy, Wy, Wy, § = 2(WyWs— WyW,) + Wow;, and  w,.

By lemma 4, the first four of these functions are algebraically independent over C(z).
Therefore, if F, denotes the extension field

F, = C(z, wy, wy, wy,8)

of C(z), then w, and hence also
q = wylw,
are algebraic over F,.
By the relations @, (13), and (14), F, is closed under differentiation. Further,
from the definitions of ¢ and s,

r_ ST Wy

21

Hence ¢’ lies in F,. On applying lemma 1 once more, it follows that ¢ itself is an
element of F,.
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There exists then a rational function

8= S(Z Los Yos L15 t)
in G(z, zy, ¥y, %1, t) such that

q = S(z, wy, Wy, w1, S) (22)
identically in z.
Similarly, as in §8, put

S*(z,x x t)_88+8.8 +£§u +§u +§zc

BIE Tos Yo T V) = 57 8930‘% yg 0wy, T A
where u,, u,, and u, denote the expressions

1 2o, — 22+ C) s — O
Uy = — =Yy — = d g, =,
0 2 Yo Lo, Uy 22, s 2 >

Let further
W = (W, Wy, W, Ws)

be an arbitrary second solution of ¢ for which again

Ly{w} = O = L{wy}.
With the choice

Xy =Wy, Yg= Wy, X =Wy, t=25=2(Wyws—10)ws)+w,wy,
the relations ¢, (13) and (14) imply that
—f , Py =7
Uy = Wy, Uy = Wy, Uy=75.

Therefore, from the definition of S*,

d
— e = —_ 7 o = 5
S*(z, Wy, We, Wy, 8) = i S(z, wy, 104, 1y, J). (23)
M J sk 7 d ’
In particular, S*(z, wq, wy, wy, §) = EZS(z,wo,wo,wl,s),
whence, by (21) and (22),
8 — Wy w
’ 01
S*(z, wy, Wy, Wy, §) = ———
w3

In this equation, the functions wy, wy, w;, and s, are by lemma 4 algebraically
independent over G(z). 1t therefore implies that

, t—x,x .
S*(Z Lo> Yo» xlst) = #} (24)
“X
identically in the indeterminates z, x,, ¥,, x; and ¢.
Assume that also @, + 0, and in analogy to ¢ put
_w,
q= Wy’
so that evidently also
- E—?{ngl (25)
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It follows now from the formulae (23), (24) and (25) that

(%S(z, Woy W, Wy, §) = 3—2,
whence, on integrating with respect to z,

q = S(z, Wy, wy, Wy, )+ y{W}. (26)
Here y{w} denotes a quantity that depends on the special solution w of @, but is
independent of the variable z.

11. To conclude the proof of lemma 5, we proceed now as in §9. We choose
W = GyAy+b,B,,
where @, and b, are complex numbers satisfying
ay = /Oy, by * 0.

This choice obviously is compatible with the condition L,{w} = C; and has the
consequence that @, + 0 because C; = L,{w} = 0 by hypothesis. Further

Wy = Ay Ay, Wy =g Ay, Wy=dyAy+byBy,

where By=A4,+4,logz,
so that evidently 2(4yBy—AyB,y) = 1.
Hence, on putting again

E(z)=2(A,4;—A54,)+A,4,.
we find that § = a3 H(z) +a,b,.

Equation (26) takes now the form
dgAy+by A, +b,Aylogz =

= {S[z. @y Ay, Gy AG, Gy A1, A E(2) + ayby] +y{W} a4,
Here the 1.h.s. has a logarithmic singularity at z = 0, while the r.h.s. is a mero-
morphic function of z. Thus a contradiction is obtained, so proving the assertion.

12. We come now at last to the proof of theorem 1 itself. Denote by F; the

extension field , ,
F, = Gz, wy, wg, wy, W, ws)

of G(z). By lemma 5, F; is a purely transcendental extension of C(z); and by @ and
by the equation (13), F, is closed under differentiation.
Assume now that theorem 1 is false, hence that
Wy, Wy, W, Wy, Wy, W
are algebraically dependent over C(z). By lemma 5, this hypothesis evidently
implies that w, and hence also the quotient

) g = wy|w,
are algebraic over F,.
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Now it was proved in §4 that
Lyw} =G,
where C, = C,{w} likewise is independent of z, but depends on the special choice of
the solution w of ¢. This equation is equivalent to
2w g’ = 2wy wh—wiw,) + (Wi — 2wyw,) + s, (267)

and it implies that ¢’ lies in F;. On applying once more lemma 1, it follows then
that ¢ and hence also w; are elements of F,.
This means that there exists a rational function

T = T(z,20, Yo, ¥15 T35 Y)
in C(z, Xy, Yy, X1, Te, Ys) such that
w

7 = 53 = YY(Z, 'wo’w(,p w15w27 ’I/Ué) (27)
0

identically in z.

Put  T*(z, 24, Yy, X1, @ )-3T+8T1 aTu +8Tu _{_@ +?—Zu
(%5 o> Yo» ¥1: X2 Ya) = - P Yo aye 0 ow, 1 2, Y2 s "
where u,, %, and » denote the expressions
1 2o %y — a3+ C 1 2
==Y~ Yo 'u1=*“OVIZTOO*-1, U= Y Ty Uy
Let further W = (W, Wy, Wy, Wg)

be an arbitrary second solution of @ satisfying the two additional conditions
Lyiw} = Oy = Ly{w} and  Ly{w} = C; = Ly{wj.
On choosing now in the last formulae

n PYIid ap — 2 —
Ly = Wy, Yo = Wy, X3 =Wy, Ty= Wy, Yo = Wy,

by @ and (13) Uy = Wo, Uy =Wy, U= Wy.
Tt follows therefore that
d T AT Y YT Y
T*(z, Wy, W, Wy, W, Wy) = a—zT(z, Wy, We, Wy, Wa, Wa). (28)

In particular, d
v ’ ’ ’ !
T*(2, wo, W, Wy, We, wy) = = T(2, we, W, Wy, Wy, Wy),

dz
whence, by (26) and (27),
T (2, wo, o, Wy, Wy, wy) = (2wF) ™ [2(wy w5 — wiw,) + (Wi — 2wy w,) + G-

In this equation, the functions w,, wy, w;, w,, w; are by lemma 5 algebraically
independent over C(z); it therefore requires that

T (2, Tg, Yo» X15 Xay Yo) = (223) 7 [2(2, Y2 — Y1 20) + (2] — 209 2,) + Gs] (29)

identically in the indeterminates z, x,, Yo, Zy, ¥a, Yo-
In analogy to ¢, put

so that, similar to (26'),
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This equation, together with the formulae (28) and (29), has then the consequence
that —
(%T(z, Wy, Wy, Wy, We, Wy) = (%;Z,
and so, after integrating with respect to z, we find that
7 = T2, %0, W, 1y, Wy, Wh) + O{W}, (31)
where 6{W} again denotes a certain complex quantity which depends on the special
solution W of ), but is independent of the variable z.
Choose here W = GyAy+ Uy Ay+ 6, By,
where @,, @,, and b, are three complex numbers such that
Gy =+JC; £ 0, @yby+2ayay = Cy, by + 0;
such a choice is evidently possible, and it implies, by (14) and (15), that
LW} = Oy, Ly{W} = G,
Now w, = dyAd,, W, =agd;, Wy=ayds+ayA, Wy=ayd,+a,A,+byB,.
Since By = A4, + 4,logz, it follows that the quotient
wy _ Gy Ag+ (@ +b5) A4, | by

A A

on the Lh.s. of (31) has a logarithmic singularity at the point z = 0. On the other
hand, the expression

T(z, a9 Ay, agAg, dg Ay, agAy+ay, Ay, aygAs+ ay, Aj) + 0{W}
on the r.h.s. of (31) is a meromorphic function of z.

Hence a contradiction arises which proves that our hypothesis was false and that
theorem 1 is true.

CHAPTER 2
13. The functions 4,,(z) were defined by

1 /0\*
A4,(2) = A (é;) KV(Z)qum

where K (z) =1+ i - (==24)"
! o+ W+2) ... (v+n)

We now use this definition to establish arithmetic properties of 4;(z).
For this purpose let a quantity p,.(v,n) be defined by the formula

1 ?_)k 1 _ Pi(v, m)
k! (av +1)(w+2)...v4+n) @+ @+2)...(v+n)’
and then let further Pr(n) = p,(0,n).

. 1 1 1
Then evidently p,(v,n) =1, p,(v,n)=— (Ei +V—_§_—2+ +m) ,

7
a’nd pl;—!—l(l)’ ’I’L) = pl(Va n)pk(l}: ’Il) + 5pk(vi n)
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This recursive formula leads for small values of &k to the result that
Pon) =1, py(n) = —(1"1+27 + .+,
Pom) = (17142704 4 )24+ (1724272 . 4+ n2),
pa(n) =—(114+2714 40 1P =31 427+ o+ ) (17242724 .+ 2) —
—2(1342734+ . +n73), ete

In terms of the expressions py(n), 4,(z) allows now the representation

_ 0 (_~2/4),n N OYO‘ (,22/4)71 o o - 20
Ay(z) =1 +n:1 Tatnl A,(2) = 7:311}Ar(n) o (k=1,2,3,..). (32)

14. The theorems of Siegel and Shidlovski which are to be applied deal with the
transcendency of the values of Siegel E-functions. For the general definition of such
functions we refer to the book by Siegel (1949, p. 33). For our purpose the following
special case of such functions suffices.

A power series

w‘ on
4 2) = S .
j( ) ni—?} fn, n!

is a Siegel B-function if it has rational coefficients f,, with the following property.
There exists a positive integer C such that both

ol

and the least common denominator of

.f()hfl’ "'hf’l’b

are for sufficiently large n not greater than C”.

That Ay(z) = K(z) has this property was shown by Siegel (1949, pp. 56-58). But,
as we now prove, 4,(z) is an E-function also for suffixes £ > 1.

For denote by D, the least common multiple of the integers 1,2,.... 7, and put

sp(n) = 1742y 4t (h=1,2,..,k).
Then p,(z) evidently. can be written as a polynomial in these sums, of the form
pin) = 2e; 4, 81 (0) 15y (0)%2 L5 (n) %,
where the summation extends over all sets of & integers 4,, s, ..., 1, satisfying
20, 6,20,...,0,20, 1.g+2.0,+...+k.i, =k
It follows that DEp,.(n)
is an integer for all £ > 1 and » > 1. Now, for large n,
. ’O(]ogn) if k=1,
SO0y i ks e,

and it is also known from number theory that there exists a positive integer ¢, such
that for large n
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It follows that for each suffix k& > 1 there exists a positive integer ¢, such that, for
all sufficiently large n, both p,.(r) and the least common denominator of the numbers
Pr(1),pi(2), ..., p,(n) are of the order O(c}). This estimate evidently implies that also
the functions 4,(z), where £ > 1, are E-functions.

15. Generalizing Siegel’s work, Shidlovski established the following beautiful
theorem (162, pp. 898-899).

Let wy = f,(2),...,w,, = [,,(2) be finitely many E-functions satisfying a system of
linear differential equations

Iil,

g s — D] ¥
Wy, = Qh()+ .—-4 Dni: Wy, (h - 1: RERRRE “]')7

-
where the coefficients q,q and q,,, are rational functions in C(z), say with the least
common denominator A(z). Let o be any algebraic number such that

ad(a) + 0.
Assume that Ny, but no more, of the functions fi(z), ..., [,.(2) are algebraically inde-

pendent over C(2), the field of rational functions of z, and that N,, but no more, of the
Sunction values fy(«), ... [, () are algebraically independent over Q the field of rational

ray;

nwmbers. Then N, = N,.

16. Let us apply Shidiovski’s theorem to the system of eight functions
A2), ALz) (k= 0,1,2,3). (33)
As we have seen, the four functions 4,(z) form a solution of the system ¢. Here

each equation of @ is a differential equation of the second order. Therefore ) is
equivalent to the following system g of eight differential equations of the first order,

( 1
’ 1 71 o .
wa:%, .

Qs
1%:u;im--W' ml (k=1,2.3).

Denote by @, @, and @ the subsystems of the first two, four, and six of these
differential equations, respectivelyv.

The coefficients of all four systems are rational functions in G(z), and in each
system the least common denominator of the coefficients is the same function

d(z) = z.
As was proved in lemmas 2, 3 and 5, and in theorem I, respectively, the following
four sets of functions occurring in the successive systems are algebraically
independent over G(z),

(©y): O—A () and T, = 4c);

(@) wy = Ay(), Wy=4dyz), and w, = 4,(z);

(Q): 1wy = Aglz), Wo= Ay(z), wy=A4,(z), wy=A,z), and W, = 4i()
(Qs): wy = Aylz), Wy=Ayz), w;=4,(), wy=A4,),

W, = 44(z), and w,= A442).
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On the other hand, the four functions

wy, Wy, w; and W) = A1(2),
and the seven functions

r , r — ’
wy, Wy, wy, wy, Wy, wy and Wy = Aj(z),

certainly are algebraically dependent over C(z). Hence the integer &, in Shidlovski’s
theorem has for the four systems Q,, @,, @4, and @4 the values
N=2 N=3 N=5 and N =6,
respectively.
Let now o be any algebraic number distinct from zero, so that

ad(et) # 0.

We apply Shidlovski’s Theorem to each of the four systems @,, @,, @, and @, and
find that for these the second integer X, is equal to

N,=2, Ny,=3, N,=5 and N,=6,
respectively.

Thus, to begin with, the two function values A(x) and Ag(c) are algebraically
independent over Q, and so, in particular, both are transcendental and therefore
distinet from 0.

Now, by the identity (10) and by the equation C;{A} = 1,

alAg(er) i) — Agla) Ay(e) ]+ Ag(e)? =1 = 0.
Hence if the elements of either of the two sets of three function values
Ay(a), Ag(e) and  A4,(a), (34)
and Ay(a), Aj(a) and Ai(x) (35)
were algebraically dependent over Q, so would the elements of the other set. But
then the value of N, for the system @, would be only 2, and not 3 as has just been
proved.

Since N, = 5 for the system g, this result implies immediately that also the
elements of the two sets of five function values

Ao(a)) A(/)(OC), Al(a): Az(a) and Aé(a) (30)
and Aya), Aj@), Aj(@), Ay@) and  AYw) (37)
are algebraically independent over Q.
We come finally to the system @ for which we found that N, = N, = 6. By the
identity (11), and by the formula L,{Ag} = 0,
aldg(o) Age) — Ay(a) Agla) + Ay(ar) Af (o) — Ag(ar) Ag(a)]
+[2d,(x) Ay(e) — Ay ()] = 0;
and we also found already that 4,(z) + 0 and 4;(x) #+ 0. It follows that each of the
function values 44(x) and 4j(a) can be expressed rationally in terms of the other

one, where the coefficients involve only the five function values (36), or, equivalent
to this, the five function values (37).
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By Shidlovski’s theorem, we arrive therefore at the following result.

TaEOREM 2. Let a be any algebraic number distinct from zero, and let X'\, Xy, X and
X, denote the four sets of six function values each,

L= {Ao(a)’A(l)(o‘)aAﬂO‘),Az(“)sA;(“), A3(a)},
Xy = {Ayla), (), Ai(a), Ay(er), Aj(er), Ay(e)],
Xy = {dy(a), Agla), Ay(a), Ay(a), Aj(er), Az(«)},
and Sy = (Ayfo), i), A4a), dy(a), Ax(a), AY0)-

Then the elements of each of these four sets are algebraically independent over the
rational number field Q. In particular, the eight function values

Ap(a), Aj(a) (k=0,1,2, 3)

are transcendental numbers and are therefore distinct from zero.

CHAPTER 3

17. Inanalogy to 4,(z) and B,(z), we define further functions € (z) by the formula

Coz) = (ﬁ)k.](z)g (b =0,1,2,..) (38)
T\~ I \ep 4 =0 EEa R A

where .J (z) denotes the Bessel function of the first kind. Then, in particular,
Y f 2 ve
Co(z) = Jylz), Ci(z) = ;7}0(2),

where ¥,(z) denotes the Bessel function of the second kind.
These new functions C)(z) can be expressed in terms of the 4,(z) by means of
the relation

JB) = wo K, (2). (2)

For assume from now on that z & 0. Then .J () is an entire function of v, and hence,

for all values of v, "
J(z) = 2O (z)vE. (39)

We had further proved in §2 that

K (z) = .}} A, (z)vF (40)

for all v, (z]2) = -k (41)
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Finally, 1/I'(v+ 1) is an entire function of v which is real for real v. Hence this
function allows for all v a power series development

1

B R 42)

'r+1) o Vi (42)
where the coefficients Yo =LV Vs -
are real numbers.

[es]

Put (,- = Z /)//'~h gﬁ (]\':: 0,1,2,...).
T TR
G2y _ = ,

Then, for all », ol = 3 Lk (43)

For small suffixes %,

& e ¢
G=1 =0+ G=5+7 047 &= g1t ?E"a+'}f2§+3f'3v ete. (44)

On substituting the series (43) in (2), applying the two developments (39) and
(40), and after multiplying out comparing the coefficients of the different powers
of v, it follows finally that

Cz) =28, 4,02 (B=0.1.2,..). (45)
0

18. The coefficients y, and therefore also the sums . can further be expressed
in terms of well-known simpler constants.

Dencte by W(s) as usual the logarithmic derivative of the Gamma function I'(s).
It is proved in the theory of the Gamma function (see Nielsen 1906, Kapitel 3) that

for [v] < 1, )
Yy+1)= 3 (- 1)',“‘2'181.,_7 1]",{'
fe=0
Here s =7

denotes Euler’s constant, while for suffixes b > 2
o0
sp=Lk) =3 nk
=1
is a value of the Riemann Zeta function. It is further proved that the coefficients v,
in (42) are connected with the coefficients s, by the recursive formulae
i
3 — he - ¢ 3)
(k+Dyem= 2 (=Dl Ve (k=0.1,2,..) (46)

he=0

Therefore, for the smallest values of £,

,\
N
-1

Yi=7 Ye=3VP—8). vs=§(y7=3vs+2sy), etc
We introduce the abbreviation
X= \:+ Vs
and we further note that y = log (1z) v has the derivative

/

N =1z
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By the formulae (44) and (47) we obtain then for 0 < k < 3 the explicit results,

G=1. G=x &L=3)"—s) &= —35x+2s).
v , L, 1 1
G=o t=t a=lv g-Los

2z

For such suffixes k the functions Cy(z) and C}(z) allow then the representations

Colz) = Ag(2)
Ci(z) = A1(z) + x4o(2) (48)
Oyz) = Ap(z) + xA1(2) + 5% —52) A4(2). )
O3(z) = Ay(z) + xA(2) + H(X* = 82) Ay (2) + § (0 = B, X + 255) A (2),)

and Oilz) = Ay(z),
Cl(z) = Aj(z) + xAo(z) + (1/2) Cylz)
Ciz) = Ayz) + x A1) + (% = 55) 44(2) + (1/2) Gy (), (49}
C3z) = Ajz) + xA3(2) + $(X —s2) A1(2) +

RO = B, 255) Aj(2) + (1/2)Cy(2).

These formulae can be solved for the functions 4,(z) and their derivatives, and
they lead then to the equivalent relations,

Ag(z) = Cy(z)
Ay(z) = Cyz) — xCo(2) "
Ay(2) = Coe) — XCL) + 1 +52) Cof2), o
Ay(z) = Oy(2) — XColz) + S(X2 4+ 85) € (2) — § (¥ + 35, ) + 283) Gy
and A=) = Cyz),
Ai(z) = O1(z) — xCUh(z) — (L/z) Aylz).
AYz) = U32) = xO1(2) + (¥ + 85) Og(2) = (1/z) A4(2) (5L
Aj(z) = O5(2) — xCa(2) + X+ 5,) Ci(z) —
— $(XP+ B8y X + 285) Cf(2) — (1/z) A,y (2).

19. Let us now replace the functions 4,(z) and 4,(z) in theorem 2 by their
expressions (50) and (51) in Cy(z) and O (z). In the assertions on algebraic inde-
pendence we evidently may omit the last terms

1 1 1
——Aya), —-Aa). —-A,().
SA@) o Ay = Aye)
which by (51) occur in the derivatives 4j(a), 43(a), and 45(c), because o is assumed
distinet from zero, and Ay(a), 4,(a), and A,(a) are elements of all four sets X, 2,
2y, and X,
We arrive in this way at the following final result.

THEOREM 3. Let
_ 1o\
(J,.,(z):w(c) J) e (h=0.1,2.3)
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let o be any algebraic number distinct from zero; let y be Euler’s constant; and let
sy = {(2) = Im?, and 55 = {(3). Put

X1=log(da)+7, Xo= F(Xi+s2), X3 = $(xi+3s2x;+28),
and further define numbers A, and A5 by the equations

Ay =0Chla), Ay = Cyla) =y, Cyla), Ay = Cylar) — x; C1() + 2 Co(a),
Ay = Cg(or) = y1 Col) + Xz (o) = x5 Cola),
A = Cff),  Af = Ci(a) = x; Cola), (06) X1 01(%) + 2 O(2),
Af = Oy(e) =y, Cile) + Xzo’( ) = x3Co(e)-
Then the elements of any one of the following four sets of st numbers each,
(Ag, AF, A Ay, AS ALY, (A A AT, Ay, AT, A,
{AO’ A(;f, Ap Azs A?, Agk}w {Am A§, Al ’ Aw A*: A3 ig
are algebraically independent over the rational number field Q. In particular, all eight
numbers A, and A%, where 0 < k < 3, are transcendental.

One can specialize this theorem and deduce some consequences that have perhaps
some interest in themselves. Thus, for algebraic o &= 0,

Another transcendental expression involving Huler’s constant is given by
{Colar) Ogfer) = Cf(e) Colar)} — {Clor) Cifer) — Cl) ()} Hlog () + 7).
The transcendency of s, is, of course, due to Lmdemann. For s, nothing is yet

known. However, both expressions 4, and A¥ involve this number and are
transcendental.

20. Theorem 3 is based on the algebraic result of theorem 1. The problem arises
whetber the latter can be strengthened. One can easily prove that for every odd
suffix £ the function 4/(z) can be expressed rationally in the functions

‘40<3)7 A1(2)7 R ‘419(2): ‘4(,)(2)3 Ai(z)v s Allo—l(z)a
with coefficients in C(z). One may therefore conjecture that any finite set of the
functions Ay(2), 4,(2), Ay(2), ..., Ag(2), A(2), A4(7), ...
is algebraically independent over G(z).
It would have some interest to decide whether this conjecture is true. 1f it is, then

theorem 3 can immediately be generalized so as to assert the algebraic independence
of any finite number of sums

Ay = Clo) = X1 O () + X2 Cpp(0t) = + oo+ (= 1)y, Cole)
and A = Oe) = X1 Ofa(o) + ¥ O gle) = + .o+ (= 1y, Cglar),
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provided that for each odd suffix k at most one of the two numbers 4, and 4% is
included. Here the general coefficient y, is a polynomial of degree k in y,, with
coefficients that are themselves polynomials in the values {(2), {(3), ..., {(k) of the
Riemann Zeta function with rational numerical coefficients.

21. Theorem 3 is only one of infinitely many analogous theorems.
For instance, let A be an arbitrary rational number which is not an integer. We
consider now the Siegel E-functions

| A
A/J(Z7 A) = *. (éi}) ]{1,(2)11}:/\ (k = O, 17 Q, .u),

1 k
and the functions (2, A) (6) J(2)|en (k=0,1,2,..)

~ e \ow
which are easily seen to be connected by linear relations analogous to (45). How-
ever, the coefficients y,, will now involve the values I'(A + 1) and ¥®(A + 1), where
the latter, for & > 2, are expressible in terms of the values of Dirichlet L-series at
§=2,3,4,....
Assume that one can determine all systems of functions

Az, A), Az, A)
that are algebraically independent over C(z). We obtain then immediately a
theorem on the algebraic independence over Q of the corresponding function values

Ao, A),  Apfe, A).
This theorem naturally implies in its turn one on the algebraic independence of
linear expressions in the function values

Ck(“3 /\)7 Olrc(a: /\)
where the coefficients of these linear expressions involve now the values

DA+1), WO +1).

In particular, we can establish the transcendency of expressions in which these
function values occur. Whether these function values themselves are transcendental
remains of course an open question. The cases when A = { and A = — 1 are parti-
cularly interesting.

22. So far only functions related to the Bessel functions have been considered.
However, the method reaches much further.

Let uy, s, ..., t, and vy, vy, ..., v, be finitely many parameters where
0<r<s,
e {pu,n] .. g, n]
and let () = 3 Mol MO T o gyt
f neo [V, 7] ... [Vs,n]( n
where A t=s—7,

be the corresponding hypergeometric E-function (Siegel 1949, pp. 54-58). Here
[p,0]=1, [p,n]=plp+1)...(p+n—1).
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: .. = Dlug+n)... P +n),
>t s arly (2) = 3 B e 117
Let similarly F(z) = Dt m) . D+ n) (z/tyi=,

where we have put 7=V Fr) = (g ).
The two functions f(z) and F(z) are then connected by the identity

Mty . D

Fle) = pa o paa) G fe) (52
This identity plays for f(z) and F'(z) a role analogous to that of the relation (2) for
the functions J,(z) and K, (z) considered in chapters 1-3. From its definition, f(z)
satisfies a linear differential equation of order s with respect to the variable z (Siegel
1949, pp. 55-56), where the coefficients are polynomials in the parameters ¢, and

v, but are rational functions of z.
Next denote by 9, ..., 4%, v9,...,1¢ a fixed set of rational numbers distinct from

0, —1, -2 .., and by %4, ..., 4, Jq, ... Js & set of non-negative integers. Then put
) ) r oo s &o
a2y = e ~ 0
J[l, ﬂé"’) [)I% 1 Zp’ (’/’/I)p rrljll 70' 3L’gﬁ j(~)|/4y'—f,’¢? ..... = /,'Q. 1’1~=V‘1‘,..‘, us':—'vgf

and define partial derivatives £; ;(z) analogously. There is no difficulty in proving
that the derivatives fi; ;(z) are Siegel E-functions and that they satisfy an infinite
system of linear differential equations of order s.

The investigation is now started by determining a full set of derivatives f; ;(z)
that are algebraically independent over G(z); this may, of course, not be an easy
problem. In this set of derivatives, one may next select finite subsets that again
satisfy a system of linear differential equations. To this subset, Shidlovski’s theorem
can then be applied and establishes the algebraic independence over Q of its
functions at all non-trivial algebraic points z = «. As a final step, these algebraically
independent function values f; y(a) are, by means of (52), expressed as linear forms
in function values £]; ;(«). Here the coefficients of these linear forms evidently
depend on the function values

i), WO,), T(), WO,).

Thus also these much more general assumptions lead to transcendental expressions
that involve values at rational points of the Gamma function and of its derivatives.

It would be of interest to carry this program out in detail for the special case of
the Kummer functions when r = 1, s = 2, and v, = 1.

23. Instead of doing so, let us consider a much simpler case. The functions
.7‘ 1 ’ ° , L
flz,py =Y ——2* and F(z,v)= X e g
n=>0 I_Va n.} n=0 I (n T V)

correspond to the hypergeometric K-function with » =0, s =1, and they are
connected by the identity

~v—1

F(z,v) = —ITV)f(z, ).
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For simplicity, we allow v to tend to the value 1® = 1. We obtain then the derivatives

1o\ i A
Sfulz) = (ov) flzn),, and Flzv) = ,/;!,(,P,,, Fz,v)|,ey (A=0,1.2,..),

X424
where, in particular, Solz) = Fy(z) = e~
The functions w;, = f,(z), where k= 0,1,2,..., satisfy the following infinite
system of linear differential equations of the first order,
w!h = o ]U,vl LA— s k=234
Wo = Wy, Wy = Wy Wk o, Wy =Wy w_, (k=2,3,4,...).
Tt can quite easily be proved that, for every integer m = 0, the m+ 1 functions

fol®), o
wre algebraically independent over C(z).
Hence, if & & 0 is an algebraic number, it follows from Shidlovski’s theorem that
the corresponding function values

fs)(x)fl(aL st :f;n(a)
are algebraically independent over Q. Here f(«) = e*.
Let now ¢,(z) be the coefficient of v* in the power series

v+ 1)z = Z () VE;

k=

then ¢,(z) is a polynomial in logz, with numerical coefficients that involve Euler’s
constant as well as the values (2). {(3), ..., {(k) of the Zeta function. Then evidently

fh(z) = E ¢h<z)ﬁjlh(z)
h=0

We arrive therefore at the result that, if o & 0 is an algebraic number, then any
finite number of expressions

k
E ¢h(o¢) Iﬂlg—h,(“) (k = Oa l: 2: )

) h=0
are algebraically independent over Q, so that in particular all these expressions
are transcendental.
A similar theorem is obtained if the parameter v is made to tend to any other
rational number »° distinet from 0, —1, — 2, .... In this way one finds in particular
that for algebraic o = 0 any finite number of integrals

1
f 0 1(108, )/» —22 da (k:O’],z,...)
0

are algebraically independent over Q.
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