THE CLASSIFICATION OF
TRANSCENDENTAL NUMBERS

K. MAHLER
1. All numbers { considered in this article are real or complex. For polyno-
mials
p(z)=po+piz+-+puz", where p,#0,

the following notation will be used.

dp)=m,  H(p)= max |[p,

u=0,1,....m

. and L(p)= Y |p,
n=0

denote the exact degree, the height, and the length of p(z), respectively. We further
put

AQ)=2"Lip) and M(p)= [T 2+

If V denotes the set of all polynomials p(z)#0 with rational integral coefficients
and v is any positive integer, it is obvious that either of the inequalities A (p)<v or
M (p)<v is satisfied by at most finitely many elements of V.

Consider now the set C of all real or complex numbers {. Our aim is to sub-
divide C into subsets or classes which are disjoint and have the following invariance

property.

Any two numbers in distinct classes are algebraically
independent over the rational number field Q.
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Here the subdivision of C is to depend solely on the approximation properties of {,
and the number of distinct classes should by preference be large.

2. A first such classification with the invariance property, but into only four
classes, was found by me about 40 years ago. A detailed account of this classifica-
tion, and of the almost equivalent one by J. F. Koksma, can be found in the book
on transcendental numbers by Th. Schneider (1957).

This classification is obtained as follows. Put successively

w,(v | ) =infIp(O)],
where the lower bound extends over all polynomials p(z) satisfying
p(2)eV, d(p)=m, H(p)<v. and p(()#0;

Wy, ({)=lim sup W,

n(0)

=w({)=lim sup ="
m

Let further the symbol u=pu({) denote oo if w,,({) is finite for all suffixes m, and
otherwise let it be equal to the smallest suffix m for which w,,({)= cc. Thus at least
one of the two numbers w and p is always equal to co.

Therefore the complex numbers split into the following four disjoint classes:

Class A: { satisfies w=0 and u=o0.
Class S: { satisfies O0<w<oo and pu=o0.
Class T: { satisfies w=00 and p=o0.
Class U: { satisfies W= 00 and pu<oo.

It can now be proved that: (i) the class A consists exactly of all algebraic numbers,
hence the transcendental numbers are distributed amongst the classes S, T, and U;
and (ii) the invariance property holds, i.e. numbers in different classes are algebrai-
cally independent over Q.

One can also show that almost all numbers are S-numbers, a result greatly
strengthened by V. Sprindzuk (1967). There are noncountably many U-numbers,
e.g. all Liouville numbers; these are simply characterised by p= 1. Until recently it
was not known whether there exist any T-numbers, but this existence has now
been established by W. Schmidt (1971), although as yet no actual T-number seems
to be known.

By way of example, e is an S-number, while 7 is either an S-number or a T-
number.

3. I come now to a new classification (Mahler, 1971) which leads to a sub-
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division of C into infinitely many disjoint classes with the invariance property. In
this classification, we need to consider polynomials in V' of independently variable
degree and height (or rather length).

This classification depends on the following partial ordering of monotone non-
decreasing functions.

If a(v)>0 and b(v)>0 are any two nondecreasing functions of v=1 for which
there exist three positive numbers ¢, vy, and y such that

a()zyb(v) for v=v,,
then we write
a(®)>»b(v) or b(v)<a(v).
If simultaneously
a(v)>b(v) and a(v)<b(v),
then we write
a(v)> <b(v).

This sign > < evidently defines an equivalence relation.
With each element { of C we associate now an order function

O(v | {)=sup log {1/Ip(C)I}
where the upper bound is extended over all polynomials p(z) in V for which
Alp)sv,  p(0)#0.
Since they behave slightly differently, it is convenient to exclude from the consi-

deration all those { which are either rational integers, or are integers in any
imaginary quadratic field. With this restriction, the following results hold.

O(v|{)> <logv if { is algebraic ;
O(v ] {)» (logv)? if  is transcendental ;
O(v|{)><O0(v|{) if{,{ are algebraically dependent over Q.

Thus, if numbers ¢, {’ with equivalent order functions are put into one and the same
class, then the invariance property holds.
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The actual determination of the order function of a number is, of course, a very
difficult problem. I mention, by way of example, the following relations.

(v] e)<(logv)® (log logv)?, (v | 7)< (logv)* (log logv)®,

which are implicit in work by N. . Fel'dman (1951 and 1963). It is interesting to
see that in the second formula the upper estimate comes close to the lower estimate
(logv)*.

In my paper on the order function I raised a number of questions. One of these
questions has in the meantime been solved by Swierczkowski in an unpublished
note; he proved that there are noncountably many inequivalent order functions
and hence also as many classes in this classification.

It is not known which monotonic functions are equivalent to order functions.
and which can be the order function of almost all real or almost all complex num-
bers. It is also unknown whether the order functions can be strictly ordered.

4. T conclude this article by suggesting a still different kind of classification;
however, I do not know whether it has the invariance property, or rather how the
classification has to be defined so that this property holds.

The important recent work by W. Schmidt (1970) and A. Baker (1965) suggests
that instead of O (v | {) one should associate with { the function

R(v | Q)=sup log{1/lp(0)I}.

where the upper bound is now extended over all polynomials p(z) in V for which
M(p)<v, p({)#0. It seems highly probable that also for these functions R an
equivalence relation can be found which preserves the invariance property. I dare
to conjecture that the ideas of Schmidt could be used to settle this question.

So far we have only discussed classifications based on the values of a single
variable polynomial p(z) at the given point z={. A more powerful kind of classifi-
cation would consider simultaneous approximations by sets of polynomials. I have
little doubt that the modern general transfer theorems in the geometry of numbers
of convex bodies are the right tool for attacking such problems.
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