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A Necessary and Sufficient Condition
for Transcendency

By K. Mahler

To D. H. Lehmer in fricndship on his 70th hirthday

Abstract. As has been known for many years (see, e.g., K. Mahler, J. Reine Angew.
Marh., v. 166, 1932, pp. 118-150), a real or complex number ¢ is transcendental
it and only if the following condition is satisfied.

To every positive nuinber w there exists a positive inicver no and an infinite

sequence of distinct polynomials {pr(z)} = {pr toL oz b, z”} at most of
1 n
degrec n with integral coefficients, such that
0 < Ip I < {p 3 p,l R N B O
1

In the present note I prove a simpler test v.bhioa mek e the transcendency of ¢
depend on the approximation behaviour of a siag's s guence of distinct polynomials

of arbitrary degrees with integral coefficients.

1. If

P n
. ; .
p@ = 3 p" =p, [l ¢~«,), where p, #0,
h=0 h=1
is any polynomial with real or complex coefticients, of the exact degree n, and with

the zeros «,, -, «,, put

n’

1 : n
op) =n,  M(p)=exp fo log Ip(e*™™"ldt),  m(p) = +\/Z Ippl?.
/ h=0
It is well known that
n
(1 M) = Ip,| TT max(1, Iy, ). M(p) < m(p).
h=1
Next, if ¢ is any real or complex number, put
1 if ¢ is real,
o(6) = {2 otherwise,

and denote by ‘B({) the set of all polynomials p(z) with integral coefficients that
satisfy the inequality p({) # 0
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In particular, let ¢ be an algebraic number, say of the cxact degree N. There
exists then just one primitive irreducible polynomial

N
P@z)= ) P.z¥, where Py >0,
k-0

with integral coefficients, that vanishes for z = {. In terms of this polynomial we use

the notations
o) =0aP) =N, M) = MP),  m)=m(P).
Then, by (1),

N
M) =Py JT max (1, (¢, MO <m(s),
ko
where new ¢ = ¢, §,, 00,y are the algebraic conjugates of {, thus the zeros

of P(z). If, n particular, o(¢) = 2. let the notation be such that ¢, is that algebraic
conjugate of { which is also complex conjugate to ¢.

We wish to investigate how small [p({)l, as a function of the parameters o(¢),
A, m(), 3(p), and mlp), can be made when p(z) runs over the elements of PB(E).

2. I ¢ is algebraic, the following result holds which is essentially due to R.
Guting (Michigan Math. J., v.8, 1961, pp. 149--159).
TuroreMm 1. If ¢ is algebraic, and if p(z) & B((), then

PO = max (1, 1§ Whm(g) PO (o) F 1 m(p)y @@=,

Proof. By the hypothesis, p(¢) # 0, but P({) = 0, where P(z) is the primi-
tive irreducible polynomial defined in Section 1 that belongs to {. It follows that
p(z) and P(z) are relatively prime, so that their resultant R is distinct from zero.
From its representation as a determinant in the coefficients of p(z) and P(z), R is
an integer, and hence

(2) IR| = 1.
Also R may be written as the product

N

(3) R =Py TT n(@p).

k=1

2 n i
A(£)(507)
h=0 h=90
n

Z l§k|2h < (n + 1) max (1, ié-k‘)mq,
h=0

Here

PP = | 2 puéh
h=0

and

and therefore
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{4) IP(§0l <VO(p) + Tm(p) max (1, ¢, )"

If o(¢) = 2, then in addition |p({,)l = Ip({)l because the numbers p(¢) and p(¢,)
are now complex conjugate.
Therefore

N
M() = Py max (1, o) [T max(i, 1§, < m(6.
k=a({)+1

Hence, from (2), (3), and (4),

N
1< [RISPLp@P® T @)+ Tmp) max (1, 1§, )"
k=0({)+ 1

< 1pOIE VaE) F Tme)FY " Omey" max (1, 151 "7,
From this, the assertion follows at once.

3. When ¢ is transcendental, or at least not algebraic of degree < n, it is nec-
essary to determine polynomials p(z) in P() for which [p()| is small. This con-
struction is based on the following elementary lemma.

LeMMA 1. Let

n 14

Flxg, xy, 0 x,) = Z Z FrpXpXy Fox = Fin)

be a positive definite quadratic form in n + 1 variables, and let

Foo For = Fon
Fyo By Fyy,
D= >0
Fn() Fnl o Pnn
be its discriminant. Then integers pg, p,, ", D, hotall zero exist such that

F(po’ pl’ cee pn) < (n + ])1)1/('14-1)4
Proof. Write F as a sum

14
i . =) L . 2
P(XO’}‘}’. ’ "xn)" LLll(xO’ X "Xn)
h=0
of the squares of n + 1 linear forms Ly, L, , L, in xg, x,, . x,, with

real coefficients. The determinant of these linear forms is equal to ++/D. Hence, by
Minkowski’s theorem on linear forms, there exist integers p,. p,, - -, p, not all

zero for which
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Loy Pys o p )< DYRYD g g 1 ),

and so these integers satisfy the assertion.

It is well known that one can prove stronger results than Lemma 1, of the form
o pis o py) Sceln + DD,

where ¢ > 0 stands for certain constants less than 1. However, Lemma 1 has the
advantage of simplicity and suffices for our purpose.
The following lemma is nearly trivial, and its proof is therefore left to the reader.
Lemma 2. The positive definite quadratic form

2 n

v oy e - L 2
Flxg, x4, Xl = Z Twxn DI

h=0 =0

has the discriminant D = 1 + h -0 fh, and the positive definite quadratic form

2 n

F(x(?* X, ‘xn) = Z, fh’\h + Z EnXp + Z xh

h= =t h=0
has the discriminant

n

” = 1"4 Z.: fh -“‘11) + Z (-/.hgk Mfkgh)Z'

h=-0 0<h<k<n
4. Tetnow { be any real or complex number and » an integer satisfying

>

n =z of{). We assume that { is either transcendental, or that it is algebraic of a degree
greater than .

First fet { be a real number, and let s and ¢ be two parameters such that
(5) s = max (1, [¢) VD = 4+ DY+ )20 max (1, [¢l)y/ 2+ Dy,

The expression

Flxg, xy, -, x,)=s2nt D Z xh(”\g + Z X}

" /
is a positive definite quadratic form in x,, x,, - -, x,, which, by Lemma 2, has the
discriminant
D=1 4 ¢201+ 1) i 2,
he=()
Here

n

> P+ 1)y max (1, 1§D,

h=0
and hence

D <20 max (1, [eD? + 52T D0+ 1) max (1, D"

=20 DG 4 2) max (1, [¢)?".
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Therefore, by Lemma 1, there exist integers Po:Py» " . P, notall zero for
which

) Flpg, py. o, p,) <+ Ds?(n + )V Dmax (1, [gh?r/nr 1),

Denote now by

n
e = 3 p,e

h=0
the polynomial which has these integers as coefficients; from the hypothesis,
7 p(z) € B().
The inequality (6) is equivalent to

S22 4omp)? <+ D500+ D)D) max (1, g,
and so it implies that

(n + 1)!/2(}7 + 2)1/2(n+l) max(l, [§—|)n/(n+1)

P < X ,

m(p) < (n + D20+ DV2OTD max (1, 1enyt/ Ok g

In terms of ¢, this may instead be written as

- (n + 1)(”+1)/2(n + 2)M% max (1, [¢))"
= [n ’

8 IOl

5. Secondly, let

mp) < t.

=&+ ni, where n+#0,

be a nonreal complex number. The powers of ¢ may be split into their real and
imaginary parts, say §h =§, +in,, and then

) 2+ n = 6P,
while by Cauchy’s inequality
(10) 1% P Zkﬁh[ < I,d’”-k»

Denote now by s and ¢ two parameters such that

s = max (1, [¢) "2/ 0rH D)
(11)

r=m A+ D20+ )V max (1, e/t Dy,

The expression

Flxg, x,, - ,x,)=¢"""

can be written as the positive definite quadratic form
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h -4

n 2 n 2 n
7 e ot - VIR — 2
f(x()’ Xy ,Xn)~S (lel‘:h> +s < thnh> + Lxh’
=0 )

which, by Lemma 2, has the discriminant

12}
D=1+ 2 4k DR (- £t

h=0 O=<h<"k=n

Here, by (9),

> = 3 KPS+ D) max (1, 16D

h=0 h=0
and by (10},

Sy Em)T < L PO s+ 1) max (1, IO

O0<h<k<n =0 k=0

Hence, from (11),

D<S2OTD I 4 4+ D)+ (DY max (1, L

< g2 D+ 2)? max (1, [¢h*

With this estimate tor D, we apply again Lemma 1. It follows that there exist
integers pgo. 2y, . p, notall zero for which

(12} Flpg.py.- o) <@+ 1) s23(n + )M max (1, l§|)4"/("+~1).

As in the first case, denote by
143 ;
p) = 3 puzt
=0

the polynomial with these integers as coefticients; then p(z) € Be). From (12),

STHUPOR + m(p)? < (n + D+ 2)2OFD max (1, [gyn/F g2
and hence

_n+ ]}'/?"(n MO ax (1, [ PR/t
<A T

(Y]
m(p) < (n + )20 + DM (1, eyt it g

Thus, on changing over to the parameter 7,

A DDA G N2 max (L, () P
(13) (0 \‘;( ) - [(,S 1)’,2) ax (1, 1§ ., mpy <t

6. In both estimates (8) and (13), p(¢) # 0 because p(z) is an clement of
P(£). On combining the results just proved we arrive therefore at the following theorem.

THEOREM 2. Let ¢ be a real or complex number, and let n be an integer not
less than  o{¢). Assume that ¢ is either transcendenial, or that 3(§) > n. Further
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denote by t any real number satisfving

t=n+ D2+ 2) /Do),
Then there exists a polynomial p{(z) #0 with integral coefficients and such that
dpy<n, mp)<t and

(n+1 (n+1)/20(8)(y 4 2112 max (1, [¢DH"
<Ip(O) < ) (n+1)(/o(<> )i - :

To this thcorem we add the following remark.
The estimates (6) and (12) in the proof of Theorem 2 may be written as

n(p)

- i T 2t Dpy? o L K+ D OED nax 1, g2t D
and
2m(p)? Ny . ) _
- i S92 PP = 1) "‘“,{"?’r <28 4+ 2D max (1, gt et D

respectively. Thus, by the theorem on the arithmetic and geometric means, it follows
that

(R L/t 1) ’ .
gp(g)“’ﬁﬁ);mg < (4 DYETD max(l, gy
7 ‘

1/{n+1)

and

( >\t nd ) - o)
}*p(i-)r} ZT‘I Yll(p)“(nﬁl) < 2(” + 2)-’-/(” max {1, [§') n/(r ’

respectively. On simplifying and combining these two estimates we arrive then at the
following result.

COROLLARY. The polynomial p(z) in Theorem 2 has the edditional property
that

- + 1 (n+1)/20(5)—1/2 + 7\}1/2 ] 1 R‘nn
0 <lp(OI < D m(p)" H),{g((g))ﬁﬁ max(l,

7. We say that a real or complex number ¢ has the property (A} if there exist

(i) an infinite sequence of distinct polynomials {p,(2), p,(2), p4(2), - - - } with
integral coefficients, and

(ii) a sequence of positive numbers {w,, w,, w,,**+} tending to e, with the prop-
erty that

_ _ o( — (0 -
0<Ilp DI < {e pr)m(p,.)} r for all r
From Theorems 1 and 2 we derive now the following test for transcendency.
THEOREM 3. The real or complex number ¢ is transcendental if, and only if,
it has the property (A).
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&

Proof. (i) First,assume that ¢ has the property (A), but that it is algebraic.
Then, by this hypothesis and by Theorem 1,

3 i I L
max {1, |¢) (p,)m(g) AUp )€ g\/a(,,r) Fmip ) (V) a(E) - 1)

~ 0 ) -
S PO = e (p"m(pr),‘ “r
Here, on the left-hand side, the two numbers

m(§) M7 and a©)/a(e) 1
are independent of r; and it is also obvious that
VI ) FT <" ®.

Hence there exists a positive number ¢ independent of » such that

max (1, [¢)’ P m@) @R LBy F Umip,)p - @@/e@=D

) v
> {e' (p’)m(pr)} ‘.
By hypothesis, all the polynomials p (z) arc distinct, and so
Yy nyp I ¥
lim ¢” w’)m(pr) = oo,
y=>00

because there cannot be more than finitely many polynonials p,(z) for which both
o(p,) and m(p,) are below given bounds. Hence, as soon as 7 is so large that
w, > ¢, a contradiction arises. The hypothesis was therefore false, and ¢ was trans-

cendental.

(ii} Secondly,assume that ¢ is transcendental. Denote by {n,, ny, ny, -1 a
sequence of positive integers tending to infinity, by € a positive constant, and by
{t,, t5, 5, - -} asequence of positive numbers satisfying

- a YVa-k€ - .
(14) t, =, +2) for all r.

We now apply Theorem 2 to §, with the parameters n =n, and ¢ = ¢, This
may be done as soon as r is sufficiently large. because then

b= (n, DTS (n, + Ve, + 2y OO

It follows that there exists for r 2 r, a polynomial p(z) with integral coefficients
such that

op,) <n, mip,) <1,
and
(n + 2:(1/2-+-n(;')/2(n’,§- 1), 4 1D (g max(1, 1EN
0 < PO & o Ry
f

Here, for r2r,
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o) € n, €n /4
W, + D) < a0 max(L DT < (n, 4+ 2) T

cnr/4
s

t,<(n,+2)
and therefore
(1/2+¢/a+e/4+e/a)(n,+ 1)]o(§)

(n, +2)
0<Ip, (DI < (AT aE) o

Now, by (14),

n o+ 2 < 20429
r ¥ ’
and hence

0 < Ip, )l < l;((n,ﬂ)/o(r)){l—(z/(r+2e>>(:/2+sc/4)} = ¢ (SN[

a(

A
On the other hand, e pr)m(p,,) < en’tr, =t say, where

|

A

nr
L, =1+ izjg”t‘r = o(n,).

Hence, on writing
tge/(2+4e))(n,+!)/ﬂ(§) _ {ca(pf)nz(b,,)‘;wﬂ

the number w, so defined has the property lim, , w, = o, whence the assertion.

R

In the second part of this proof it was assumed that the sequence {m,} tended
to infinity. This hypothesis cannot be avoided, as follows at once from the existence
of S-numbers. With regard to the choice of the sequence {r,} by (14}, it would have
some interest to decide whether 7, could be chosen as a smaller function of n,.

Naturally, this might require an entirely different proof.
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