VOL. 14 (1976), 397-398.

BULL. AUSTRAL. MATH. SOC.

An addition to a note of mine

Kurt Mahler

A recent improvement by H. Guggenheimer of the lower bound for

the product of the volumes of a pair of polar reciprocal convex bodies is used to replace one of the results of Kurt Mahler, "Polar analogues of two theorems by Minkowski", *Bull. Austral. Math. Soc.* 11 (1974), 121-129 by a best possible one. A similar

improvement can be made for the other theorems in my note.

In my note [2], I established three theorems on the connection between symmetric convex bodies in R^n and hyperplane lattices in R^n . The

$$V(K)V(K^*) \ge n^{-n/2} \pi^n \Gamma((n/2)+1)^{-2}$$

for the volumes of a pair of polar reciprocal convex bodies $\ensuremath{\mathit{K}}$ and $\ensuremath{\mathit{K}}^{\star}$.

Recently, Guggenheimer [1] has replaced this inequality by
$$V(K)V(K^*) \ge 4^n/n!$$

proofs of these theorems were based on the inequality

which is best possible; for equality holds if one of the two bodies K, K^* is an n-dimensional parallelepiped.

On using this improved lower bound in the proofs of my note, but without further changes, my first theorem takes now the following simple

form. $\label{eq:theorem} \text{THEOREM 1. Let } K: F(X) \leq 1 \ \ \text{be a symmetric convex body of volume}$

$$V(K) \geq 2^n/n!$$
.

Then there exists an integral vector $\ u \neq 0$ such that $F(x) \geq 1$ at all

Received 11 February 1976.

398 Kurt Mahler

This theorem is best possible as is immediately seen when K is the octahedron

real points x satisfying u.x = 1.

 $|x_1| + \ldots + |x_n| \le 1$, \mathbf{u} is the vector $(1, 0, \ldots, 0)$. and

Theorem 1 implies the following analogue to Minkowski's Theorem on linear forms.

Let

$$y_h = a_{h1}x_1 + \dots + a_{hn}x_n \quad (h = 1, 2, \dots, n)$$
 be n linear forms with real coefficients of determinant 1. Then there exist integers u_1, \dots, u_n not all zero such that

Then there exist integers u_1, \ldots, u_n not all zero such that $|y_1| + \ldots + |y_n| \ge 1$ for all real x_1, \ldots, x_n satisfying

 $u_1 x_1 + \ldots + u_n x_n = 1$. The same change allows one to improve the other two theorems of my

note.

References [1] H. Guggenheimer, "Polar reciprocal convex bodies", Israel J. Math. 14 (1973), 309-316.

[2] Kurt Mahler, "Polar analogues of two theorems by Minkowski", Bull. Austral. Math. Soc. 11 (1974), 121-129.

Department of Mathematics,

Institute of Advanced Studies, Australian National University,

Canberra, ACT.