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Fifty Years as a Mathematician*

K. MAHLER

Australian National University, Canberra ACT, 2600, Australia

During the height of the great German Inflation, I began my university
studies in the autumn of 1923 at the University of Frankfurt. I remained
there for three semesters, and then, in the spring of 1925, went to the
University of Gottingen.

Although there was only a small number of students in the Mathematics
Department at Frankfurt, it had outstanding teachers, the Professors Dehn,
Hellinger, Epstein, Szasz, and Siegel. From Siegel I learned most,
particularly in analytic number theory and related parts of function theory.
He introduced me to Diophantine equations and approximations, and, in his
great paper of 1929, to transcendental numbers.

Goéttingen, during my stay from 1925 to 1933, had a much larger
mathematical department, and it was at that time a centre of world
mathematics, with many distinguished visitors from abroad. Of particular
relevance for my later research was what 1 learned from Courant about
direct methods in the calculus of variations, and from Emmy Noether about
modern algebra and in particular about fields with valuations and p-adic
numbers.

After the coming of Hitler in 1933, I left Goéttingen where, since my
Frankfurt doctorate in 1927, I had been doing research, chiefly on transcen-
dental numbers and Diophantine approximations.

On the invitation of Mordell, I spent the session of 1933-1934 at the
University of Manchester. Then, on the invitation of van der Corput, I went
for the next two years 1934 to 1936 to the University of Groningen in the
Netherlands. After another year’s leave of absence, due to illness, I returned
to the University of Manchester in the autumn of 1937 and was to stay there
until 1963 when I went for the next five years to the Australian National
University at Canberra until my retirement at 65. Between 1968 and 1972 1
held a professorship at the Ohio State University at Columbus, Ohio. Finally
I returned in 1972 for retirement to the Australian National University in
Canberra. -

* ] prepared these notes about 1973 and have left them unchanged, except for some
corrections. However, the list of my publications has been extended to 1981.
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In these notes I shall report on my research on three subjects where great
progress was mad« in this century.

I. RATIONAL APPROXIMATIONS OF ALGEBRAIC NUMBERS.

(1) Let { be a real irrational number, and let p and g > O be integers.
Denote by #({) the least upper bound of all positive numbers 7 for which

p — T
[C——’éq
q

has infinitely many solutions p/q. From the continued fraction for (,

() = 2,

and #({) may in fact for suitable { be any number in the closed interval
[2, o0 ].
Next let { be a real algebraic nuriber of degree n > 2. Denote by

A(z)=a,z" +a,z" '+ - +a,, where a,a, # 0,
an irreducible polynomial with integral coefficients of which ¢ is a zero. It
cannot be a multiple zero. Hence
A(z)=(z — ) B(z),
where B(z) is a polynomial of degree n — 1 with real coefficients such that
B(£) # 0.
Hence three positive constants ¢,,c,, and c, exist such that
¢, <|B(2)| < c, if |z —{ <e.
Assume in particular that p and g > O are integers satisfying

. P
S_’Igcy
q

A(z) has no rational zero. Therefore the rational number A(p/q) has the form
Ng ", where the integer N is not zero and so |N|> . It follows that

o] )l e
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This estimate has been proved for |{— p/q| < c,, but it is clear that if ¢
denotes the larger one of ¢, and c¢; ', then

2[5
q

This inequality was obtained by J. Liouville in 1844 who used it to
construct the first examples of transcendental numbers. It implies that

(o <n

for all real algebraic numbers { of degree n.
(2) Associated with the polynomial A(z) is the binary form

X
A(x,y):A (T)yn:aoxn +a1xn—1y+ +a,,y"

which likewise is irreducible. Assume that for some integer m % 0 the
Diophantine equation

A(Pa‘l):aopn+a,p"71q+'--+a"q":m (l)
has infinitely many solutions in integers p, q. Since the case ¢ =0 is trivial

and since we may, if necessary, replace p, g, m by —p, —q, (—1)"m we are
allowed to assume that g is positive and arbitrarily large. Now

is arbitrarily small. Hence the quotient p/q must finally be arbitrarily close
to one of the zeros of A(z), say, to the zero {, and hence it satisfies the ine-
quality

p
q
It follows then from the earlier estimates that the inequality

o) <

has infinitely many solutions in integers p, g > 0. This means that

(&) = n,



124 K. MAHLER

hence by Liouville’s formula that

(&) = n.

This equation represents thus a necessary condition for (1) to have infinitely
many integral solutions p, g. It is in fact satisfied for indefinite quadratic
forms A(x, y), as the example of Pell’s equation shows.

(3) It was the great achievement of A. Thue in 1908 to prove that (1)
has for every m # 0 at most finitely many integral solutions p, g if the degree
n is at least 3. This he proved by showing that for n > 3 and every zero ( of
A(z)

I(C)<%+l<n.

After Thue this estimate was successively improved by C. L. Siegel in 1921,
by F. J. Dyson and A. O. Gelfond in 1947, and by F. K. Roth in 1955 who
proved that

0<2yn Q)< V2n, 1O =2

respectively. Here Roth’s formula #({) = 2 is of course best possible.
The proofs of all these results are similar, but they become progressively
more and more complicated. It will suffice to sketch the idea of Thue’s proof.
For this purpose denote by

f>n+l
2

a constant and assume that the inequality
p -1
lCﬁ -~ [ <q
q

has infinitely many solutions p/q, where ¢ > 0. Let p,/q, and p,/q, be two
such solutions with large denominators ¢, > 0 and ¢, > 0. By means of
Dirichlet’s principle (the “Schubfachprinzip™) one constructs polynomials of
the form

m+r 1

R, p)= Y N R,x"y*#0
. -

0 k=0

of high degree m + r in x and of degree I in y with the following properties.

(a) The coefficients R, are integers with not too large absolute values.
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(b) [Identically in x and y,
R(x,p) = (x =) Flx, p) + (v — O G(x, p). (2)

where F and G are polynomials at most of degree m +r in x and 1 in y
which have coefficients in the algebraic number field Q(() the coefficients of
which have not too large absolute values.

(c) The rational number

R,=R(p,/q,.P,/q,)
does not vanish.

Now substitute in (2),

X=p/q, and  y=p,/q,.

By (c), the left-hand side is a rational number distinct from O with the

denominator ¢”"" g, ; hence
1 2

IRyl > (g7 "q,) "

On the other hand, up to a factor which is not too large, the right-hand side
of (2) has an absolute value not greater than

Ip/a, —C"+1po/g, —C1<q, " +4q,".

If now ¢, and ¢, are sufficiently large, the two integers m and r can be
chosen such that

(@' "q) ' >q, " +q, 7.

This contradiction proves that our assumption was false, so proving Thue’s
theorem.

The main difficulty of this proof does not lie in the construction of the
polynomial R(x,y), but in establishing property (c). It is solved by showing
that, even if the originally constructed polynomial R(x,y) has not yet
property (c), it is possible to find a not too large integer d > 0 such that the
derivative (¢/0x)?R(x, y) has the three properties (a), (b), and (c).

In the proofs of the estimates by Siegel, Dyson, and Gelfond, the
polynomial R(x,y) need no longer be of degree 1 in y, but may be of higher
degree. In the much more difficult proof of Roth’s theorem, R(x,y) is
replaced by a polynomial in an arbitrarily large number of variables, and
one substitutes for these variables an equal number of rational approx-
imations of {. The essential difficulty lies again in the proof of an analogue
to property (c).
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(4) In his paper of 1921, Siegel already generalised the problem to that
of the approximation of an arbitrary real or complex algebraic number by
the elements of a fixed algebraic number field of finite degree over Q. This
work he further extended in his fundamental paper of 1929 where iie proved
the following theorem.

Let F(x,v) be a polynomial with algebraic coefficients such that the
algebraic curve

C: F(x,y)=0

has positive genus. Let further K be any algebraic number field of finite
degree over the rational field. Then there are at most finitely many points
(x,¥) on C such that x and y are integers in K. The examples of linear
Diophantine equations and of Pell’s equation show that this theorem does
not apply to all curves of genus O, but the exceptional cases can be fully
characterised.

(5) I come now to a short discussion of my own work on the approx-
imation of algebraic numbers and of Diophantine equations.

During my studies at the University of Frankfurt I had learned from
Siegel the results by Thue and himself, and at the University of Gottingen 1
learned from Emmy Noether about valuation theory and in particular about
p-adic numbers. I knew Ostrowski’s theorem that the rational field Q has
essentially only the absolute valuation |a| and for every prime p the p-adic
valuation |a|,. The completion of Q relative to |a| is the real field I, while
that relative to |a|, is Hensel’s field of p-adic numbers. Different primes
generate different p-adic fields, all, like IR, being extensions of the rational
iield Q. The interrelation of all these valuations is, for every element a # 0 of
2, expressed by the basic product formula

lal| | lal,=1 (3)

P

where the product extends over all different primes.

K. Hensel introduced the p-adic numbers in the 1890s and applied them in
particular to the theory of algebraic number fields. During the following
decades they found applications in more and more branches of mathematics.

In the 1920s Hasse gave a lecture on their importance in algebra and
number theory. The only field in which, at that time, he could not forsee any
uses was that of Diophantine approximatiorns.

As so often, such predictions may be shown to be false, and I gave this
proof.

During a rained-out Whitsun vacation in 1929 on a North Sea Island
when it was unpleasant out of doors and I had nothing else to do, I tried to
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-establish a p-adic analogue to Siegel’s theorem of 1921 on the rational
approximations of algebraic numbers. Following his method, except for
certain changes which allowed to avoid the use of real numbers, I could
prove the following special result.

Let A(z) and A(x, y) have the same meaning as before, and let further P be
a prime and {, be a P-adic root of A(z) =0. Then the inequality

p
Cp"“q‘

< max(pl,|q])2V"
, |

has at most finitely many solutions (p, g) in rational integers p and gq.
From this estimate it follows that, when p and ¢ are not both divisible by
P, A(p, q) cannot be divisible by a higher power of P than

C.max(| pl. [g))*V".

where C > 0 is a constant independent of p and g.

During the following two years I could step by step generalise these results
by considering not one, but any finite number of distinct valuations of Q. In
1931 I finally arrived at the following theorem.

Let P, P,,..., P, be finitely many distinct primes, and let the integers p and
q be relatively prime. Denote by Q(p, q) the largest product

P41 P32 ... pu
with non-negative integral exponents a,, a, ..., a, which divides A( p, q). Then

A(p,q)|
o(p. q)

where ¢ > 0 is a constant which does not depend on p and q. Here the

exponent n — 2\/n may for n =3 be replaced by any number less than % and
for n =4 by any number less than 1.

> c. max(|pl.|q))" V"

This theorem remains valid even when A(x, ) is reducible, provided it has at
least three linear factors no two of which differ only by a constant factor.
Under the same hypothesis the greatest prime factor of 4(p,q) tends to
infinity if both

(pq)=1 and max(| pl, |q|) = co.

It also follows that the number of solutions of

A(p, q) =m, (pq)=1
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is not greater than

t+1
r,

where I" > 0 is a constant independent of m, and ¢ is the number of distinct
prime factors of m.

I may add that thirty years later, in a joint paper with D. J. Lewis of
1961, we could replace this upper bound "' by the more explicit one

yilan)™Vr 4 (),

where a = max(|a,|,|a,|s...,|a,|) is the height of A(x,y), and y,,y,, and y,
are three positive absolute constants which can be determined and are not
very large. In spite of all the recent progress with Diophantine equations, this
seems to be still the best upper bound for the number of solutions.

(6) My p—adic generalisation of Thue’s theorem appeared in 1933. In the
same year, using a method suggested by an unpublished special result by
Siegel, I determined an asymptotic formula for the number of solutions of

A(p. q)|

0pg < (PO=]

as function of X when X tends to infinity. This result implies that if N(X)
denotes the number of integers m between —X and +X which can be written
in the form a = A(p, q), then a positive constant c, exists such that for large
Xﬁ

N(X) < e, X,

In 1938, P. Erdos and I succeeded in proving that there is also a positive
constant ¢, such that for large X,

N(X) > e, X",

In later years Ch. Hooley has replaced these two estimates by an asymptotic
formula for N(X).

In the special case of cubic binary forms A(x, ) could prove in 1935
that if the condition (p, g) = 1 is omitted, the number of integral solutions of
A(p,q)=m can be arbitrarily large for suitable m and even greater than
(log |m|)"/*. It seems still to be unknown what the result is when (p, q) = 1.

(7) After Roth’s theorem appeared in 1955, I studied the p-adic
implications of his method and in particular proved the following little
theorem.
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If r and s are integers satisfying

2Ls<r, (r,s)=1,

if € >0 is an arbitrarily small positive constant and k is a sufficiently large
positive integer, then

k
,
’ (;) — nearest integer | > e k.

This result has some interest because it can be applied to Waring’s Problem.
On combining it with the estimates obtained by a number of mathematicians,
it implies the following consequence.

There exists a positive integer k, such that if k >k, and if

w2+ 3] -

then every positive integer is the sum of at most g (k) kth powers of positive
integers, and here g (k) may not be replaced by any smaller number.

Unfortunately, the proof is non-effective, and we still do not know how large
k, is.

(8) The proofs of Thue’s theorem and its improvements are non-effective
and provide no methods for obtaining upper bounds for the solutions. The
same is true for Siegel’s theorem on algebraic curves of 1929.

Fortunately, in more recent years, A. Baker made a breakthrough by
studying the approximation properties of logarithms effectively. This allowed
him and his students to derive effective bounds for the solutions of
A(p,q)=m and of more general Diophantine equations. However, his
method has still not yet allowed to give an effective proof of even Thue’s
inequality #{) <n/2 + 1.

Also Baker’s method can be generalised to the case when not only the
absolute value, but also a finite number of different p-adic values are taken
into consideration. Of the mathematicians who have worked on such
problems 1 mention in particular Coates and Sprindzuk.

(9) 1 published a number of further papers on Diophantine approx-
imations and equations and in 1961 a small book in which I investigated the
p-adic generalisations of Roth’s method.

For the case of algebraic curves of genus 1, I gave in 1934 a p-adic
generalisation of Siegel’s theorem on algebraic curves. I could show that
there are at most finitely many rational points (x,y) on such curves such
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that the greatest prime divisors of the denominators of x and also of y are
bounded.

Of a different kind was a generalisation which I gave in 1955 to Siegel’s
theorem on algebraic curves. I assumed his theorem and applied simple
methods from field theory and from the theory of point sets. In this way the
following general result could be proved.

Let F(x,y) be an irreducible polynomial with real or complex coefficients
such that the algebraic curve

Fix,y)=0

is at least of genus 1. Let further u,,uy ..., U,, Uy U,,..., 0 be finitely many
real or complex numbers where both the u; and the v, are linearly
independent over the rational numbers.

Then there exist at most finitely many sets of r+ s rational integers
X1 s Xgpeers Xy Vs Voo Vs SQLisfying the equation

Fluyx, + uyx, + - +u,x,, 00, + 0,0, + - 0,.0) =0.

Consider in particular the case when F has real coefficients and the numbers
u; and v; are likewise real; let further both r and s be at least 2. Then the
points

(U Xy Fuyxy+ o U X, 0y F U+ e 00

with integral x; and y, lie everywhere dense in the real plane, but only finitely
many of these points lie on the curve!

I1. TRANSCENDENTAL NUMBERS

(10) A number (real, complex, or p-adic) is said to be transcendental (i.e.,
over the rational field Q) if it is not algebraic.

The existence of transcendental numbers was first proved by J. Liouville in
1844. As he had proved, the number #({) of Section 1 is finite for all
algebraic numbers . Hence the real number { is certainly transcendental if
the incquality

0< |c—‘—”<q-’
q

has for every r > 0 infinitely many solutions in rational integers p/q such
that ¢ tends to infinity. Numbers with this property are called Liouville
numbers.
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One can prove that the set of all Liouville numbers is non-enumerable, but
has the Lebesgue measure 0. A simple example of a Liouville number is
given by

o8}
N

n=1

While all Liouville numbers are transcendental, the converse is of course
false. Thus Roth’s theorem enables one to show that the number

[ve)
\1 2A3n

n=1

is non-Liouville, but transcendental.

(11) In the eighteenth century, L. Euler conjectured already that both e
and 7 are transcendental. This conjecture was proved to be true a century
later, for e by Ch. Hermite in 1873 and for 7 by F. Lindemann in 1884. Both
proofs are based on a system of identities which define rational approx-
imation functions of several exponential functions; these identities were first
given by Hermite in his paper of 1873. Some twenty years later Hermite
obtained a second system of approximations for exponential functions, but
he did not apply this system to problems of transcendency.

During the following years up to the 1920s little progress in the theory of
transcendency was made. But then Siegel, in the first part of his paper of
1929, already mentioned in connection with Diophantine equations,
introduced a revolutionary method. This method allowed him to study the
values at algebraic points of certain classes of entire functions which satisfy
linear differential equations with rational functions as coefficients. One of his
results was that for rational numbers v such that 2v + 1 is not an even
integer and for every algebraic number a # 0 the two function values J, («)
and J/(a) are algebraically independent over (I and hence are both transcen-
dental. Later, since 1954, A. B. Shidlovski introduced a number of
improvements on Siegel’s method and obtained very general results on linear
differential equations. (His ideas are explained in detail in my book
“Lectures on Transcendental Numbers” of 1976).

(12) Only a few years after Siegel’s paper of 1929, important progress in
the theory of transcendental numbers, but in a different direction, had been
made by A. O. Gelfond and Th. Schneider. After an earlier special result by
Gelfond, these two mathematicians proved independently and with quite
different methods in 1934 that

log a

d
a an log b
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are transcendental for algebraic numbers a and b if for the first number a is
distinct from O and 1 and b is irrational, and if @ and b are distinct from 0
and | and log a/log b is irrational for the second number.

Schneider was particularly successful in generalising his methods. In the
following years he obtained important results on the transcendency of
elliptic, modular, and Abelian functions. This work can be studied in his
book of 1957.

Since 1966, A. Baker has introduced entirely new methods into the theory
connected with the algebraic approximations of logarithms. These methods
have not only been of fundamental importance for the effective theory of
Diophantine equations, but they have also produced very general new classes
of transcendental numbers.

(13) My own studies of transcendental numbers began about 1926.
During a part of that year I was very ill and in bed. To occupy myself, 1
played with the function

o0
fl)=> z*

n-—0

and tried to prove that £({) is irrational for rational { satisfying 0 < |[{] < 1. 1
succeeded and ended by proving that f({) is transcendental for all algebraic
numbers ( satisfying this inequality.

This result I could later generalise to power series in one or more variables
with algebraic coefficients which satisfy a very general type of functional
equation. This work was published in three papers of 1929-1930. I mention
only one example which is rather pretty.

Let w be a real quadratic irrationality; let { be an algebraic number
satisfying 0 < || < 1, and let

@)=Y ol 2",

n=1

where as usual |x| denotes the integral part of x. Then any finite nhumber of
the function values

S QS0 S (s

are algebraically independent over Q. and hence all these values are transcen-
dental.
(14) Not much later I began to study in detail Hermite’s approximation

functions of the exponential function and recognised the connection between
his two systems of approximations. I further began to understand how these



FIFTY YEARS AS A MATHEMATICIAN 155

approximation functions could be used for a detailed study of the algebraic
approximation of transcendental numbers like e, 7, and log 2.

At that time it was well known from the continued fraction for e that e is
not a Liouville number, but the analogous problem for 7 was still unsolved.
In two papers that appeared in 1930-1931, I established the following
results.

(a) Let A be any Liouville number, and let w,,..., w,, be finitely many
algebraic numbers which are linearly independent over Q. Then the numbers

A, e, ewn

are algebraically independent over Q.
(b) If X is any Liouville number, then

Aand n
are algebraically independent over Q. The same is true for
A and log ¢,

where { is any rational number distinct from 0 and 1.

If the Liouville number 4 is omitted in these two statements, we come back
to the theorems by Lindemann.

(15) The two statements (a) and (b) depended on a new classification of
the real and complex numbers which I found in 1927 and in 1935 extended
to p-adic numbers. I explain it here because in later years it led to important
work by other mathematicians.

For any real or complex polynomial

p()=py+pz+--+p,z"  wherep,#0,

put

m

ap)=m,  H(p)= max [pl,  L(p)= Nipl o Ap@)=2""L(p).

Jj=0

Let further { be the real or complex number which is to be classified, and let
a and n be two positive integral variables. Put

w,(a) = inf| p(0)]

where the lower bound is extended over all polynomials p(z) with integral
coefficients which satisfy the three conditions

apy<n,  H(p)<a,  p(l)+#0.
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It is obvious that O < w,(a) < | and that w,(a) is a non-increasing function
of both variables a and n.
Next define two further quantities w, and w as the upper limits

. —log w,(a w
w, = lim sup-~g~JL~) and w = lim sup —*.
a-oo log a n—oo n

Here 0 < w, < o0 and 0 < w < oo, and w, is a non-decreasing function of n.
It may happen that there exist suffixes n for which w, = co: in this case
denote by wu the smallest suffix n with this property, and otherwise put
u=o0. It is clear from these definitions that always at least one of the two
numbers « and u has the value oo.
The number { is now called

an A-number if w=0u= o0,

an S-number if 0<w< o0,u=o00,
a T-number if w=u= o0,

a U-number if w=o00,u < o0.

Correspondingly, we speak of the classes 4, S, 7, and U.

The class 4 is identical with that of all (real or complex) algebraic
numbers, while the transcendental numbers are distributed among the three
classes S, 7T, and U. The most important property of the classification is that
two numbers which are algebraically dependent over (@ always lie in the
same class, hence that numbers in different classes are algebraically
independent over Q.

The Liouville numbers are those elements of the class U for which u = 1;
this class is thus not empty. There also exist S-numbers, e.g., the number e
when a # 0 is an algebraic number.

But until recently, it was not known whether the class T is empty or not.
This problem was solved by W. Schmidt in 1968 who proved that there exist
T-numbers. However, even today no explicit example of a 7-number is
kriown.

I proved already in 1932 that (in the sense of the Lebesgue measure on the
real line or in the complex plane) almost all real and complex numbers are
S-numbers. After a number of weaker results by others, V. SprindZuk in
1967 proved that for every positive number ¢ almost all real numbers satisfy
w < 1 +¢ and almost all complex numbers satisfy w <4 + ¢. Since w =1
for {=e and w =3 for { = ie, Sprindzuk’s result is almost best possibie.
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(16) My classification implies that a real or complex number is transcen-
dental if and only if

w > 0.

In more explicit form, the following theorem holds.

The real or complex number ( is transcendental if and only if, for any
positive number t, there exist a positive integer n and an infinite sequence
{ pi(2)} of distinct polynomials with integral coefficients such that

Apo<n  0<|pOI<H(p) ™  (k=123..).

In the early sixties, I succeeded in replacing this criterion by the following
more general test.

The real or complex number ( is transcendental if and only if there exist
an infinite sequence {t,} of positive numbers tending to infinity and an
infinite sequence {p,(z)} of distinct polynomials with integral coefficients
such that

0 <[ pO] < A(py) ™

It may be mentioned that the classification and these tests can be carried
over to p-adic numbers with almost no changes.

(17) When I began my work on p-adic Diophantine approximations in the
late 1920s, I became interested in the problem of the transcendency of the p-
adic exponential function

a0 1!
This power series converges only for

|212<%ifp:2 and for ]z\pg—;‘ifp>3.

Therefore the methods used in proving the transcendency of the complex
exponential function do not seem to carry over to the p-adic case. However,
in 1932, by using some special p-adic properties of this function, I finally
succeeded in proving that also the p-adic exponential function is transcen-
dental for all algebraic z # 0 in the region of convergence.

Similarly, when the proofs by Gelfond and Schneider of the transcendency
of a® and log a/log b in the complex case had appeared in 1934, I also could
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prove their p-adic analogues. For this purpose it was necessary to investigate
the relations between the coefficients of a p-adic power series and its zeros.

(18) In the summer of 1936 at Groningen in the Netherlands, when 1 was
still working at the University there, a bicycle rider ran into me. As a conse-
quence, the tuberculosis in my right knee bone, which had been dormant for
many years, flared up again. It therefore became necessary to undergo
several bone operations in 1936 and 1937. This was naturally a very painful
period and I was given many morphine injections, although my doctor
warned me against their danger.

After a further operation the pains and hence also the injections finally
stopped. Then I tried to convince myself that the drug had not damaged my
brain by studying the problem of the possible transcendency of the decimal
fraction

D =0.123456789101112...

in which the successive integers are written one after the other. I found that I
could still do mathematics and succeeded in proving the transcendency of
both D and of infinitely many more general decimal fractions.

All these decimal fractions were later proved to be normal by P. Erdés;
i.e., every possible finite sequence of digits occurs in these fractions
with the correct probability. Thus we know now explicit examples of
‘normal transcendental numbers, but it is still unknown whether there are also
normal algebraic numbers. A weaker problem which is likewise unsolved
asks whether Cantor’s set contains any irrational algebraic number.

(19) N. L. Feldman, in a number of papers from 1949 to 1963, established
new measures of transcendency of e, 7, and log a, where a is an algebraic
number distinct from 0 and 1. In the 1950s I began to study the same
problem, but with a different method, and I finally obtained explicit
estimates for the distances of these numbers from rational and algebraic
numbers which did not involve any unknown constants. My papers were of
1953 and 1967, and the first paper contained the following two results in
Jparticular.

If n is any sufficiently large positive integer, then

|e" — nearest integer| > n ",

If p and g > 2 are arbitrary integers, then

—42
mn— .

p
-1 >q
q‘

Recently, and independently, the exponent 42 in the second inequality was
improved to less than 21 by E. Wirsing (unpublished) and M. Mignotte
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(1974). The latter uses my own method, but with better estimates for the
integrals on which the proof is based.

(20) I mentioned already Shidlovski’s important generalisation of Siegel’s
theory of linear differential equations. Shortly after the first paper of
Shidlovski appeared, I began to lecture on his method and simplified some
sections of his proof. Finally, in a paper of 1968, I applied his theorems to
the study of the special functions.

1 /0\*
)= (8_v) L)y (k=0,1,2,3).

For one week I believed I had succeeded in proving the transcendency of
Euler’s constant y as well as that of e’. But then I found an algebraic identity
connecting these functions with their derivatives relative to z which
invalidated my proof.

All T could prove finally was that

%Oog%er)

is transcendental for all algebraic numbers « # 0. Here J,(z) and Y,(z)
denote the Bessel functions of the first and second kinds with suffix O,
respectively.

III. GEOMETRY OF NUMBERS

(21) In the last decade of the last century, H. Minkowski introduced into
mathematics a new discipline which he called the Geometry of Numbers. He
showed its power by many applications to number theory, in particular to
the theory of algebraic number fields. His main theory and results he
collected in the book Geometrie der Zahlen of which the first part appeared
in 1893 and the second part, after his death, in 1910. This work is still of
basic importance, although much has been added to the theory during this
century.

(22) Let
X = (X yees X)s Y=(Viso V) 0 =(0,...,0)
and
XM = (X seees Xp) (h=1,2,..,n)

be points in real n-dimensional space R". We assume that n > 2 because the
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case n = 1 is uninteresting. The point 0 is called the origin. No distinction is
made between poirts and vectors, and the sum or difference x + y, the scalar
product cx, and the inner product x - y are defined by

X+y=(X £y X, £1,),  X=(CX . 0X,),
X - y:xlyl + +xnyn.

Here ¢ and x - y are scalars (real numbers).
For 1 < m < n the points »"...., x" are said to be linearly independent if
the equation

with real coefficients c,...., ¢,, can hold only if
Cl T e :Cm:O’

and they are otherwise called linearly dependent.
If x"....,x" are linearly independent, then the set

A=1lu, x4+ u, XUy e u, =0, £1, £2,...]

is called a lattice, and the absolute value of the determinant

is called the determinant of A4 and denoted by d(A). Always d(A) > 0. Of
particular importance is the special lattice 4, which consists of all points
with integral coordinates; it has the determinant d(4,) = 1.

(23) A symmetric convex body K is defined as a point set in " with the
following properties.

(a) K is a bounded closed point set.

(b) The origin 0 is an interior point of K.

(¢) If x lies in K, so does the symmetric point —x = (—X ..., —X )

(d) K is a convex set. This means that if x and y belong to K, so do
all points

(I =) x + ty, where 0 <t < 1,

of the line segment which joi’ns X 0y.

Important examples of such convex bodies are the n-dimensional cube

x| < ey [ X, <0y
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and the n-dimensional sphere

The n-fold integral

n

V(K):J-l-(- V[dxl - dx

which exists and has a finite positive value defines the volume of K.
We can associate with K two convex functions

F(x)=F(X, s X,) and G(y) =G s V)
These functions are real valued at ail points of R”" and have the properties
(a) F(0)=0, but F(x)>0 if x#0;
(b) F(cx)=|c| F(x) for all real c;
() F(x+y)<F(x)+ Fly),

with analogous properties for G(y). In terms of these functions, K consists
exactly of all points x satisfying

Fx)< 1,
and also of all points x which satisfy the inequality
x-y<G(y) for all points y.

F(x) is called the distance function and G(y) the tac-function of K.
The points y for which

Gly)<1

define a second symmetric convex body, K*, say. This body K* has G(y) as
its distance function and F(x) as its tac-function. In the terminology of
classical geometry the two bodies K and K* are polar to one another relative
to the unit sphere

X4 xi=1

This means that if x lies on the surface (frontier) of K, then x - y = F(x) is a
tangential (tac) plane of K*, and vice versa.

(24) At the beginning of his investigations, Minkowski was interested in
the minima of positive definite quadratic forms at points of the special lattice
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A,. This problem had been studied half a century earlier by Hermite by
means of algebraic methods. Minkowski recognised the connection of the
problem to geometry and connected it to the relations between convex bodies
and lattices.

About 1891 he found his revolutionary first theorem.

If the volume V(K) of the symmetric convex body K in R" is at least equal
to 2", then K contains at least one point x # 0 of the lattice A,.

This theorem allowed many important applications to the theory of algebraic
number fields and to Diophantine approximations. Even today the fruit-
fulness of this theorem in many branches of mathematics is not yet
exhausted. Perhaps its best known consequence is Minkowski’s theorem on
linear forms.

Let (an )y p-1.... . be a real n X n-matrix of determinant 1. Then there
exist n integers x,..., x,, not all zero such that
la, x,+ - +a,,x,| <1 (h=1,2.....,n).
Moreover, in all but one of these n inequalities the sign < may be replaced
by $S<.75

By means of this theorem and its analogues Minkowski proved that the
discriminant of every algebraic number field at least of degree 2 is distinct
from +1.

(25) Even deeper and more powerful is Minkowski’s second theorem
which is concerned with the successive minima of the symmetric convex
body K in the lattice A,,.

These minima are defined as follows. If ¢ is any positive number, the
inequality F(x) < ¢ holds for at most finitely many points in 4,. It follows
that there exists a point x‘" € A, distinct from 0 such that

m, = F(x'")
is as small as possible. Further, if k is any of the numbers 2, 3...., n and if
x® and m,, = F(x") (h=1,2,., k—1)

have already been defined, there exists a point x*’ € A, such that

xD x® . x®

are linearly independent and
m, = F(x*)

iIs a minimum.
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The numbers m, ,..., m, are called the successive minima of K in A,. They
do not depend on the special choice of the lattice points x‘"....x" and
satisfy

O<m <m,<---<m

n*

The second theorem of Minkowski states now the important inequality

271

Sy e m V(K) <27

it obviously implies the first inequality. Here the upper bound 2" is best
possible and is attained for the unit cube. On the other hand, the lower
bound 2"/n! is not attained for n > 3, and the best possible value does not
seem to be known.

Minkowski’s own proof of his second theorem is quite long and involved.
He proved it in the second part of his Geometrie der Zahlen which was
published only in 1910 after his death.

Minkowski himself made only one application of his second theorem,
namely to the study of a certain algorithm for the approximation of numbers
in algebraic number fields.

(26) Relatively little further progress was made in the geometry of
numbers during a number of years after the death of Minkowski. The most
important advance was due to H. F. Blichfeldt; in 1914 he generalised and in
special cases improved on Minkowski’s first theorem. He too used
geometrical methods. R. Remak replaced them later by analytical methods
depending on integrals (1927), and C. L. Siegel gave a proof in 1935 which
applied Fourier series.

New Proofs of Minkowski’s second theorem were due to H. Davenport in
1939, to H. Weyl in 1942, and to T. Estermann in 1946.

(27) While I was at the University of Groningen from 1934 to 1936, I
gave a course on Diophantine approximations which included a detailed
discussion of Minkowski’s two theorems. Shortly afterwards (1937), 1
applied Minkowski’s second theorem to the global study of algebraic number
fields. In this work I considered simultaneously all the valuations in such a
field and investigated how the geometry of numbers could be combined with
valuation theory and in particular with p-adic numbers. Many years later
(1964), an improved method enabled me to establish global estimates for
ideal bases in algebraic number fields. These estimates implied particularly
simple proofs of the finiteness of the class number and of the existence of
independent units.

In 1938, I applied Minkowski’s second theorem and derived from it new
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general theorems. One such theorem states that to every symmetric convex
body K there exist n points X'"...., X in A, of determinant 1 such that

n

2
— <F(XM) - FX) V(K) < nl
n:

where the upper bound n! is not in general best possible. I further obtained a
similar but less good estimate for the reduced bases of A, in the sense of
Minkowski. Both facts were independently obtained and improved by H.
Weyl in 1942,

(28) My theorem on the successive minima of polar convex bodies of
1938 proved to be useful in applications. Let m,,..., m, be the successive
minima of K in A, and let similarly m...., m* be the successive minima of
the polar body K* in A,. After I had suceeded in proving that the volumes
of K and K* are connected by the inequality

4n(n!) P S V(K) VIK*) <47,

where neither of the bounds is best possible, I could deduce from this and
from the second theorem of Minkowski applied to both K and K* that

L<mm}f ., <(n!)? (k=1,2,..,n).

Here the left-hand inequality is best possible, while the right-hand one can be
further improved.

This reciprocity theorem was applied by several mathematicians, in
particular by H. Davenport in the study of Dophantine equations in many
variables.

Before me, M. Riesz had obtained a similar, but not equivalent theorem on
polar convex bodies.

Eighteen years after I had obtained my reciprocity theorem, I found that it
was a very special case of a more general theorem connected with the
representations of the real linear group (1956). A little earlier, I had already
studied the special case of this theorem dealing with compound convex
bodies.

Such compound bodies are defined a follows. Let 2 < p<n—1, and let
xM....,x" be any p point in R"; further put

v=p) w0

The p X n matrix formed by the coordinates of x‘"....,x"” contains N
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independent minors of order p which we denote in some fixed, but arbitrary,
order by X,...., X,. The point

X=X, Xy)

in N-dimensional space R" defines the pth compound of x‘",..., x7.

Let now xV...., x® run independently over the symmetric convex body K.
Then X describes a certain symmetric closed bounded point set S in R"
which lies on the so-called Grassmann manifold and is in general not
convex. Its convex closure, K”, say, is, however, a symmetric convex body in
R,

I could show that the N-dimensional volume V(K”) of K” is connected
with the n-dimensional volume V(K) of K by the inequalities

C, <VIKY) V(K) "< C,.,

where C, and C, just as later ¢, and ¢, denote positive constants which
depend only on n and p, but not on the special convex bodies K and K.
This property of the volumes implies now again a set of inequalities for
the N successive minima, m?,..., m%,, say, of K” in the lattice /14 of all points
in RV with integral coordinates relative to the successive 1ninima m,,..., m
of K in A,. In order to formulate these inequalities arrange the N products

n

- m; where 1 <i) <iy <.+ <,

in order of increasing size and then denote them by M, M,,... M., respec-
tively. Thus

O<M <M, < <M,.
The wanted inequalities take then the simple form
eM, <mh L eyM, (k=1,2,.,N).

This theorem has recently found applications. It forms one of the tools in
the work by W. Schmidt (1970) on the simultaneous approximations of
several algebraic numbers by rational numbers, a generalisation of Roth’s
theorem.

(29) All the results mentioned so far concern the geometry of
numbers of convex bodies. However, already Minkowski himself began the
study of the relations between lattices and general point sets. He stated
without proof one property of this kind. His conjecture was first proved by
E. Hlawka in 1944, Then, in 1945, C. L. Siegel obtained Minkowski’s
conjecture from a deep theorem of his on the Haar measure in the space of
lattices in R".
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(30) The real revolution in the geometry of numbers began,
however, already several years earlier. Before 1 give details on it, it is
convenient to introduce a number of notations.

Let S be an arbitrary bounded or unbounded closed point set in X" and
let further A be a variable lattice in this space. The lattice is said to be S-
admissible if none of its points x # 0 is an interior point of S. If now S has
no admissible lattices, then put

A(S) = o0}
otherwise define 4(S) by
A(S) = infd(A),

where the lower bound is extended over all S-admissible lattices. An S-
admissible lattice A4 which satisfies the equation

d(4) = A(S)

is called a critical lattice of S. It is clear from this definition that such
critical lattices cannot exist unless 0 < 4(S) < oo.

Of particular importance are the symmetric star bodies in R" which are
defined by the following three properties.

(a) S is a bounded or unbounded closed point set in ",
(b) If x lies in S, then so do all points of the line segment

IX, where —1 <1< 1.

(¢) 0 is an interior point of S.

In the case of a star body, the lattice determinant A(S) cannot vanish, but
may have any positive value or be equal to +oco.
Star bodies in 2 dimensions are called star domains.

(31) The modern trend in the geometry of numbers began in 1939
with several papers by H. Davenport. By means of algebraic considerations
he determined A(S) and the critical lattices for the two unbounded star
bodies

X, x,x5] < and  |x,(x3 +x3)[ < 1

in R3. This was the first time that 4(S) had been obtained for a non-convex
point set in k3.

Next, in 1940, L. J. Mordell succeeded in reducing these two three-
dimensional problems to problems in R? which he could then solve by means
of geometrical considerations. This geometrical method for finding 4(.S) and
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the critical lattices he later entended to a large class of star domains. All this
work made essential use of Minkowski’s first theorem.

These investigations by Davenport and Mordell on non-convex point sets
were continued by them in the following years, and they were soon joined by
their students.

(32) I myself began to work on non-convex point sets, at first in
2%, in 1942, by establishing a general (but not very practical) method for
obtaining all the critical lattices of a star domain bounded by finitely many
analytical arcs. Not much later I began to study the general lattice properties
of star bodies in R" for n > 2 and finally also of arbitrary point sets in this
space.

I tried to obtain general laws rather than deal with special examples. 1
finally arrived at a very useful compactness theorem for lattices from which
such laws could be derived.

The compactness theorem can be formulated as follows.

A sequence {A4,} of lattices in K" is said to converge to a further lattice A
if, however large the number r > O is chosen, all the points of all the lattices
A, inside the sphere

tend to the points of A. This property is satisfied exactly if suitably chosen
bases of the lattices 4, tend term by term to a basis of A.

The sequence {A,} is further said to be bounded if all the determinants
d(A,) are bounded and if, moreover, there exists a neighbourhood of the
origin 0 of [R" which contains no point x # 0 of any lattice A4,.

The compactness theorem is now as follows.

Every bounded sequence of lattices contains a convergent subsequence.
This theorem allows many applications. As an example 1 prove the following
theorem.

Every star body S with finite A(S) has at least one critical lattice.

Proof. By the definition of A(S), there exists an infinite sequence {4} of
S-admissible lattices A, such that

lim d(4,) = A(S).

By the definition of a star body, S contains a neighbourhood of 0. Since the
lattices A, are S-admissible, none of their points distinct from 0 can lie in
this neighbourhood; also their determinants are bounded. Hence they form a
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bounded sequence. There exists then an infinite subsequence {4, } of {A,}
with k; — co which converges to a certain lattice A. Here ‘

d(A) = lim d(4,) = A(S).

This lattice A is critical. Otherwise there would exist a point x 0 of A
which is an interior point of S. But then, for all sufficiently large j, also Ay,
contains an interior point of S, contrary to the definition of admissible
lattices.

It may be remarked that the set of all critical lattices of a star body can be
finite or infinite, enumerable or non-enumerable.

The compactness theorem also allows us to obtain necessary and sufficient
conditions for arbitrary point sets in R" to have critical lattices.

While a critical lattice of S does not contain interior points x # 0 of .S, it
may contain frontier points of this set. However, already the simple star
domain

X+ xg) <

has no frontier points on any one of its infinitely many critical lattices.

In my papers of 1946 and later 1 made many applications of the
compactness theorem, and I was soon followed by other mathematicians, in
particular by Davenport, J. W. S. Cassels, and C. A. Rogers in such
applications.

On the remaining pages of these notes I shall collect references. These go
to about 1970. However, the list of my own publications has been extended
to 1981.
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