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ON A SPECIAL TRANSCENDENTAL NUMBER

K. MAHLER

® J

2
Extract. - Let f(z)=]| | (1-z7 ). Denote by s and t two integers such that
j=0
0<s<t. In this paper a measure of transcendency for the number

f(s/t) is determined.

On the two similar functions

* J

@ j =,
flz)=] | (1-27) and g(z) = | | (1+z
j=0 j=0

)= (1-2)7"

the first one is transcendental and the second one rational. This property has an
arithmetic analogue. Let s and t be two integers satisfying O<s<t . Then
f(s/t) is a transcendental and ¢(s/t) a rational number. Some fifty years ago I
proved a very general result in which the property of f(s/t) is contained as a

special case (see Mahler 1930).

In the present paper I establish a measure of transcendency for f(s/t). I use
algebraic approximation formulae for f(z) which are analogous to those for the

exponential function in Hermite's classical proof of the transcendency of e

(Hermite 1873). The proof is based on the non-vanishing of a certain determinant,

and the method has perhaps a slight interest, even if the result itself has not,
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1. - The infinite product
= )

y
—
N
~—
H
—_
pary
i
N
~—

j=0
defines a regular function on the unit disk
U :|z]<1
in the complex plane. When z tends along a radius to any 2)th root of unity,
f(z) tends to zero. Since these roots of unity lie everywhere dense on the unit
circle [z] =1, this circle is a natural boundary for f(z) and hence f(z) is a

transcendental function of z . For if there were a regular point on the unit circle,

f(z) would be identically zero, contrary to £(0)=1.

We may compare f(z) with the similar product

which defines a rational function of =z .

It is clear that f(z) and all its powers

f(a) = £ 1,7 (6= 0,1,2,...)
j=0 J

have rational integral Taylor coefficients fik .

2.' Let
m h
a] (Z) Z a]] Z (l: O’ 1) --‘)Il)

h=
be n+l polynomials at most of degree m , with coefficients a1 which have

yet to be chosen. Form the n functions

rk(z) = ao(z) f(z)k—ak(z) (k=1,2,...,n)

and write them as power series

r(z)=5 r. 2’ (k=1,2,...,n) .

It is easily shown that the new coefficients r. = are linear forms in the (m+1)(n+1)
J

numbers N with rational integral coefficients. It is therefore possible to find

(m+1)(nt1) integers a,, notall zero such that (m+1) (n+1) -1 of the coefficients

r., are zero.
jk



- 20 -

In particular, put .

(m+1) (n+1) - 1j :[mn+m+n] :m+1+[_r_r1_rl1__] '

n n

I=_

Then nI<(m+1)(n+l)-1, and hence there exist n+l polynomials ak(z) with

integral coefficients not all zero such that the nlI linear equations

(1) : rjk:O for 05j<I1-1, k=1,2,...,n

are satisfied.

THEOREM 1.- If m>n, then none of the polynomials

ak(z) | (k=0,1,...,n)

vanishes identically.

Proof. - The hypothesis implies that I>m+2, hence that

r. =0 for 0Sj<m+l, k=1,2,...,n.
jk

Therefore each of the n functions rk(z) has a zero at least of order m+l
at z=0.

We show now that if one of the polynomials ak(z) , say the polynomial aK(z) ,
is identically zero, then all these n+l polynomials vanish identically, which is
false.

1f, firstly, n =0, then for k=1,2,...,n the function rk(z) = -ak(z) can only

then have a zero at least of order m+1 at =z = 0 if it vanishes identically ;

for ak(z) is a polynomial at most of degree m .

Secondly, let 1=n=n . Now r (z)= ao(z) f(z)K has a zero at least of order
m+1 at z=0, and since f(0)= 1, the same is true of the polynomial ao(z)
which must therefore vanish identically. But then, by the first case, again all

the polynomials a (z) vanish identically. This concludes the proof.
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3,- From its definition, f(z) satisfies for every positive integer £ the func-

tional equation
1-1 4
2 2 2
f(z)= (1-z)(1-27)...(1-= ) £z ) .

This functional equation remains valid in the trivial case 4 =0 when it reduces to

the ‘identity

(z)=1(z)
It is obvious that for £=0,1,2,...,
{ £ L L
2 2 2k 2 .
rk(z ):ao(z ) £(z )~ak(z ) (k:1,v2,...,n).
Therefore, on putting
L-1 1
), . 2 k 2 k=0,1,...n
fg (2)=((-2) (-2 (o2 ) agle ) ()
where
(0)
a, (z)-—ak(z) (k=0,1,...,n),
it follows that
4-1 {
2 2 k 27 @ k (4) k=1,2,...,n
(2) ((1-z)(1-2z)...(1-z ) rk(z =2 (z)(z) - Ay (z) (&:0,1’2" )

If it is again assumed that m >n, then by Theorem 1 none of the polynomials

ak(z) vanishes identically, and hence also

i
o O
ted

s}

H

) 2 (2% 0 e

From these polynomials form now the determinant of order n+l,

OO (z) ago)(z) af)O)(z)

1) (1) (1)
D(z)= % (Z 1 (2) “n (z)
a(()n)(z) agn)(z) ain)(z)

This determinant has the following property.
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THEOREM 2.- If m>n, then D(z) is not identically zero.

4.- The proof of Theorem 2 depends on two lemmas of which the first one is

well known.

LEMMA 1.- Associate with each permutation

the sum

o) = O.ko+‘1.k1+...+n.kn

and denote by HO the special permutation

Then

o()> o) if T

For a proof see Item 368 of Hardy, Littlewood, and Pdlya, 'Inequalities',

Cambridge 1934,

LEMMA 2.- Denote by

A)

) (220, 1,.0m)

2
a set of (n+l) polynomials such that

O i
Ai )(1)3& o, ol (1) %O,...,A(n)(l)% 0.

n-1

Then the determinant
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0 0 0 0
A ) 49 ) 29 ) NG
AW e aBPe w2 aWle L -1 ( ) (2)
o 1 2
2 2) 4 (2 2 2)
A(z)= A(() )(z) (z-1) 2 § (z) (z-1) A(2 )(z) ee.  (z-1) & ( (z
2
Ay (@) A§H)<z> (1778 () . 1) A% ()
n
is not identically zero,
Proof. - Let the notation be as in Lemma 1. To each of the (n+l)! permuta-

tions [ there corresponds a term

()= (217D A () AV (z) A
o 1 n

(z)

of A(z), and the determinant is the sum of all these terms. In particular, the
second diagonal of the determinant gives the term
T )=+ (2 1O(HO)A(O)( Al ( A
o ) 0 z) no1 z) ...

. o(ll )
By the hypothesis this diagonal term is divisible exactly by (z-1) ° and by no

higher power of z-1 ; -on the other hand, Lemma 1 implies that all other terms
are divisible by a higher power of z-1. Hence they cannot cancel the diagonal

term, and therefore A(z) does not vanish identically.

5.- Theorem 2 can now be proved as follows.

By Theoprem 1, on account of m>n, none of the polynomials a (z) vanishes

(1)

identically, and hence the same is true for all the polynomials ay (z). For each

suffix k denote by €L the largest non-negative integer such that
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. e\
ak(z) is divisible by (z-1)",

and put

e

k

The polynomials bk(z) have then the property

bku)%o (k=0,1,...,n) .
For all suffixes k and 4 ,
e £ e ' e £ 4 e {4
2 2 2 - 2 -
ak(z ):(22 -1) kbk(z ):(z-l)k(z ]+z 2+...+z2+z+1)kbk(z2 )

L L 4
2 2
z +tz +...tz +2z+1 and bk(z )

vanishes at z=1 ., Further the product

2-1 ' 4 -1
£ -
(l-z)(l—zz)...(]—z2 ):i(z-l)u(1+z)(]+z+z2+z3)... (]+z+zz+...+z2 1

is divisible by (z—l)é, but by no higher power of z-1 .

It follows that

L -1
€ 2 2 2 k

af{ )(z):ak(z ) (1-z)(1-27)...(1-2 ))

can be written in the form
+k{
(2) “k (1)
ak (Z)'"(Z“]) Ak <Z)
where the new polynomials A(lf)(z) satisfy for all suffixes k and {4 - the ine-
quality
)
Ak (1)=0

Hence these polynomials in particular satisfy the weaker conditions of Lemma 2.

It is further clear that

eo+e +...te
D(z) = (z-1) | Mz)

where A(z) is the determinant of Lemma 2. Since this lemma may be applied,

the assertion of the theorem follows immediately.

a (z):(z—])’kbk(z) | (k=0,1,...,n) .

)
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6. - The determinant D(z) can be generalised, as follows.

Denote by L any non-negative integers and put

L
a(() )(z) agL)(z) ar(lL) (z)
IL+1 L+1 1
a(LJ'rn) (z a(L.Jrn) () a(LJ.rn) (2)
o ) 1 n

This determinant is' connected by a simple formula with the determinant D(z).

For by definition,
L 2{,-1 K

)z 2 ((1-2)(1-2%) ..

a, (z)= ak(z
and therefore

all({L%) (z) = a (Zz

so that

(L+4)
“x
(L)

(z)=a

2 2 k=0,1
O amasta ) GIY

All elements of D (z) in the row of suffix k have the common factor

I.-1
2
((1-z)(1-z")...

from which it follows that

L L-1
(4) B ) =D ) ((1-2)(1-2) ..

This identity implies the following result.

THEOREM 3. - Let z be a number satisiying

0<|z]<1.

Then there exists a positive integer LO:LO(Z) such that

o sy 40 for L>L,_ .
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Proof. - The product

1.-1
((1~Z)(1-22).“(1__ZZ ))n(nJrl)/Z

on the right-hand side of (4) is certainly distinct from zero. Further, by

Theorem 2, the determinant D(z) does not vanish identically, hence as a poly~

nomial has the form

where u and v>u are two non-negative integers, and where the lowest coef-

ficient Du is not equal to zero. Hence, as L tends to infinity,

L L
2 2™,
D(z ) ~D_ 2 °

does not vanish as soon as L is sufficiently large. The assertion is therefore an

immediate consequence of (4).

7.- From now on let s and t>s be two positive integers, and let x be the

positive rational number

x =s/t, sothat O0<x<l .

Hence the function value
f(x) = f(x/t), = f say,
exists and from its definitian as a product satisfies the inequalities
O<f<1.

It has been known for half a century that f is transcendental (Mahler 1930).

We shall establish a measure of transcendency for f.

(¢)

Since this product will occur often, define vy by

1-1
y<o):1 ’ y('{;):(l—x)(l—xz)...(l'xz ) (£=1,2,3,...).
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(t)

Thus vy is a rational number, with the denominator
-1
t1+2+4+...+2£ _ tZL'l

and satisfies the inequalities

f<y(“< 1 (£=0,1,2,...).
The polynomial values

() k=0,1,...,n

2 () Co=0.1.2,... "

are rational numbers ; we require upper estimates for their numerators and de-

nominators.

The original polynomials
a, (2) (k=0,1,...,n)

are at most of degree m and have integral coefficients which do not depend on 4 .

Denote by ¢ =1 the maximum of the absolute values of these coefficients.

It is obvious that the numbers

m.Z{ N (XZL) (k:O,l,...,n
k 1=0,1,2,. )
are integers ; since
2
T4xtx 4+ ... = 1/(1-x) = t/(t-s) < t,
they satisfy the inequalities
ZL 2); 2{ k=0,1
m. m = n
t < ct. ).
| o )= et (t=0,1.2,...
Now by £ 5, L
@), [k 2 k=0,1,...,n
2 =y e ) 0,12, )
Therefore also the products
t(ern)ZL a(&)( _A(L) ca <k=O,1,...,n)
R N Y 1=0,1,2,... "
are integers, and here
- () (m+4n) 2 (<70 L my
[ A7 <ct £=0,1,2,...
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8. - The equations (2) imply that

{
(£)k ¥ (1) (1)
| y e )= £ )
On putting
L) w2t @2t (<12,
ko yoooxen ) 1=0,1,2,... 0"
we obtain the basic system of equations
| ()_, @ (1) k=1,2,...,n
(5) R = fk—Ak o150

Upper estimates for the left-hand sides of these equations can be derived from

the power series

r(z)=3% r. =z (k=1,2,...,n)

which converge for z¢U and where by the construction in § 2,

rjk:O for 0=j;<I-1 and k=1,2,...,n.
Here

I=m+l1+(m/n],

and as before it is asssumed that

m>n .

By the convergence of the series for the functions rk(z) there exists a positive
constant C which depends only on m and n such that for all sufficiently small

fz[>0

[rk(z)]< c[zJI (k=1,2,...,n).

Hence there exists a positive integer LO which depends onlyon m,n, s and t

such that B 1
(2 21 . _
(x" )| < C(s/t) if L= (k=1,2,...,n).

Therefore for the same k and 4

L 4 4

£
(m+n) 2 ZLIt(m-Fn—I)Z

<k=1,2,...,n
4L =1 ).
[e)

=(Cs

2
(4;)} i [t(m+n)2 )< cs/t)? L

IR,
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Since 0 <s<t, s can be written as a power

szte, where 0<g<1.

Then

SZ£It&n+n—D2&__tﬁn+n+9-l)2L

Here
I=m+1+[m/n]>m+(m/n)

and therefore

-(m4n+g-I)=I-m-n-g> (m/n)-n-1 .

Hence we obtain the estimate

),  -((m/n) -n-1)2%
IR, | <cCt

Assume from now on that
m = 2n(n+1).
Then the earlier condition m > n is satisfied, and
(m/n) -n -1 =n+1 .
The last estimate assumes thus the simpler form
~(a+1)2

[Rl(f)[<(:t

9.- Let now XO, X ’Xn be any n+l1 integers such that

;e
x::1x6[+-]xll+...+lxn|;: 1.

We want a lower estimate for the expression

7 =X +X.f+...+%X £
0 1 n
By (5),
n 1 n
2z -3 Ay rWx
k=0 k=1

<k
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Here the first sum
n
sWo 3 Ay
k=0 K Kk

is an integer and hence is either equal to 0 or has an absolute value at least 1 .

From the estimate above,

1
2 i

| & R()X1<CXt<n+1)2
k=1 K K

(¢)

4
Hence, 1if }j( )+ 0, then from the earlier estimate for Ak R

1 —(m+n)2£ —(n+1)2£

|Z]>c "t (1-CXt ) .

in order to satisfy here the condition Z(/L){: 0, we apply Theorem 3 for z=x.

Let Lo = Lo(x) be the integer in this theorem ; without loss of generality

L. >4 . Then
o o

L
D( )(x)%O for L>L .
o)
It follows that at least one of the n+1 linear forms in Xo , X1 ) vees Xn defined
by
n £
Z(Ji): 2 A( )X , where 4 =1, L+1,...,L4n ,
k=0 k Kk .

does not vanish, and so the lower estimate for Z may be applied for this suf-
fix 4.

3#
Denote then by L the smallest integer = max(Lo,{,O) for which

L
cxe 2T <

} ({’,* :
There is then an integer +" between L and L"+n such that T )# 0 and
therefore ‘ . , M

{(r L +n
-1 - -1 -(m+n)2
[Z]>(2¢) ¢ (mn)2” eyl (mn)

Let us now assume that the integer X is already so large that

CXt—<n+])max(Lo’&o) > 1/2.
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Then 1> max(LO, {O ), and it follows from the definition of F that

-(n+1) 2L -1

CXt >1/2,

hence that 3*
- -2

Heﬁce finally
- n+1
12> (2e) ) zex) (0) /(@) 2

Here
(m+n) /(n+1) = (én(n+1)+n) / (n+1) =2n+1- (n+1)-1

The factor '
‘ +(n+1 )-1 anl
X

in the last inequality for Z takes care of the constants as soon as X is suf-

ficiently large, and hence we arrive at the following result.

THEOREM 4. - Let s and t be two integers satisfying 0<s<t; let n be any

positive integer ; and let Xo , Xl’ ,Xn be any n+l integers such that
X = [Xoi + }Xll 4. +]Xn]‘
is greater than a certain integer which depends only on s, t and n . Then
+1
-(2n+1) 27

[ X + X, £(s/t)+ ... +an(s/t)nI > X

This inequality proves again the transcendency of the number f(s/t) and shows

in fact that it is either an S-number or a T-number.

There is no difficulty in replacing the factor 2n+l in the exponent by a smal-

ler one. However, this has little interest because there does not seem to be any

+1
simple way of improving on the much larger factor 2" .
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