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ON THUE’'S THEOREM

KURT MAHLER

Extract.

Let F(x,y) be an irreducible binary form of degree n=3 with integral
coefficients. For large integers w an upper bound for the number of integral
solutions of

Fuv) =w, (4w = (n,w) =1

is established with a new method based on two different kinds of equivalence
relations.

Let

F(x,y) = foX"+/iX" 'y + ... +f)"

be an irreducible binary form with integral coefficients, of degree n=3 and of
height

a = max (Ifol, lfil.- -, 1fu) -
Further put

f(x) = F(x, 1),  F*(x,)) = F(n,x), f*(x) = F*(x,1).

Denote by z, (h=1,2,. . ., n) the zeros of f(z) where those with 1 £h<n, are the

real ones. Then z¥ =z, ! (h=1,2,...,n) are the zeros of f *(x), and again those

with 1<h<n, are real. F(x,y) is exactly then a definite form when n,=0.
Next let v(w) for every integer w=0 be the number of integers U satisfying

f(U) =0 (modw), 0=U =< |w-1, (Umw =1,
and let v*(w) be the analogous number for f*(x); evidently
v¥(w) = v(w) .
It is easily seen that
v(w) £ n',
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where ¢ denotes the number of distinct prime factors of w. This upper bound
depends thus only on the degree and not also on the height of F(x,y).

A famous theorem by A. Thue, based on his classical theorem on the rational
approximations of real algebraic numbers ([9], [10]) states that the
Diophantine equation ‘

F(u,v) = w

has for every integer w0 at most finitely many integral solutions u, v.
Two solutions u, v and «’,v" of Thue’s equation will be considered as distinct
if and only if u/v=u'/v". In this notation the following result will be proved.

THEOREM. Denote by w an integer satisfying

(A): [w] = (450a*n*yr/in=2)
Then the equations
(B): F(u,v) = w, (u,w) = (r,w) = 1
have fewer than
32nv(w) < 32n' "1

distinct integral solutions u,v.

For definite forms the number of distinct integral solitions of (B) will be
proved to be at most 2u(w) and in fact not to exceed v(w).

Older upper estimates for the number of integral solutions of Thue’s

equation can be found in the papers [1], [2], and [4]. For some recent results
see the remarks at the end of this paper.

The measure of f(x) is as usual defined by

M(f) = Ifol T max (1,]z,))

h=1

and the discriminant by
D(fy=r3""72 1] (zw—2)*.

I proved in [5] that
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in [6] that
L < DN = n"M(f)* 2,
and that for h=1,2,...,n,
/)l 2 (=D DRID(OPEM ()"
Denote now by ¢ and C the two contants
¢ = (An=-D)""R2DNTEM ()

and

C = /130" 22D(f) M ().

It is ecasily seen that if f(x) is replaced by f*(x), the same constants are
obtained.

A proof just as in the paper [2] leads to the following results in which ¢(x)
and ¢*(x) are defined by

o(x) = min |x—z] and o*(x) = min |x—z, .
h=1,2,..., n h=1,2,..., n

LemMma 1. For real x and y,
"o (x/y) S clF(x,p| if y=+0
and
IX["o*(v/x) = ¢[F(x, ) if x+0.
LeMMA 2. If for a real number x
o(x) = 1/20),

then the minimum o(x) is attained at a real zero z, of f(x), and this zero is unique.

Lemwma 3. If F(x,y) is a definite form, then
[F(x,y)] > (2¢C)~ ' {max (|x],[y)}" .

These lemmas are new and stronger than previous estimates.

We next need a result which is implicit in Thue’s proof of his theorem on the
rational approximations of algebraic numbers. It is necessary to carry out his
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considerations and estimates with some care for the occurring constants, and
for this purpose Lemma 1 of my paper [3] may be used.

I omit the details since Thue’s method is well known. The final result is as
follows.

LemMA 4. Let the notation be as before; let z=z, be one of the zeros of f(x),
and let k=1 be a constant. Denote by X the set of all rational numbers u/v, where
u and v=£0 are integers, such that

< klp|™"  and  |u| = 2(4a)®0¢t D8

u
——z
v

and assume that X is not the null set. Let u /v, be an element of X with smallest
lv,], and let u,/v; be any other element of 2. Then the zero z is real, and vy satisfies
the inequality

|vll < ‘Ull48(n+1) .

From now on denote by S the set and by N the number of all distinct pairs
of integers u,v satisfying the conditions (B) where w is any integer with the
property (A). The latter assumption evidently excludes any solutions of F(u,v)
=w for which

u=0 or v=0 or |u=]|.
Hence the elements of S are either of
Type A, when 0 < |u| < ||,
or of
Type B, when 0 < |v| < |u| .

Denote by S(A4) and S(B) the sets and by N(A4) and N(B) the numbers of the
distinct integral solutions of types A and B, respectively, so that

S=S(AUSB) and N = NA)+N(B).

On replacing the form F(x,y) by the form F*(x,y)=F(y,x), the solutions of
Type A become solutions of Type B, and vice versa, and here both forms
belong to the same constants ¢ and C. The following considerations will
therefore give the same upper estimates for N(A4) and N(B), so that twice this
number is an upper bound for N.
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To obtain such estimates, we require two different subdivisions of the
solutions u,v in S(A) into equivalence classes.
A solution u,v in S(A) for which

vl = 2cClwh'm
and therefore
col™"w £ 207!

is called a major solution. Since F(u,v)=w and |u| <|v|, Lemma | implies that
for such major solutions

o(ufo) < clol™"wl £ 2071

Hence, by Lemma 2, the minimum ¢(u/v) is attained at one and only one zero
z, of f(x), and this zero is real and therefore 1 =h=n,.
This suggests the following definition.

Derinition. Two major solutions u/v and u'/v" of type A are said to be ¢-
equivalent, in symbols {u, v} ¢ {u/,v'}, if both belong to the same zero z, of f (x).

It is obvious that ¢-equivalence is an equivalence relation and that there are
exactly n, distinct ¢-equivalence classes, one corresponding to each of the real
zeros z,, 1<h=<n,, of f(x).

For the present assume that

v

1.

Ny

This hypothesis excludes the case when F(x, y) is a definite form (n,=0), when
a slightly different method will be applied.

6.
A second class division will first be defined for the wider set of distinct pairs
of integers u, v satisfying

(u,w) = (v,w) =1,
but not necessarily also F(u,v)=w.
The definition is as follows.
DerFiNiTION. Two pairs of integers u, v and ', v’ satisfying (u, w) = (v,w)=1 are
said to be $-equivalent, in symbols {u,v} § {u/, v}, if

uv’ —u'v = 0 (modw) .
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It is easily proved that also $-equivalence is an equivalence relation, and that
the following two further properties hold.

Ifu=u (modw),v=v" (modw), (u,w)=(v,w)=1, then also (u',w)= (v',w)=1
and {u, v} ${u,v'].
If (t,w)= (u,w)= (v,w)=1, then also (tu,w)=(to,w)=1 and {u,v}$ {tu,tv}.

Choose in particular ¢ such that
tv = 1 (modw).
There now exists one and only one integer U satisfying
U=tu(modw), 0=2UZ<Z<I|w-1, (Uw =1,

and since {u, v} $ {tu, tv} ${U, 1}, the pair U, 1 can serve as the representative of
the $-equivalence class of u,v. Moreover, this representative is unique.

Consider now any pair u,v in S(A) so that in particular (u,w)= (v,w)=1. If
U, 1 is the representative of the $-equivalence class of u, v, then {u,v} ${U, 1}
and therefore

u = vU (modw).

By hypothesis F(x,y) is a homogeneous polynomial in x and y of degree n and
has integral coefficients. It follows that

F(u,v) = F(oU,v) = v"F(U,1) = 0 (modw),
and since (o,w)=1,
F(U,1) = 0 (modw) .

This congruence is thus a necessary, but in general not also a sufficient,
condition for the $-equivalence class of U, 1 to contain a solution of (B). The

property
(U,w) =1

is a consequence of the equations (B).

Hence, from the definition of v(w) in section 1, there are at most v(w) distinct
$-equivalence classes of representatives U, 1 containing solutions u, v of (B) of
type A. Let this be the equivalence classes $,,%,.....$y,. Here the number
Y (w) satisfies the inequality

0< Y(w < ow).

Math. Scand. 55 13
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We next subdivide the elements u, v of S(A4) into three disjoint subsets SV,
S$@_ and $ according as to whether

NRE | < 15a2w|'"

or

NG 15a2n?w|'" < Jv| < 2(4a)®0* Df18n |
or

S(3): IU' g 2(4a)90(n+1)k18/n ,

respectively. Here k denotes the number
k = cw].
It is clear from the hypothesis (A) that
k>1.

If NY, N® and N® are the numbers of elements of SV, §@ and S,
respectively, evidently

N(4) = ND4N@ 4 NO) |

9.

The elements of S*) are not necessarily major solutions of the equations (B);
hence we cannot subdivide these solutions into ¢-equivalence classes. They
may, however, be distributed among the $-equivalence classes §; where j
=1,2,..., Y(w), unless Y (w)=0. Denote by S{" the subset of all those pairs u,v
of $ which lie in §;.

Suppose that any set S&“ contains two distinct pairs u,v and u’,v’. Then,
firstly,

0+ w—uv =0 (modw).
Hence there is an integer g0 such that
uw' —u'v = gw.
Since u,v and u’, v’ both lie in SV,
lul < o] < 15a*n?*w*™ and |u| < |[v] < 15a%n?*|w|'/",
so that

wl < |gw| = lw' —u'v] < 2(15a*n?|w|*™)? = 450a*n*|w|*/" ,
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whence
|w| < (450a*n*ymin=2)

contrary to the hypothesis (A).
This proves that each set S{") contains at most one element and that
therefore

(1): NP < Y(w) £ v(w).

10.
One shows easily that the two constants ¢ and C of section 2 satisfy the
inequalities

(2cO)'" < 2a?n* < 15a*n?  and  2a’n? < 2(4a)°0C"t Dk8M

Hence all solutions u,v in S and in $** are major. These solutions can thus
simultaneously be distributed among the ¢-equivalence classes ¢, and the $-
equivalence classes §;.

Denote then by Si2 and S§}) the subsets of elements of S and of §** which
lie in both ¢, and §;, and let N{? and N§} be the numbers of elements of these
subsets, respectively.

Before determing upper estimates for N{7 and N§Y, let us consider more
generally two distinct major solutions u, v and ', v" of (B) of type A which both
lie in ¢, and in §; Here, say

ol = [0 .

By the definition of ¢,, both solutions belong to the same zero z of f(x). Since
they are major,

lw/v)—z < clol™"wl and  [(u'/0) =z = clo'|""Iw],
and since they are distinct.
0 < [(u/v)— /)] = [{(w/o)—z} = {@W/0) =z} < clo]"|wl+cle/|"w],
or equivalently,
0 < fur’ —u't] < clwl{]olle’] ™" D+ fe] = )}

By hypothesis both u,v and w',v" lie in the same class $;. Hence uv' —u'v is a
non-vanishing integral multiple gw of w and therefore has at least the absolute
value |w|. It follows then from the last inequality that

wl < 2clwllol ="~ PJv'|

since |v|=|v'|. Thus
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o' = Q2e) Pt
an inequality which can be written as
(207 VD] 2 ((20) 7Bl

We note that the letter w has disappeared from this formula.
It can immediately be generalised. For this purpose let

(P): Uy, Ups Uy, Uy .. U0, Where Juy|Sio,l= .00 Syl

be finitely many distinct major solutions of (B) of type A which all belong to
the same class ¢, and the same class §; By the last inequality,

20)" V" ] Z (AT I (i=1,2,.. ., —1)
and therefore

(2C)v1/(n72)]1)1| > ((2c)—1/(n—2)|vl|)(,,71)17|.

Here, as is easily proved,

(o)M= < 1lan,
and so we obtain the inequality
(Q): o > ((Lan) ™o )"

on which the next estimates will be based.

11.

As a first application, assume that the set S{>) consists of exactly the I pairs
(P). By the definition of §%,

v, = 15a*n?w|'"  and v, < 2(4a)’0 T DK
where, as already noted,
k =cw > 1.
One shows easily that
ctim < 2an
whence
o] < 2(4a)°°"* D (2an) 8w|*¥"
The inequality (Q) therefore implies that

((llan)"l~15a2n2!w|”")"“”1 < 2(4a)°°" D (2an) Bw| 8
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Here by n=3,

n'® < (4a)>"tVH. 2(4a)'® < (4a)’"*V
and

(1lam)~'-15a*n* > 4a,  2(4a)°°"*V(2an)'® < (4a)'°°"* D
and
(4a(w|”")‘"'“li] < (4q)tO0w 1)y 18I

It follows then that

(dg)yn— V' -100m+ ) |w] {18 =D ym
If here (n—1)'"'< 18, then

I £6

by n>3. Let therefore (n— 1)’ ~!> 18 so that the exponent of |w| is negative. By
the hypothesis (A),

WUn > (450- a*n®)0 D S (da)tn )
hence by the last inequality,
(4g)n— V' 1 100m ) (4a)4{18—(n—1>”‘:f/(n—vZ)
and therefore
m+2)(n—1)'"1 < 100(n—=2)(n+1)+72 .
Again by n=3 this inequality requires that
I <7.

On combining the two cases it follows that each of the numbers N{? is at most
7. Hence on summing over all the classes ¢, and $; wefind that

(2): N® < 7-ny-Y(w) £ Tnv(w) .

For definite forms n,=0 and therefore also N»=0.

12.

Let us similarly assume that the set S}j’ consists exactly of the I pairs (P). By
the definition of S©,

lvll > 2(4a)90(n+nk18/n - (4a)90(,,+1) ,

while by the Lemma 4 of Thue,
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ol < oy*8 D
and by the formula (Q),
o)l > ((1lan) ™o, ) =0"""
Since
llan < (4a)"*!,
by the lower estimate for |v,],
(Tlan) ™Moy > Jo,[*°0 .

Hence

!(89/90)(71 -1y |48(n+ 1)
1 1

v <yl < v

and therefore
m-0-1< (4320/89)(n+1) < 50(n+1).

By n=3 it follows that I

lIA

8.

On summing again over all the equivalence classes ¢, and §;, we obtain the
estimate

(3): N® < 8-ny-Y(w) < 8nv(w) .

If F(x,y) is definite, again n,=0 and therefore N*’=0.

13.
On combining the formulae (1), (2), and (3), it follows that

N(A) = NO 4L NP L NO < y(w)+ Tno(w)+8nv(w) < 16nv(w) ,

and N(A4)<v(w) when F(x,y) is a definite form.
It is clear that exactly the same upper estimate is obtained for N (B); simply
apply the proof just given to the equation F*(u,v)=w. Hence '

N = N(A)+N(B) < 32nv(w),
as was to be proved. In the same way, for definite forms,
N £ 2v(w).
This latter result can be improved to
' N < vw),

as shall finally be proved.
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By Lemma 3, now
IF(x, ) > (2¢C)~ " (max (|x], [y))" .
Impose on w the condition that
(C): lw] = 2Mt=2)(2cC)2n =2,
by
(2CC)2/(n—2) < (4a4n4)n/(n—2) ,
this is weaker than the former hypothesis (A).

We do not now distinguish between solutions u, v of (B) of the two types A
and B, nor do we need the ¢-equivalence classes, but we still must distribute the
distinct solutions of (B) among the $-equivalence classes §; It evidently
suffices to prove that each such class contains at most one solution u,v.

If this is false, let u,v and u',v’ be two distinct solutions in the class $; so that

uv'—u'v is a non-vanishing integral multiple gw of w and has at least the
absolute value |w|. Since from F(u,v)=F(',v)=w

2¢Clw| > (max (jul,|v]))* and  2cClw| > (max (ju], [v'])",
it follows that
wl < lgw| = uv' —u'v] < 2-(2cClw])*".
This implies that
w| < 200 =2 (2cC)Hn=2)

contrary to the assumption (C). This concludes the proof.

14.

The first version of this paper was concluded on 16 August, 1982. Shortly
afterwards I saw the paper by J. H. Silverman, “Integer points and the rank of
Thue elliptic curves”, Invest. Math 66 (1982), 395-404. Here the author proved
for the case n=3 that Thue’s equation F(u,v)=w has for sufficiently large |w|

fewer than
R REO+1

integral solutions where x>1 is an effective absolute constant and Rp(w)
denotes the rank of the Mordell-Weil group of rational points on the curve

F(x,y) = wz".

I was later informed by the author that he could extend this result to all
degrees n=3.
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Also, in a letter of 23 May, 1983, he announced the result that for all w0
Thue’s equation has at most

Cr(wD)+1

integral solutions where ¢ > 1 is a constant which depends only on the degree'n,
D=D(f) is again the discriminant, and r(nD) denotes the number of distinct
prime factors of nD.

Next, in a letter of 16 February, 1983, J. H. Evertse of Leiden, Netherlands,
told me that in his Ph.D. thesis, not yet published, he had proved that for all
w=0 Thue’s equation has at most

2(7‘15"+1’2+6 % 72v(!+1))

integral solutions satisfying (u,v)=1. Here v=(}), and ¢ is again the number of
distinct prime factors of w. This result (which for large |w| is less good than
mine) has the great advantage that it depends only on n and w, but is
independent of the coefficients of F(x, y). It thus solves an old problem by C. L.
Siegel.
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