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This paper discusses an application of Minkowski’s theory of the successive
minima in the geometry of numbers to the problem of the approximation of an
algebraic or transcendental number a by algebraic numbers. I consider for sim-
plicity only real numbers a. However, it is obvious that an analogous theory can be
established for complex numbers, and also for p-adic numbers, as well as for the
field of formal ascending or descending Laurent series with coefficients in an
arbitrary field.  © 1986 Academic Press, Inc.

Let n>2 be an integer, R” the space of all points or vectors
x = (x,,.., X,) with real coordinates x,.., x,,, 0 =(0,..., 0) the origin of R",
a+#0 a real number, and 5> 2 a real parameter. Let further L” be the set of
all points x with integral coordinates; these points are called lattice points,
and L” is a lattice. A lattice point x is said to be primitive if the greatest
common divisor ged(x,,..., x,,) of its coordinates is equal to 1.

For x e R” put

U(x): le +ax2+azX3+ +an7]xni’ V(x):max(|x2|,|x3|""’|xn|)'

We say that x #0 is singular if V(x)=0. There are exactly two primitive
singular lattice points, namely

+e, wheree= (1,0, 0,..., 0).
The maximum

F(x)=max(s" 'U(x),s 'V(x))
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is a convex distance function and the point set

K: F(x)< 1

is a symmetric convex body in R” In fact, K is an n-dimensional
parallelepiped with its centre at 0 and of volume

VK) = [ [ dx, o dv,=2"
Therefore, by Minkowski’s theorem on the successive minima [5], there
exist » linearly independent primitive lattice points
X" = (X1 yees Xpn) (h=1,2,..,n),
called the generating points, with the following properties:

The determinant d=det(x,.); x—1 2. . Satisfies the inequality
I<ldl<n! (1)

The function values
m, = F(x") (h=1,2,..,n),

called the successive minima, satisfy the inequalities
1
O<m,<m,< - <m,, —rﬁgmlmz'“mnél. (2)

If X', X% -, X" are any n linearly independent lattice points
numbered such that F(X') < F(X*) < -+ < F(X"), then

FX")>Fx"y=m, (h=1,2,.,n). (3)

While the successive minima are unique, each generating point x” may
be replaced by —x*, and if two or even more of the minima m,, are equal,
there are further possibilities for the lattice points x”.

2

We want to study the dependence of the successive minima m, and of the
corresponding generating points x” on the number a#0 when the
parameter s is large. The results to be obtained will be different for
algebraic a from those for transcendental a.

We first settle the question for which a # 0 one of the generating lattice
points may be singular, say the lattice point x*.
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THEOREM 1. If there exists a suffix H such that V(x")=0 for certain
arbitrarily large s, then a is a rational number.

Proof. Without loss of generality,
xf=e=(1,0,0,..,0)
since x'' is singular and primitive; therefore
Ux"y=1, V(x")=0, my=Fle)=s"""

There cannot exist a second suffix # # H such that also V(x")=0 for then
x" and x" would be linearly dependent.

Hence for all suffixes h# H, V(x")#0, hence V(x")>1, and therefore
m,=F(x")=s "V(x")=>s".

These lower estimates for m, and m, imply that

1=>mmy-m,=s""(s ")y '=1,
hence that
=1

my=s""1, m,=s"" forh+# H.

Here the minima m,, are numbered in order of increasing size. Therefore the
suffix H necessarily is equal to n. Since

m, = F(x")=max(s" 'U(x"), s 'V(x")),
it further follows that
Ux"ygs g t=gn, Vix"y=1 (h=1,2,.,n—1).
The number « thus satisfies the n — | inequalities:
[Xp +ax,+ 0 +a" x| <sT"<1/2 (h=1,2,.,n—1), (4)
where
V(x") =max(|x,,l, |Xpslse [Xml) =1 (h=1,2,.,n—1). (5)

By (5), each of the coordinates x,, (h=1,2,.,n—1;k=2,3,.,n) can
only be equal to either +1, —1, or 0. Furthermore, once these (n—1)?
coordinates have been chosen, the remaining coordinates

xh] (h:1,2,...,n_])

are determined uniquely by the inequalities (4) since a is a constant.
Now let the parameter s tend to infinity. For each such value of s the set
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of coordinates x,, in (4) has only finitely many possibilities. There exists
then an infinite sequence S = {s,, $,, 53,...} of distinct values of s tending to
infinity such that for all s, e S the system of all n(n — 1) coordinates x,, in
(4) remains fixed. Since s, " — 0, it follows that the number a satisfies the
system of n— 1 linear equations

xh1+axh2+ +a"“x,m=0 (hzl, 2,...,n_1) (6)

which may be considered as a system of inhomogeneous linear equations
for the n — 1 unknowns a, d2,..., a"~'. It has the determinant

X12 X13 Xin
X2 X23 Xon
D= . . .
xn—1,2 xnf1,3 xnfl.,n

Since x"=e, D= +d#0. Since all x,, in (4) are rational integers, the
assertion follows at once from Cramer’s rule.

COROLLARY. The denominator of a cannot exceed \/n— 1.
Proof. Since all elements of D are +1, —1, or 0, it is well known that
DI < (n=1)"" 12,

By Cramer’s formula, ¢”" ' has then a denominator not greater than
(n—=1)""172 and hence the denominator of a cannot be greater than
n—1

3

From now on let a be irrational. Theorem 1 implies then that for all suf-
ficiently large s

V(x")=1 (h=1,2,.,n).
Thus from the definition of F(x),
Ux<s " Y-m,, 1<V(x"y<s-m, (h=1,2,.,n),
so that on eliminating the parameter s,
X +ax,+ - +a" ' x, <mj(max(1x,l, %] [x,0) 7" (7)

for h=1,2,.., n
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This is a system of n linearly independent approximation polynomials for
a. Here the right-hand sides are small only if the succesive minima m,, are
not too large while max(|x,,|, |X;3l,..., |X4e|) is sufficiently big. In fact, this
maximum may stay bounded if the left-hand side of (7) can vanish, ie., if a
is algebraic of degree at most n— 1.

By the inequalities (2),

mlglv mn>(n!)~1/n)

because

mi<mm, -m,<m,.

n

When m, is very small, m, necessarily is very large. As the later estimates
for the m, will show, this can in fact happen.

4

The proof of Theorem | can be generalised and then implies the
following result.

THEOREM 2. Denote by N an integer such that 1 < N<n—1, and by
¢, >0 a constant which does not depend on s. Assume that there exists an
infinite sequence S={s|, 55, 53,..} of numbers s =2 tending to infinity such
that simultaneously

m,<c,s ! (h=1,2,..,n—N)

for all se S. Then a is algebraic and at most of degree N.

Proof. The assertion is certainly true if a is rational. Assume then that a
is irrational and hence by Theorem 1,

Vix=1  (h=1,2.,n).

For all se S by the hypothesis,

m, = F(x")=max(s" 'Ux"), s 'V(x"))<e;s™' (h=1,2,.,n—N)

and therefore

Ux")<eys " and Vix" <ec, (h=1,2,..,n—N),
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or in explicit form,
lXp +ax,;,+ 0 +a" x| <ce s

(8)

max(| X, 1Xp3lsees [X5al) <4 (h=1,2,.,n—N).
Let now se S be already so large that
cysT"<1)2.
The first inequalities (8) determine then the coordinates x,,; uniquely in

terms of the coordinates x,, where k > 2, while the second inequalities (8)
show that the matrix

X1 X12 T X

X2y X22 T X
X=|- . .

xnv N, 1 xan‘z e xn — N,n

consists of bounded integers and so has only finitely many possibilities.
Moreover, since x', x%..., x" " are linearly independent, X has the exact
rank n — N. This matrix will of course vary for different s € S. It is, however,
clear that X remains fixed when s runs over a suitable infinite subsequence
S* of S. As s runs over S*, s tends to infinity and hence ¢,s5~" tends to
Zero.

Hence the first inequalities (8) imply the equations

X+ ax,+ - +a" 'x,,=0 (h=1,2,..,n—N).

Denote by g, £5,.., &,_ ~ @ set of n— N integers not all zero and put

n—N

Gi= Z EnXni (izl, 2,...,”),

h=1
so that

n—N
Y gh(xptax,+ o +a" " 'x,)=G,+aG,+ - +4" G, =0.
=1
Since X has the rank n— N> 1, the sums G,, G,,.., G, cannot all vanish,
and all these sums are integers since the coefficients g, are so.
We now choose the integers g; such that the n — N —1 homogeneous
linear equations

Grir2=Gyny3=""" =G,=0
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are satisfied, while G, G,,..., G, are not all zero. The number a is now a
root of the algebraic equation

G,+aG2+ +aNGN+1:0

with integral coefficients. Since it is not possible that only G, is distinct
from 0, the assertion follows at once.

5

Denote from now by c¢,, c;,..., positive constants which do not depend
on s, but may depend on a and n.

If a is an algebraic number, lower and upper estimates for the successive
minima m,, are as follows:

THEOREM 3. Let a#0 be any real algebraic number, say of the
exact degree N, and let the parameter s be already sufficiently large.
If 1< N<n, then

s '<m,<c,s ' forh=1,2,.,n—N,

c3s" N <m, Kcgs" MY forh=n—N+1,n—N+2,.,n

If, however, N > n and if ¢ is an arbitrarily small positive number, then for s
greater than a number depending on ¢

sTE<m,<ste for h=1,2,.,n

Proof. A general lattice point x # 0 is said to be of class A4 if

U(x) #0

and of class B if
U(x)=0.

If N =n, evidently all lattice points x #0 are of class A; this is true thus in
particular for the n lattice points x”.

Next let 1<N<n—1. The algebraic number a#0 satisfies an
irreducible and primitive algebraic equation of degree N<n—1 with
integral coefficients, say the equation

gi+ag,+ - +aqn, =0, where ¢, #0 and g, ; #0.
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The corresponding n — N lattice points

xl = (ql’ qz,..., qN+l’ 0,..., 0), X2= (0, ql’ qz,..., qN+]’ 0,..., 0),...,
X" N =(0,y 0, G5 Gorees G w)

evidently are linearly independent and satisfy the relations
U(X") =0, V(X")=¢, forh=1,2,..n—N,
where

¢y =max(lq,l, 1g2lss 1gn41])-

The points X" are therefore of class B. There cannot exist any further lattice
point X of class B which is linearly independent of X',.., X" . For
otherwise there are integers g #0, g,,.., g,_ » such that the lattice point

X:gx+glxl+ +gn—-NXn7N=(X1aXZ,"-,Xn)a
say, satisfies the linear equations
Xvi1=Xy==X,=0,

while X, X,,..., Xy are not all zero. However, also X is of class B and
therefore

UX)=X,+aX,+ - +a" 'Xy=0.

Thus a satisfies an algebraic equation with integral coefficients at most of
degree N — 1, contrary to the hypothesis.
By the definition of the lattice points X*,

FX" =5 "W(X")=c,5 ! (h=1,2,..,n—N).

It follows then from the property (3) of the successive minima that

m, < F(X") =c,s ! (h=1,2,.,n—N). 9)
To this we may add the lower estimates

m,=s5""! (h=1,2,.,n—N), (10)
because for all suffixes h=1,2,..,n—N, V(x")#0, hence V(x")>1 and
F(x") > s 'V(x").
From these estimates,

S*("*N)Smlmz...m"_Ngcg--NS—'("‘N),
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hence by Minkowski’s inequality (2),

m <sn~—N

1
—(n— —N
_CZ (n N)sn <mnvN+lmn—vN+2“' n . (11)

n!
We note that in the special case when N =1 these formulae show already
that
s '<m,<cys Morh=1,2,.,n—1;(1/n)c; " V" <m, <5,
which is the assertion.

Now assume that 2 < N <n. By a classical method based on considering
the norm N(x,+ax,+ -~ +a" 'x,), where xe L" it can be proved that

There exists a constant C >0 depending only on a and n such that
for all lattice points xe L"

Ux)=C"V(x)" V=D ifU(x)#0and V(x) #0.

This estimate may in particular be applied to all the lattice points x” for
which U(x")#0; for the second condition ¥(x")#0 holds by Theorem 1.
Thus for these lattice points,

m, = F(x")>max(s" '- CYV(x")" VD s 1p(x")).

If here
V(xh) — CS”/N,

then both terms under the maximum sign are equal to

— N)/N.
CS(" ) ;

otherwise one of the two terms is greater. We obtain then the result that
my,=F(x")>Cs" MV if U(x") #0.
Assume now that s is already so large that
Cys T < Cs T NN,
What has been proved so far implies then that

m,>Cs" NN forh=n—N+1,n—N+2,.., n (12)
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If this lower estimate is substituted for all but one of the factors m, in the
equality (11), we further obtain the upper estimates

mh< (Cs(an)/N)l——vN,snsz Cl‘Ns(n»—N)/N. (13)

On combining the estimates (9), (10), (12), and (13), we obtain the asser-
tion of the theorem when 1 <N <n.
We note that in the special case when N=n,

3 <m,< ey forh=1,2,..,n
Consider finally the case when the degree N of a is greater than n. Now
the elementary method used so far is no longer powerful enough and we

must apply the following deep theorem by Schmidt; I refer for convenience
to his book [6]:

If a is an algebraic number of degree N=n+1 and ¢ is an
arbitrarily small positive constant, then there exists a positive
constant c(e) such that

Ux)Zc(e)V(x)~ =1+ ifxe L" and V(x) #0.

This theorem may be applied in particular to all the lattice points x”

because V(x")#0 for h=1,2,.., n by Theorem 1. It follows that for all A,

m, = F(x")=max(s" ' c(e)V(x") " 19 s~ 1(x")).

If here

V(xh)n—H: — C(S) S",

then both expressions under the maximum sign assume the same value

C(g)l/(n+£)S~~~e/(n+c);
otherwise one of the two terms is greater.
It follows then that
m,, = c(e)!/ eyt (h=1,2,.,n).
On substituting'again this lower estimate for n — 1 factors in Minkowski’s
inquality m,m, -~ m, <1, we further obtain the upper estimates

m, < C(E)H("“ 1)/(n +A)Ss(n —1)/(n+e) (h — }’ 2’ II)A
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Here finally let s be sufficiently large. The lower and upper estimate com-
bine then to the result that

sTt<m, st (h=1,2,.,n),

as was to be proved.

6

Theorem 3 establishes estimates for the successive minima m,, in all cases
when a is algebraic. No such general results can be given when a is trans-
cendental. We can, however, state several results which explain how
characteristic the upper estimates are for m, in Theorems 2 and 3 for
algebraic numbers.

By Theorem 2 the number « is algebraic if there exist a positive number
¢;, an integer N with 1 < N<n—1, and an infinite sequence S of positive
numbers s > 2 tending to infinity such that

m,<c;s ! (h=1,2,.,n—N).

As will now be proved, here the upper bound ¢,s ' cannot be replaced by
any larger function of s.

THEOREM 4. Let T(s)>0 be any function of s =2 such that

lim T(s)=oo.

§ = 0

Then there exist a real transcendental number a and an infinite sequence S of
numbers s =2 tending to infinity such that

m,<T(s)s! for seS (h=1,2,.,n—1)
Proof. Define two sequences of positive integers e, and g,, where

e,=2 and g, =ee, e

r

by the recursive condition that if e, e,,.., e, and hence also g, g,,.., &,
have already been fixed, then e, , is to be the smallest integer greater than
e, for which

T(28+1/m) > 28+ ! (r=1,2,3,..). (14)

Such an integer exists because T(s) may by hypothesis assume arbitrarily
large values.
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Next take for a the infinite series
o0
a= Z 278,
r=1
which converges and lies in the interval 0 < a < 1. Further put for all r

qir= — 2% Z 2~gj’ q2r:2gr’ Rr=q1r+aq2r'

Jj=1

Then g,, and ¢,, are integers satisfying

0< 1y <q2-

Further

R =2gr_gr+l+28r"gr+2+2gr_gr+3+ e

so that
R, =p 258+t where 1 <p, < 2. (15)

Since g,, ,=e,, g, is for large r an arbitrarily large multiple of g,, the for-
mulae for ¢,, and R, show that a is a Liouville number, hence is transcen-
dental.

Now for r=1, 2, 3,..., form the n— 1 lattice points in L”,

XI’ = (qlr’ q2r7 09---3 0)’ er = (0’ qlrs q2r’ 0""a 0)’"'1
an M= (0""’ 0’ dirs q2r)'

It is clear that these points are linearly independent and that
UX")=a""'R,, V(X")=q,, (h=1,2,.,n—1),
hence also
F(X"y=max(s" ‘4" 'R,, s 'q,,) (h=1,2,.,n—1).
Here 0 <a < 1. Hence by (15) and by the definition of ¢,,,
F(X")<2#+ - max(s"'-2 %+, 51 (h=1,2,.,n—1).
For each suffix r=1, 2, 3,..., now let s, be the number

— &+ 1/n
Sr_2?+1 s
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and let S be the set of all s, which are at least 2. By (14),
T(s,) =251,
whence it follows that
FX'")< T(s,) s, (h=1,2,.,n—1).

Finally apply once more the property (3) of the successive minima. It
follows then that

m,<T(s)s ! forseS (h=1,2,.,n—1),

as was to be proved.

7

When a is algebraic of degree N =n, Theorem 3 gave the estimates

ci<m,<cy (h=1,2,.,n). (16)

If further a is algebraic of degree N > n, then we deduced from Schmidt’s
theorem that for every ¢ >0 and for all sufficiently large s,

sTESm, <5t (h=1,2,.,n). (17)

Neither of these results is characteristic of algebraic numbers.

In the case of (16), theorems by Cassels [1] and by Davenport [2, 3]
imply that there are non-countably many real numbers a with this property
if ¢; and ¢, are suitably chosen positive constants. There are thus also tran-
cendental numbers with this property.

Next, a beautiful theorem by Sprindzuk [7] shows that almost all real
numbers a have the property (17) for sufficiently large s however small the
number ¢> 0 is chosen. In particular, almost all real transcendental num-
bers a satisfy (17).

Using my classification of transcendental numbers divided into the three
classes S, T, and U (see, e.g., [4]) it is further easy to show the following
result:

If a is a real S-number, then there exists a number S satisfying
0<d <1 which is independent of n and s such that for all suf-
ficiently large s,

sTIrogm, s D=9 (h=1,2,.., n). (18)
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If a is a real T-number, then there still exists a number & with the
property (18), but this number now depends on n and tends to
zero as n tends to infinity. It is, however, independent of s. If
finally, a is a real U-number, then there is no constant 6 with the
property (18) which is independent of s.

By the way of example, if @ # 0 is any real algebraic number, then a=e® is
an S-number, while both log 2 and = are either S-numbers or 7T-numbers.

In the special case of a=e, an old result of mine [4] enables one to
show the following very sharp estimate:

There exists an absolute constant C>0 such that for all suf-
ficiently large s and for all n =2,

SAC~nlogn/loglog:<mh<s+C-nlogn/loglogs (h= 1’ 2,“" n)'

This estimate is thus stronger than (17).
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