
Sums and products

Carl Pomerance, Dartmouth College

Hanover, New Hampshire, USA

International Number Theory Conference

in Memory of Alf van der Poorten, AM

12–16 March, 2012

CARMA, the University of Newcastle

Based on joint work with

P. Kurlberg, J. C. Lagarias, & A. Schinzel



1



Let’s begin with products. Take the N ×N multiplication table.

It has N2 entries. It is a symmetric matrix, so most entries

appear at least twice. How many distinct entries does it have?
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Let M(N) be the number of distinct entries in the N ×N
multiplication table.

× 1 2 3 4 5
1 1 2 3 4 5
2 2 4 6 8 10
3 3 6 9 12 15
4 4 8 12 16 20
5 5 10 15 20 25

So, M(5) = 14.
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× 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 12 14 16 18 20
3 3 6 9 12 15 18 21 24 27 30
4 4 8 12 16 20 24 28 32 36 40
5 5 10 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
7 7 14 21 28 35 42 49 56 63 70
8 8 16 24 32 40 48 56 64 72 80
9 9 18 27 36 45 54 63 72 81 90

10 10 20 30 40 50 60 70 80 90 100

So, M(10) = 42.
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What would you conjecture about M(N) asymptotically?

Maybe

lim
N→∞

M(N)

N2
= c > 0?

Maybe

lim
N→∞

M(N)

N2
= 0?

Maybe yes and also

lim
N→∞

M(N)

N2/ logN
= c > 0?
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Here are some values of M(N)/N2:

N M(N)/N2

5 0.5600
10 0.4200
20 0.3800
40 0.3231
80 0.3030

160 0.2802
320 0.2671
640 0.2538

1000 0.2481
2000 0.2399
8000 0.2267

16000 0.2215
32000 0.2166
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(Calculations by T. D. Noe as reported in the OEIS and by

P. Kurlberg.)



Do we have M(N) of the shape N2−c1?

N M(N)/N2 c1
5 0.5600 .3603

10 0.4200 .3768
20 0.3800 .3230
40 0.3231 .3063
80 0.3030 .2725

160 0.2802 .2507
320 0.2671 .2289
640 0.2538 .2122

1000 0.2481 .2018
2000 0.2399 .1878
8000 0.2267 .1651

16000 0.2215 .1557
32000 0.2166 .1475
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How about M(N) of the shape N2/(logN)c2?

N M(N)/N2 c1 c2
5 0.5600 .3603 1.2184

10 0.4200 .3768 1.0401
20 0.3800 .3230 .8819
40 0.3231 .3063 .8655
80 0.3030 .2725 .8081

160 0.2802 .2507 .7832
320 0.2671 .2289 .7533
640 0.2538 .2122 .7349

1000 0.2481 .2018 .7213
2000 0.2399 .1878 .7038
8000 0.2267 .1651 .6759

16000 0.2215 .1557 .6640
32000 0.2166 .1475 .6539
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Or how about M(N) of the shape N2/ exp((logN)c3)?

N M(N)/N2 c1 c2 c3
5 0.5600 .3603 1.2184 1.1453

10 0.4200 .3768 1.0401 .1704
20 0.3800 .3230 .8819 .0300
40 0.3231 .3063 .8655 .0935
80 0.3030 .2725 .8081 .1200

160 0.2802 .2507 .7832 .1482
320 0.2671 .2289 .7533 .1585
640 0.2538 .2122 .7349 .1692

1000 0.2481 .2018 .7213 .1718
2000 0.2399 .1878 .7038 .1755
8000 0.2267 .1651 .6759 .1798

16000 0.2215 .1557 .6640 .1808
32000 0.2166 .1475 .6539 .1817
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Paul Erdős studied this problem in two papers, one in 1955, the

other in 1960.

Paul Erdős, 1913–1996
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In 1955, Erdős proved (in Hebrew) that M(N)/N2 → 0 as

N →∞ and indicated that it was likely that M(N) is of the

shape N2/(logN)c.

In 1960, at the prodding of Linnik and Vinogradov, Erdős

identified (in Russian) the value of “c”. Let

c = 1−
1 + log log 2

log 2
= 0.08607 . . . .

Then M(N2) = N2/(logN)c+o(1) as N →∞.
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In work of Tenenbaum progress was made (in French) in nailing

down the “o(1)”.

In 2008, Ford showed (in English) that M(N) is of order of

magnitude

N2

(logN)c(log logN)3/2
.

No matter the language, we still don’t know an asymptotic

estimate for M(N), despite this just being about the

multiplication table!
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So how can the fact that M(N) is small compared to N2 be

explained?

It all comes down to the function Ω(n), the total number of

prime factors of n, counted with multiplicity. For example,

Ω(8) = 3, Ω(9) = 2, Ω(10) = 2, Ω(11) = 1, Ω(12) = 3.

Some higher values: Ω(1024) = 10, Ω(1009) = 1, and

Ω(217 − 1) = 1, Ω(217) = 17.

But what is Ω(n) usually? That is, can Ω(n) be approximately

predicted from the size of n if we throw out thin sets like

primes and powers of 2?

Indeed it can.
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In 1917, Hardy and Ramanujan proved that the normal order of

Ω(n) is log logn. That is, for each ε > 0, the set of integers n

with

|Ω(n)− log logn| < ε log logn

has asymptotic density 1.

So, this explains the multiplication table. For n1, n2 ∈ [1, N ],

most products n1n2 have both n1 > N1/2 and n2 > N1/2, and

most of these have Ω(n1) and Ω(n2) fairly close to log logN

(note that log log(N1/2) differs from log logN by less than 1).

So most of the products formed have about 2 log logN prime

factors, which is an unusual value to have for a number below

N2.
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G. H. Hardy S. Ramanujan
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So, log logN for integers below N is the center of the

distribution. To quantify M(N) one needs to know about

estimates for the tail, and that’s where the constant c arises.

I should take a small diversion from our progress here and

mention one of the most beautfiful theorems in number theory,

the Erdős–Kac theorem. It says that the “standard deviation”

for Ω(n) for integers up to N is (log logN)1/2 and that the

distribution is Gaussian. Namely, for each real number u, the

set

{n : Ω(n) ≤ log logn+ u(log logn)1/2}

has asymptotic density equal to
1√
2π

∫ u
−∞

e−t
2/2 dt.
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Einstein: “God does not play dice with the universe.”
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Einstein: “God does not play dice with the universe.”

Erdős & Kac: Maybe so but something’s going on with the

primes.
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Einstein: “God does not play dice with the universe.”

Erdős & Kac: Maybe so but something’s going on with the

primes.

(Note: I made this up, it was a joke . . . )
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Prime numbers, the most mysterious figures in math, D. Wells
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Keeping with the theme of multiplication, what can be said

about sets of positive integers that are product-free? This

means that for any two members of the set, their product is

not in the set. It is as far as you can get from being closed

under multiplication.

It is easy to find such sets, for example the set of primes. But

how dense can such a set be?

For example, take the integers that are 2 (mod 3). The

product of any two of them is 1 (mod 3), so is not in the set.

And this set has asymptotic density 1
3.

Can you do better?
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Well, the set of integers that are 2 or 3 (mod 5) is product-free

and has density 2
5.

The set of integers that are 3, 5, or 6 (mod 7) is product-free

with density 3
7.

These sets are all described as those integers in certain residue

classes modulo some n. Let D(n) denote the maximal possible

density of a product-free set modulo n.

It is not hard to prove that lim infn→∞D(n) = 1
2.

Do we have D(n) < 1
2 for all n?
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P, Schinzel (2011): We have D(n) < 1
2 for all n except

possibly those n divisible by the square of a number with at

least 6 distinct prime factors. Further, the asymptotic density

of those n divisible by such a square is about 1.56× 10−8.

Moscow Journal of Combinatorics and Number Theory,

1 (2011), 52–66.
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Andrzej Schinzel
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Surely that cements it, and D(n) < 1
2 for all n, right?
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Surely that cements it, and D(n) < 1
2 for all n, right?

Well, no.

Kurlberg, Lagarias, P (2011): There are infinitely many

values of n with D(n) arbitrarily close to 1. In particular, there

are infinitely many values of n where all of the pairwise

products of a subset of 99% of the residues (mod n) all fall

into the remaining 1% of the residue classes.

Acta Arithmetica, to appear in a special issue in honor of

Andrzej Schinzel’s 75th birthday.
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Pär Kurlberg Jeffrey C. Lagarias
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Let’s be more modest, just show me one n where D(n) ≥ 1
2.

It’s not so easy!

Here’s a number. Take the first 10,000,000 primes. For those

primes below 1,000,000, take their 14th power, and for those

that are larger, take their square, and then multiply these

powers together to form N . Then D(N) > 0.5003. Further,

N ≈ 101.61×108
.

Can you find an example with fewer than 100,000,000 decimal

digits?
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What is behind this construction and proof?

It is actually very similar to the proof of the multiplication table

theorem.

Suppose n is a high power of the product of all of the primes

up to x, say the exponent is blogxc. Then consider all residues

r (mod n) with

2

3
log logx < Ω(gcd(r, n)) <

4

3
log logx.

Then these residues r (mod n) form a product-free set, and in

fact most residues (mod n) satisfy this inequality.
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Actually the numbers 2
3 and 4

3 are not optimal, but e
4 and e

2 are.

Being especially careful with the estimates leads to the

following result:

Kurlberg, Lagarias, P (2011): There is a positive constant c1
such that for infinitely many n we have

D(n) > 1−
c1

(log logn)1−e
2 log 2(log log logn)

1
2

.

Note that 1− e
2 log 2 = 0.0579153 . . . .
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This is optimal for our method of proof, but is this the optimal

result? It turns out that yes, apart from the constant c1, it is

optimal:

Kurlberg, Lagarias, P (2011): There is a positive constant c2
such that for all n we have

D(n) < 1−
c2

(log logn)1−e
2 log 2(log log logn)

1
2

.

The idea for this upper bound: use linear programming!
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For a product-free set S in Z/nZ and for d | n, let αd be the

proportion of those s ∈ S with gcd(s, n) = d among all residues

r (mod n) with gcd(r, n) = d.

Then each αd is in [0,1].

Further, if |S| ≥ n/2, then α1 = 0 and for all u, v with uv | n, we

have

αu + αv + αuv ≤ 2.

In some sense, |S|/n is closely modeled by
∑
d|nαd/d.

So, the LP is to maximize
∑
d|nαd/d given the above

constraints.
32



Since we already know that D(n) can be fairly large, we need

not prove we have found the maximum of the LP, just some

upper bound for it. It is known that any feasible solution to the

dual LP gives an upper bound for the primary LP. Thus, we

write down the dual LP, find a fairly trivial feasible solution,

and then “shift mass” to make it better.

And, voilà, our upper bound for all n’s tightly matches our

constructed lower bound for champion n’s.
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Sated now with products, lets move on to sums . . .

No, we’re not going to start with addition tables. The

analogous problem is trivial, in the addition table for the

integers from 1 to N there are precisely 2N − 1 distinct sums.

But what about sum-free sets? Here we have a set of positive

integers that contains none of the pairwise sums of its

elements. How dense can such a set be?

This too is easy. The odd numbers form a sum-free set of

asymptotic density 1
2. And one cannot do better.
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Here’s the proof. Say A is a sum-free set of positive integers

and a ∈ A. Then the set a+A is disjoint from A. If A has

N = N(x) members in [1, x], then a+A has N +O(1) numbers

here, so x ≥ 2N +O(1). Hence for all x, we have

N(x) ≤ 1
2x+O(1). We conclude that the upper density of a

sum-free set A of positive integers is at most 1
2.

Let us look at a somewhat more subtle problem. How dense

can a sum-free subset of Z/nZ be?

If n is even, then take the odd residues, and this is best

possible.

But what if n is odd?
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Diananda & Yap (1969), Green & Ruzsa (2005):

If n is solely divisible by primes that are 1 (mod 3), then the

maximal density of a sum-free set in Z/nZ is 1
3 −

1
3n. If n is

divisible by some prime that is 2 (mod 3), then the maximal

density of a sum-free set in Z/nZ is 1
3 + 1

3p, where p is the least

such prime. Otherwise, the maximal density of a sum-free set

in Z/nZ is 1
3.

This problem has been considered in general finite abelian

groups and also for non-abelian groups. A survey article by

recent Jeopardy contestant Kiran Kedlaya:

Product-free subsets of groups, then and now, Communicating

mathematics, 169–177, Contemp. Math., 479, Amer. Math.

Soc., Providence, RI, 2009.
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After hearing a shorter version of this talk at a conference in

Georgia last October, several graduate students asked me the

following question: What if you consider both sums and

products?

Well, there is a famous and seminal problem here in which the

Erdős multiplication-table theorem plays a role:

Among all sets A of N positive integers what is the minimum

value of |A+A|+ |A · A|?

If one takes A = {1,2, . . . , N}, then |A+A| = 2N − 1 and

|A · A| = N2/(logN)c+o(1), so for large N ,

|A+A|+ |A · A| > N2−ε.
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If on the other hand we take A = {1,2, . . . ,2N−1}, then

|A · A| = 2N − 1 and |A+A| = 1
2N

2 + 1
2N , so that again

|A+A|+ |A · A| > N2−ε. (1)

Erdős & Szemerédi asked in 1983: Is (1) true for any set A of

N positive integers?

There has been a parade of results getting better and better

lower bounds, with game players being the posers Erdős &

Szemerédi, then Nathanson, Chen, Elekes, Bourgain, Chang,

Konyagin, Green, Tao, Solymosi, . . .
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Seeing a couple of Fields medalists in this list, with the problem

still not solved, is a bit daunting!

But what the grad students asked was about dense sets A that

are simultaneously sum-free and product-free.

For example, take the numbers that are 2 or 3 (mod 5). It is a

set of asymptotic density 2
5 and is both sum-free and

product-free. We cannot do better than 1
2 for the density

(considering only the sum-free property), but can we beat 2
5 for

both sum-free and product-free?
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Kurlberg, Lagarias, P (2011): Say A is sum-free and
product-free with upper density D(A).

1. If A ⊂ Z>0 with least element a, then D(A) ≤ 1
2

(
1− 1

5a

)
.

2. There is a constant κ1 > 0, such that if A ⊂ Z/nZ, then

D(A) ≤
1

2
−

κ1

(log logn)1−e
2 log 2(log log logn)

1
2

.

3. There is a constant κ2 and infinitely many n such that for
some A ⊂ Z/nZ,

D(A) ≥
1

2
−

κ2

(log logn)1−e
2 log 2(log log logn)

1
2

.

40



There remains a numerical problem: find an example of a

number n and a sum-free, product-free subset A of Z/nZ with

D(A) > 2
5.

For D(A) = 2
5, we have n = 5. Back-of-the-envelope

calculations suggest that there is some n that beats n = 5

around

1010500,000
,

a number so large that we cannot even write the number of its

digits in ordinary decimal notation.

But we haven’t looked at this problem too closely and there

may be a much more modest example.
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Thank You!
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