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Introduction

Thin plates are commonly known by their capability to induce additional damping for marine and offshore
structures (bilge keel, floater skirts,...). In addition, to enhance energy dissipation, one of the practical
solutions is to add perforated plates instead of impermeable ones to increase flow separation and reduce
wave exciting loads. It can also be used to tune the natural frequency of a number of dynamical devices
such as Tuned Liquid Dampers (TLD) [5]. Recently, the interest to this subject has increased and discussed
on many occasions during the last previous workshops [3][5][6].

The main purpose of the present work is to provide a general formulation for wave diffraction-radiation by
bodies with thin porous plates using Boundary Integral Equation Method (BIEM). The Boundary Value
Problem (BVP) has been formulated within linear potential flow theory and generalized modes approach;
making it easy to extend to flexible bodies/plates with arbitrary shape. A linear porosity condition has been
considered for the plate following [2]. To validate the numerical implementation, a basic configuration of
bottom mounted cylinder with porous ring plate has been selected. The (BVP) problem has been solved
analytically using an appropriate eigenfunction expansion technique and compared to (BIEM) solution.
Excellent agreement was obtained.
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Figure 1: Domain definition

Mathematical model

Linear potential flow theory is used here, the hydrodynamic problem is formulated in frequency domain
within generalized modes approach. pex, ey, ezq denotes the Cartesian coordinate system and per, eθ, ezq

the cylindrical one with the z-axis pointing upward and z � 0 the undisturbed free surface. ω is the wave
frequency, g the gravity, ρ the fluid density, h the water-depth, ν � ω2

{g the infinite-depth wave number and
k0 the finite-depth one. For the domain definition, pV q stands for the fluid domain, pSF q the free-surface,
pSq the body surface, pSHq the seabed and pDq the thin plate surface (figure 1).

Under these assumptions, the first order body motion Hpx, ωq can be written as follow:

Hpx, ωq �

Ņ

j�1

ξjpωqhjpxq (1)

Where N the total number of modes (rigid + elastic), hj the jth modal displacement vector and ξjpωq its
complex modal amplitude. Similarly, the total potential is decomposed into an incident part φI , a diffraction
part φD and N radiation potentials φRj :

φtot
pxq � φI

pxq � φD
pxq � iω

Ņ

j�1

ξjpωqφ
Rj
pxq (2)
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The diffraction-radiation potential φ should satisfy the Laplace equation in the fluid domain, the linear
free-surface condition, the body boundary condition, the impermeability condition at the seabed and the
Sommerfeld condition at the far field:
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2φ � 0 x P pV q

�νφ� φz � 0 x P pSF q

φn � v.n x P pSq

φz � 0 x P pSHq

a

k0r pφr � ik0φq � 0 r Ñ �8

(3)

n is the body normal oriented towards the fluid domain and the subscript n stands for the for normal
derivative. Furthermore, we consider the plate to be infinitely thin with very fine and numerous pores.
Therefore, Darcy’s law can be applied. The latter implies that the normal relative velocity is continuous and
linearly proportional to the pressure drop through the porous plate surface [2]:

φ�n � φ�n � v.n� iκ
�

φ� � φ�
�

� v.n� iκµ x P pDq (4)

Where µ is the potential drop and κ the porosity coefficient. The superscript � is used for the positive side
of the plate and � for the negative side with n the plate normal vector oriented from the negative to the
positive side (figure 1). Finally, the term v.n in equations (3) and (4) depends on the problem to be solved:
v.n � �φI

n for the diffraction problem and v.n � hjpxq.n for the radiation problem.

To solve this (BVP), Green function is defined for a couple of points px, x’q following [1]:
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∇
2Gpx, x

1

q � 4πδpx� x
1

q x P pV q

�νGpx, x
1

q �Gzpx, x
1

q � 0 x P pSF q

Gzpx, x
1

q � 0 x P pSHq

a

k0r
�

Grpx, x
1

q � ik0Gpx, x
1

q

�

� 0 r Ñ �8

(5)

With x the field point and x
1 the singular point. Applying Green identity to φ and G and integrating over

both sides of the plate, we can write for x P pSq:

2πφpxq �

¼

pSq

φpx1qGn
x

1

px, x
1

qdSx1

�

¼

pDq

µpx1qGn
x

1

px, x
1

qdSx1

�

¼

pSq

pv.nx1

qGpx, x
1

qdSx1 (6)

The subscript n
x

1

stands for the normal derivative with the respect to the singular point. For the plate part,
the integral equation to satisfy is obtained by taking the Green identity normal derivative when x P pDq:

�4πiκµpxq �

¼

pSq

φpx1qGn
x

1

nx
px, x

1

qdS �

¼

pDq

µpx1qGn
x

1

nx
px, x

1

qdS � �4πpv.nxq �

¼

pSq

pv.nx1

qGnx
px, x

1

qdSx1

(7)
Finally once the potential found, the hydrodynamic forces are calculated by integrating the pressure (re-
spectively pressure difference) over the body (respectively the plate):

F DI
j � �iωρ

�

�

�

¼

pDq

µDpxqhjpxq.nxdSx �

¼

pSq

�

φI
pxq � φD

pxq
�

hjpxq.nxdSx

�

Æ



(8)

Aij �
i

ω
Bij � �ρ

�

�

�

¼

pDq

µRi
pxqhjpxq.nxdSx �

¼

pSq

φRi
pxqhjpxq.nxdSx

�

Æ



(9)

The pressure integration can be checked either by verifying some hydrodynamic identities such as Haskind
relation, or making use of Green identity to recompute wave forces by the mean of a control surface located
at the far field. A detailed justification of these identities can be found in [4] for the impermeable body case.
In our configuration, similar reasoning to [4] yields to identical relations as those found by Zhao [7].

On the other hand, it is important to note that the integral equations (6) and (7) still valid for a quadratic
porosity condition provided to adapt correctly κ [3]. In that case, an iterative scheme has to be set up given



the dependency of κ on the normal relative velocity [5]. Hence, the diffraction-radiation problem is solved
first then the relative velocity at the center of each panel is evaluated after solving the motion equation.
This process is repeated until convergence of motions.

Validation case

In order to validate (BIEM) numerical implementation, a basic configuration has been selected which consists
of a fixed bottom mounted circular cylinder with ring porous plate located at z � �d (figure 2). The plate
is allowed to move vertically so only heave motion has been considered for the radiation problem. a stands
for the cylinder radius and b the plate external radius.
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Figure 2: Bottom mounted cylinder with ring porous plate

Eigenfunction expansion method is used here, the fluid domain is divided into 2 region: region 1 (r ¥ b)
denoted by the superscript p1q and region 2 (a ¤ r ¤ b) denoted by the superscript p2q. For region 2, the
superscript p2�q (respectively p2�q) indicates that the potential is valid in the upper part z ¥ �d (respectively
lower part z ¤ �d). The first order incident potential has the form:

φI
pxq �

�ig

ω

�8

¸

m�0

ǫmimJmpk0rqf0pzq cospmθq (10)

With ǫ0 � 1 and ǫm � 2 for m ¡ 0. Jm is the Bessel function of the first kind. The diffraction-radiation
potential in the region 1 can be written as:

φp1qpxq �

�8

¸

m�0

�

a0m

Hmpk0rq

Hmpk0bq

f0pzq
?

F0

�

�8

¸

n�1

anm

Kmpknrq

Kmpknbq

fnpzq
?

Fn

�

cospmθq (11)

Hm is the Hankel function of the first kind and Km the modified Bessel function the second kind. The
vertical basis functions fnpzq, which are orthogonal, are defined by:

f0pzq �
coshpk0pz � hqq

coshpk0hq
, fnpzq �

cospknpz � hqq

cospknhq
, Fn �

»

0

�h

fnpzq
2dz (12)

Where the wave numbers satisfy ν � k0 tanhpk0hq � �kn tanpknhq.

For a ¤ r ¤ b, the potential φp2q is decomposed into two parts φp2q � φp2P q
�φp2Hq similar to [6]. φp2P q is the

particular solution which satisfies (3), without the radiation condition, and the porosity condition (4) on the
plate. Consequently, φp2Hq also verifies the same equations but with the following homogeneous boundary
conditions:

φp2Hq

r � 0 r � a

φp2H�q

z � φp2H�q

z � �iκ
�

φp2H�q

� φp2H�q

	

z � �d
(13)

Using separation of variables, φp2Hq can be expressed as:

φp2Hq

pxq �

�8

¸

m�0

�

�8

¸

n�1

bnm

Rnmprq

Rnmpbq

gnpzq
?

Gn

�

cospmθq (14)

With:

Rnmprq � H 1

mpλnaqJmpλnrq � J 1mpλnaqHmpλnrq , Gn �

»

0

�h

gnpzq
2dz (15)



gn is the vertical basis function defined in [6] which takes different form in the upper and the lower domains.
Finally, the pressure drop condition in (13) yields to the dispersion relation for the wave numbers λn:

λn sinhpλnph� dqq pν coshpλndq � λn sinhpλndqq � iκ pν coshpλnhq � λn sinhpλnhqq (16)

This dispersion equation is solved numerically following the method used in [6]. In that way, all the boundary
conditions are fulfilled except the velocity and the potential continuity at r � b:

φp1q � φp2q and φp1qr � φp2qr at r � b (17)

These conditions are used as matching conditions and projected over fnpzq and gnpzq to obtain the linear
system of the unknown coefficients anm and bnm:

»

0

�h

φp1qr

fnpzq
?

Fn

dz �

»

0

�h

φp2Hq

r

fnpzq
?

Fn

dz �

»

0

�h

φp2P q
r

fnpzq
?

Fn

dz

»

0

�h

φp2Hq

gnpzq
?

Gn

dz �

»

0

�h

φp1q
gnpzq
?

Gn

dz � �

»

0

�h

φp2P q gnpzq
?

Gn

dz

(18)

Where the particular solution φp2P q is the same as the one found for the (BVP) studied in [6]: φp2P q
� �φI

for diffraction problem and φp2P q
�

i

κ
Hp�z � dq for heave problem, H being the Heaviside function.

Preliminary results and discussions

For numerical tests, we consider a cylinder with b � 2a, d � a and h � 4a. Also, we introduce the non-
dimensional porosity parameter [2] defined by κ0 � 2πκ{k0. Figures 3 and 4 show vertical exciting force
and heave added mass for different κ0 values. Almost the same results are obtained by (BIEM) and semi-
analytical method. Furthermore, wave forces are decreasing with κ0 as expected. More detailed results will
be presented and discussed at the workshop.
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Figure 3: Vertical exciting force, (BIEM) in solid line
vs. semi-analytical solution in markers
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Figure 4: Heave added mass, (BIEM) in solid line vs.
semi-analytical solution in markers
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