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Introduction

The efforts to couple viscous and inviscid flows in naval and offshore engineering have been studied from the
early 90s. The researches showed a possibility of reducing the computational domain but the most of researches
are concluded to the increase of total computation cost and complexity of methodology [2, 3]. Because two-
way coupling needs to solve two different flows, it makes the methodology complex and unfavorable. One-way
coupling which blends or subtracts the wave components in the computation domain and/or equations are
attempted by many researchers [6, 7, 9]. But two-way coupling is not carefully studied. Noblesse [8] presented
a new potential flow representation. The velocity in a potential flow region can be computed explicitely from
the velocity distribution on the boundary surfaces. He suggested a generic representation and applied it for the
case of steady flow, time-harmonic and time-harmonic with forward speed flows. Guillerm and Alessandrini [4]
showed the result of two-way coupling between velocity representation and viscous flow for the steady forward
speed case. As the velocity representation are presented only for the case of steady and time-harmonic cases,
the present study introduces a velocity representation in time-domain free surface flow.

Formulation

The boundary integral equation states that the velocity potential at the field point is given by boundary integral
equation(BIE). The velocity in potential flow region is expressed by applying a gradient on BIE as,

∇xΦ (x) = ∇xψ −∇xχ, (1)

where

∇xψ =

‹
S
{nξ · ∇ξΦ (ξξξ)}∇xG(x;ξξξ)dS, ∇xχ =

‹
S

Φ (ξξξ)∇x {nξ · ∇ξG (x;ξξξ)} dS (2)

where Φ is the velocity potential, x = (x, y, z) and ξξξ = (ξ, η, ζ) are the field and source points, respectively. nξ
is a normal vector to the boundary surface S and it points inside of fluids domain. ∇ξ and ∇x are the spatial
derivatives with respect to the source and field point coordinates. Noblesse [8] showed that the dipole induced
velocity is identical with,

∇xχ =
[
ud, vd,±wd

]T
=

‹
S
{Φ (ξξξ)× nξ} × ∇xG (x;ξξξ) dS (3)

where Green function has the following relationship:(
∂

∂x
,
∂

∂y
,
∂

∂z

)
G(x, ξξξ) =

(
− ∂

∂ξ
,− ∂

∂η
,∓ ∂

∂ζ

)
G(x, ξξξ).

The contribution of dipole is replaced with the vortex at boundary surface with the first derivatives of Green
function. It states that the velocity at field point is given explicitely if the velocity distribution on the boundary
is known. This equation is called as Poincaré’s velocity representation. The wave Green function for infinite
depth is expressed with the combination of source, image source and wave terms as

4πG± =


−1

r
± 1

r′
±H

−1

r
∓ 1

r′
± F

, (4)
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where r and r′ is the source and image source. H and F are the wave or harmonic terms. By changing the
sign of image source, the source and its image satisfy the homogeneous Dirichlet and Neumann conditions on
the mean free surface. Using the equation (4), the integral over mean free surface is given as:

¨
SF

ΦnG
+
ξ + (∇ξΦ× nξ)

ζ G+
η − (∇ξΦ× nξ)

η G+
ζ

ΦnG
+
η + (∇ξΦ× nξ)

ξ G+
ζ − (∇ξΦ× nξ)

ζ G+
ξ

ΦnG
−
ζ + (∇ξΦ× nξ)

η G−ξ − (∇ξΦ× nξ)
ξ G−η

 dS = −
¨
SF

 ΦζHξ + FζΦξ

ΦζHη + FζΦη

ΦξFξ + ΦηFη − ΦζHζ

 dS. (5)

Noblesse [8] suggested this integral as a generic expression for the free surface flow. The time domain Green
function of infinite water depth is given as,

4πG(x, ξξξ; t) = −1

r
+

1

r′
− 2

ˆ ∞
0

dk
{

1− cos
(√

gkt
)}

ekZJ0 (kR)

= −1

r
− 1

r′
+ 2

ˆ ∞
0

dk cos
{√

gkt
}
ekZJ0 (kR),

(6)

where Z = z + ζ, R =
√

(x− ξ)2 + (y − η)2. Therefore it satisfies the generic expression. To obtain the
total velocity representation in time domain, the boundary surfaces are splitted into the matching-wake surface
(SMW ), the free surface (SF ) and the surface at infinity distance (S∞). The time derivatives of velocity from
equation (3) is given asuτvτ

wτ

 = −
¨
SMW∪SF∪S∞

ΦnτG
+
ξ + (∇ξΦτ × nξ)

ζ G+
η − (∇ξΦτ × nξ)

η G+
ζ

ΦnτG
+
η + (∇ξΦτ × nξ)

ξ G+
ζ − (∇ξΦτ × nξ)

ζ G+
ξ

ΦnτG
−
ζ + (∇ξΦτ × nξ)

η G−ξ − (∇ξΦτ × nξ)
ξ G−η

 dS, (7)

It is assumed that the boundary surface do not change with time. By applying the integral by parts in time
and the radiation condition on equation (7), the total velocity at time t is expressed as

u(x, t) = −
¨
SMW∪SF

{Φn(ξξξ, t)∇ξG(x, ξξξ, 0) +∇ξG(x, ξξξ, 0)× (∇ξΦ(ξξξ, t)× nξ)} dS

+

ˆ t

t0

dτ

¨
SMW∪SF

{Φn(ξξξ, τ)∇ξGτ (x, ξξξ, t− τ) +∇ξGτ (x, ξξξ, t− τ)× (∇ξΦ(ξξξ, τ)× nξ)} dS,
(8)

where

G =

{
G+ x-,y-directional velocity components, e.g. (u, v)

G− z-directional velocity component e.g. (w)
. (9)

The velocity potential and time domain Green function satisfy the following relationships on the mean free
surface,

Φττ + gΦζ = 0, and Hττ + gFζ = 0 on ζ = 0. (10)

Substituting the free surface boundary condition and applying Stokes and Reynolds transport theorems on
equation (8), the total velocity in time domain free surface flow is obtained as equation (11). The total velocity
has four components: the rankine source (uR), the image source (uR∗), the harmonic term (uH) and the free
surface (uF ).

4πu(x, ξξξ, t) = uR + uR∗ + uH + uF (11)

where
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uR (x, ξξξ, t) = −
¨
SMW

{Φn(ξξξ, t)∇ξR(x, ξξξ) +∇ξR(x, ξξξ)× (∇ξΦ(ξξξ, t)× nξ)} dS (12)

ûR∗ (x, ξξξ, t) = −
¨
SMW

{
Φn(ξξξ, t)∇ξR′(x, ξξξ) +∇ξR′(x, ξξξ)× (∇ξΦ(ξξξ, t)× nξ)

}
dS (13)

ûH (x, ξξξ, t) =

ˆ t

t0

dτ

¨
SMW

{Φn(ξξξ, τ)∇ξHτ (x, ξξξ, t− τ) +∇ξHτ (x, ξξξ, t− τ)× (∇ξΦ(ξξξ, τ)× nξ)} dS (14)

ûF (x, t) = −
ˆ t

t0

dτ

ˆ
CMW

∇ξF (x, ξξξ, t− τ)× {∇ξΦ (ξξξ, τ)× k}U2D
n dl (15)

− g
ˆ t

t0

dτ

ˆ
CMW

{∇ξF (x, ξξξ, t− τ)× t}Ξ(ξξξ, τ)dl +

ˆ t

t0

dτ

ˆ
CMW

∇ξHτ (x, ξξξ, t− τ)Ξ(ξξξ, τ)U2D
n dl

whereˆrepresents the sign of vertical component is opposite. R = −1/r andR′ = 1/r′. CMW is a cross-sectioned
waterline of matching and mean free surfaces. t is a tangential vector. Ξ is the wave elevation. U2D

n is the
transport velocity. Above velocity representation only have the flow properties in the right-hand side, e.g.,
velocity, wave elevation and transport velocity at boundary surface. Therefore, the velocity can be computed
by explicitely without solving the equations if flow properties on the matching surface are given.

Results and Discussion

Hulme’s heaving hemisphere is selected as a benchmark test to validate the velocity representation [5]. The
heaving hemisphere locates inside of the arbitrary matching-wake surface(SMW ) and it oscillates with constant
amplitude and frequency(ω). The velocity, wave elevation and transport velocity on the matching-wake surface is
given to reconstruct the velocity at field point. The computed velocity from Poincaré representation is compared
with analytic solution. The various matching-wake surfaces which are shown in figure 1 are considered for the
validation.
The computed velocities using Poincaré representation are compared in figure 2. When the field point locates
relatively far from the free surface (z = −1), the reconstructed velocity from Poincaré representation shows
a good agreement with analytic solution. But the reconstructed velocity becomes unstable as the field point
closes to the free surface (z ≈ 0). The line integral along the waterline gives a poor numerical results because
Green function has a diverging behavior when the source and field points together locates on the free surface. It
is known as the singular behavior of waterline integral in time domain problem [1]. The reconstructed velocities
on the free surface are shown in figure 3 with increasing the number of sub-line segment. The reconstructed
velocities are seen to be better as the number of sub-line segment increases. It is expected to have a good result
when the special care is applied to the waterline integral.

(a) Hemisphere (b) Cylinder shell (c) Semi-ellipsoid (d) Parallel pipe

Figure 1: Various matching-wake surface (SMW ), the heaving hemisphere locates inside of surface.
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Figure 2: Reconstructed velocity from Poincaré representation with various matching-wake surfaces (SMW ),
x = (5, 0− 1).

Figure 3: Reconstructed velocity on the free surface with increasing the number of sub-line segment, x = (5, 0, 0).
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