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Highlights

• Flexural-gravity wave blocking in the presence of a submerged plate is studied.

• Effect of plate properties on wave blocking is analyzed.

• Dependency between ocean current and wave-period during wave blocking is demonstrated.

1. Introduction

The study demonstrates the propagation of flexural gravity waves in the case of submerged and floating plate

system. It is the continuation of the previous works by [1, 2, 3, 4]. The dominant roles of the submerged and

floating plates completely depends on the plate position, structural rigidity and compressive forces acting on

the plate. The effects of both the plates’ properties as well as compressive force on wave blocking of both

surface (along floating plate) and internal (along submerged plate) modes are analyzed in details for a specific

case of a submerged plate being placed at shallow water depth with infinite-depth water underneath. Further,

the dependency between blocking frequency and critical opposing current is analytically derived and presented

graphically.

2. Mathematical formulation

Figure 1: Schematic of the problem

In the present study, the floating ice sheet/structure

and the submerged structure are modeled as thin elas-

tic plates which are assumed to have a small ampli-

tude structural responses. The physical problem is

considered in the two-dimensional Cartesian coordi-

nate system with x-axis being horizontal and z-axis

being in the vertically downward direction (see Fig.

(1)). The infinitely stretched ice-sheet/structure is as-

sumed to be floating on the mean free surface z = 0
of water of finite depth H and another horizontal thin

structure is submerged at a depth z = h, both of

which generate flexural gravity waves due to interac-

tion with ocean water. The fluid domain in between

the two structures occupies the region −∞ < x, y < ∞, 0 ≤ z ≤ h and the fluid underneath the submerged

structure occupies the region −∞ < x, y < ∞, h ≤ z ≤ H . Moreover, it is assumed that there is a uniform

flow of constant velocity U . The fluid is assumed to be inviscid, incompressible and both fluids motion are

irrotational which ensures the existence of the velocity potentials Φj(x, z, t) for j = 1, 2 which satisfy the

two-dimensional Laplace equation is given by

∇2Φj = 0, j = 1, 2, (1)

in the upper and lower layer fluid respectively, and floating and submerged plates are respectively referred to as

j (j = 1, 2)-th plate. The linearized kinematic boundary conditions on the plate covered surface and submerged

plate are given by
(

∂

∂t
+ U

∂

∂x

)

η1 =
∂Φ1

∂z
on z = 0, (2)



(

∂

∂t
+ U

∂

∂x

)

η2 =
∂Φ2

∂z
=

∂Φ1

∂z
on z = h, (3)

where η1(x, t) and η2(x, t) are the respective deflections of the floating and submerged elastic plates.

Bernoulli equation yields the linearized hydrodynamics pressure pj(x, z, t) in the fluid regions (j = 1, 2 refer

to upper and lower layer fluid regions respectively) as

pj(x, y, t) = −ρ

(

∂

∂t
+ U

∂

∂x

)

Φj + ρgz, (4)

with p0(x, z, t) being the atmospheric pressure acting on the floating elastic plate. Further, in the presence of

in-plane compressive forces Nj acting along x-direction on the homogeneous floating and submerged plates

respectively, the plate deflections are given by (as in [5] and [6])

(

E1I1
∂4

∂x4
+N1

∂2

∂x2
+ ρp1d1

∂2

∂t2

)

η1 = −(p1|z=0 − p0|z=0), (5)

(

E2I2
∂4

∂x4
+N2

∂2

∂x2
+ ρp2d2

∂2

∂t2

)

η2 = −(p2|z=h − p1|z=h). (6)

with Ej being the Young’s modulus, Ij = d3j/(12(1− ν2j )), νj being the Poisson’s ratio, dj being the thickness

of the elastic plate and ρpj being the density of the plate.

Hence, the linearized conditions on the floating and submerged plates are obtained from Eqs. (4) - (6) as

(
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∂4

∂x4
+N1

∂2

∂x2
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∂2

∂t2

)
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∂z
= ρ

{
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∂Φ1
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}

, (7)
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∂x4
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∂t2

)

∂Φ2
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= ρ
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(
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)2
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}

. (8)

Further, the linearized kinematic condition Eq. (3) on submerged plate yields,

∂Φ2

∂z

∣

∣

∣

∣

z=h+

=
∂Φ1

∂z

∣

∣

∣

∣

z=h−

. (9)

Finally, at the rigid bottom, the boundary condition is given by

∂Φ2

∂z
= 0, z = H. (10)

3. Characteristics of wave motion

Here, the characteristics of monochromatic flexural gravity waves are analyzed under the assumptions

ηj(x, t) = ηj,0 cos(kx− ωt), j = 1, 2,

where k is the wavenumber of the plane progressive wave with angular frequency ω and j = 1, 2 correspond to

wave amplitudes in surface and internal mode, respectively. Thus, the velocity potentials Φj(x, z, t), (j = 1, 2)
in water of finite depth is obtained as

Φ1(x, z, t) = Ux− i(ω − Uk)η1,0
k

(a cosh kz + sinh kz) sin(kx− ωt), (11)

Φ2(x, z, t) = Ux− i(ω − Uk)η2,0 cosh k(H − z)

k sinh k(H − h)
sin(kx− ωt). (12)

where

a = −(ω − Uk)2{1 + coth kh coth k(H − h)} − gkA2 coth kh

(ω − Uk)2{coth kh+ coth k(H − h)} − gkA2

, (13)

U is the uniform current speed along x-direction, and the wave number k satisfies the dispersion relation

R(ω − Uk)4 − S(ω − Uk)2 + T = 0, (14)



where

R =1 + coth kh coth k(H − h),

S =gk[A2 coth kh+A1{coth kh+ coth k(H − h)}],
T =g2k2A1A2, A1 = D1k

4 −Q1k
2 + 1, A2 = D2k

4 −Q2k
2,

Di =EiIi/(ρg), Qi = Ni/(ρg).

with E1I1, E2I2 being the flexural rigidities of floating and submerged plates respectively with N1, N2 being

the corresponding compressive forces, ρ being the density of the fluid medium, H being the total water depth

and h being the distance of the submerged elastic plate from the floating elastic plate. Further, the amplitude

ratio of floating and submerged plates are given as

∣

∣

∣

∣

η2,0
η1,0

∣

∣

∣

∣

=
(ω − Uk)2

sinh kh[(ω − Uk)2{coth kh+ coth k(H − h)} − gkA2]
. (15)

Assuming the elastic restoring force to be much larger than the inertial effect (as in [7]), the term γω2 << 1 is

neglected. Thus, the dispersion relation associated with flexural gravity wave motion in the presence of uniform

current and compressive force in finite water depth satisfies

(ω − Uk)2± =
S ±

√
S2 − 4RT

2R
. (16)

where ± sign corresponds to the wave in the surface mode that propagates along the floating ice-sheet/structure

and the wave in internal mode that propagates along the submerged plate, respectively.
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Figure 2: Dispersion graphs for both the modes are plot-

ted for two different cases. Wave blocking can be ob-

served from the optima of dispersion curves.

Now, considering a specific case of infinite depth wa-

ter underneath submerged structure which is placed

at a shallow depth, the above dispersion relations can

be modified into

(ω − Uk)2+ =

(

S1 −
T1

S1

)

and (ω − Uk)2− =

(

T1

S1

)

.

(17)

The amplitude ratio
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[(ω − Uk)2(1 + kh)− gkA2kh]

(ω − Uk)2
. (18)

The condition of wave blocking is obtained as
dω±

dk
= 0 which, consequently, provides the oppos-

ing current speed U b
± at the time of blocking as

U b
± =
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for internal mode.

The corresponding blocking frequencies ωb
± can be obtained from Eq. (17) as (taking the positive branch of the

dispersion relation)

ω±

b =























(

√

S1 −
T1

S1

+ U+

b k

)

for surface mode,
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)

for internal mode,
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Figure 3: Dependency between the opposing ocean current and the time period of incoming blocked waves

for different values of compressive force acting on the floating plate. Figure 3(a) illustrates the dependency

for surface waves for three different values of compressive force, namely Q1 = 1.5
√
D1, 1.7

√
D1, 1.95

√
D1.

The occurrence of blocking is observed even without current for Q1 = 1.7
√
D1, 1.95

√
D1 at almost the same

time period (blue-dot and red-dash curves). Any incoming wave having less time-period cannot be blocked.

On the other hand, when Q1 = 1.5
√
D1, a minimum opposing current (U0) is required to block the incoming

wave of any time-period (rigid black curve). Similarly, any incoming wave having time-periodicity less than

T0 cannot be blocked by any opposing current. Figure 3(b) depicts the same for waves in internal mode, but for

three different values of compressive force, namely Q1 = 1.85
√
D1, 1.9

√
D1, 1.95

√
D1. The choices of such

high values of Q1 is chosen because of very high minimum values of (T0, U0) (the case with Q1 = 1.85
√
D1)

to initiate blocking in internal mode (black-dot curve). The pattern shows that for relatively smaller values of

Q1, (T0, U0) values will be very large.

The above equations will be solved for unknown wavenumber k for fixed incoming wave frequency and then

the corresponding U b
± will be obtained.
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