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Introduction

Alphabets and Strings

An alphabet, Σ, is a finite collection of symbols

We are primarily concerned with the binary alphabet, Σ2 = {0, 1}
A string is any finite list of symbols from an alphabet

Example: x = 0010101 ∈ Σ∗
2

For a positive integer N, we let (N)b denote the string that is its
base-b representation

Example: (76)2 = 1001100

Rajasekaran, Shallit, and Smith Sums of Palindromes September 28, 2017 4 / 36



Palindromes

Definition

A palindrome is any string that is equal to its reverse

Examples are RADAR, MALAYALAM, and 10001

We call an integer a base-b palindrome if its base-b representation is
a palindrome

Examples are 1610 = 1213 and 29710 = 1001010012

Binary palindromes (b = 2) can be found as sequence A006995 in the
On-Line Encyclopedia of Integer Sequences (OEIS)

0, 1, 3, 5, 7, 9, 15, 17, 21, 27, 31, 33, 45, 51, 63, . . .
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Palindromes

The problem

Question: Given a positive integer, N, what is the smallest number of
base-b palindromes that add up to N?
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Palindromes Previous work

Current results

William Banks (2015) showed that every positive integer is the sum
of at most 49 decimal palindromes

Javier Cilleruelo, Florian Luca and Lewis Baxter (2017) showed that
for any base b ≥ 5, all positive integers are the sum of three base-b
palindromes
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Palindromes Previous work

Our result

We have the following result for the binary case:

Theorem

Every natural number N is the sum of at most 4 binary palindromes. The
number 4 is optimal.

To note that 4 is optimal, we observe that 176 is not the sum of 3 binary
palindromes (or fewer).
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Palindromes Previous work

Previous proofs are complicated (1)

Screenshot from Banks (2015)

EVERY NATURAL NUMBER IS THE SUM OF FORTY-NINE PALINDROMES 5

In the case that 10 ď m ď 43, we write m “ 10a ` b with digits a, b P D,
a ‰ 0. Using (2.2) we have

n ´ qL,0pa, bq “ n ´ p10L´1a ` 10L´2b ` a ` bq
“ n ´ p10L´2m ` a ` bq

“
L´1ÿ

j“0

10jδj ´ 10L´2p10δL´1 ` δL´2 ´ 6q ´ a ´ b

“ 6 ¨ 10L´2 `
L´3ÿ

j“0

10jδj ´ a ´ b,

and the latter number lies in NL´1,0p5`; cq, where c ” pδ0 ´a´ bq mod 10. Since
qL,0pa, bq is the sum of two palindromes, we are done in this case as well. �

2.4. Inductive passage from Nℓ,kp5`; c1q to Nℓ´1,k`1p5`; c2q.

Lemma 2.4. Let ℓ, k P N, ℓ ě k ` 6, and cℓ P D be given. Given n P Nℓ,kp5`; c1q, one
can find digits a1, . . . , a18, b1, . . . , b18 P Dzt0u and c2 P D such that the number

n ´
18ÿ

j“1

qℓ´1,kpaj , bjq

lies in the set Nℓ´1,k`1p5`; c2q.

Proof. Fix n P Nℓ,kp5`; c1q, and let tδjuℓ´1
j“0 be defined as in (1.1) (with L ..“ ℓ).

Let m be the three-digit integer formed by the first three digits of n; that is,

m ..“ 100δℓ´1 ` 10δℓ´2 ` δℓ´3.

Clearly, m is an integer in the range 500 ď m ď 999, and we have

n “
ℓ´1ÿ

j“k

10jδj “ 10ℓ´3m `
ℓ´4ÿ

j“k

10jδj . (2.4)

Let us denote
S ..“ t19, 29, 39, 49, 59u.

In view of the fact that

9S ..“ S ` ¨ ¨ ¨ ` S
nine copies

“ t171, 181, 191, . . . , 531u,

it is possible to find an element h P 9S for which m ´ 80 ă 2h ď m ´ 60. With
h fixed, let s1, . . . , s9 be elements of S such that

s1 ` ¨ ¨ ¨ ` s9 “ h.

Finally, let ε1, . . . , ε9 be natural numbers, each equal to zero or two: εj P t0, 2u
for j “ 1, . . . , 9. A specific choice of these numbers is given below.
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Palindromes Previous work

Previous proofs are complicated (2)

Screenshot from Cilleruelo et al. (2017)

EVERY POSITIVE INTEGER IS A SUM OF THREE PALINDROMES 15

II.1 cm = 1. We do nothing and the temporary configuration becomes the final

one.

II.2 cm = 0. We distinguish the following cases:

II.2.i) ym 6= 0.

δm δm−1

0 0

∗ ym

∗ ∗

−→

δm δm−1

1 1

∗ ym − 1

∗ ∗
II.2.ii) ym = 0.

II.2.ii.a) ym−1 6= 0.

δm δm−1 δm−2

0 0 ∗
ym−1 0 ym−1

∗ zm−1 zm−1

−→

δm δm−1 δm−2

1 1 ∗
ym−1 − 1 g − 2 ym−1 − 1

∗ zm−1 + 1 zm−1 + 1

The above step is justified for zm−1 6= g − 1. But if zm−1 = g − 1, then

cm−1 ≥ (ym−1+zm−1)/g ≥ 1, so cm = (zm−1+ cm−1)/g = (g−1+1)/g = 1,

a contradiction.

II.2.ii.b) ym−1 = 0, zm−1 6= 0.

δm δm−1 δm−2

0 0 ∗
0 0 0

∗ zm−1 zm−1

−→

δm δm−1 δm−2

0 0 ∗
1 1 1

∗ zm−1 − 1 zm−1 − 1

II.2.ii.c) ym−1 = 0, zm−1 = 0.

If also cm−1 = 0, then δm−1 = 0, which is not allowed. Thus, cm−1 = 1.

This means that xm−1 ∈ {g − 1, g − 2}. Since xi ∈ {0, 1, 2} for i ≥ 3, it

follows that m = 3 and we are in one of the cases A.5) or A.6). Further,

δ2 = 1. In this case we change the above configuration to:

δm+1 δm δm−1 δm−2

xm−1 − 1 1 1 xm−1 − 1

∗ g − 1 g − 4 g − 1

0 ∗ 2 2

II.3 cm = 2. In this case it is clear that zm−1 = ym = g − 1 (otherwise

cm 6= 2). Note also that if ym−1 = 0, then cm−1 6= 2 and then cm 6= 2. Thus,

Rajasekaran, Shallit, and Smith Sums of Palindromes September 28, 2017 10 / 36



Palindromes Previous work

Previous proofs are complicated (3)

These proofs are highly case-based

Difficult to establish, difficult to understand

Difficult to check too: The original Cilleruelo et al. proof had some
minor flaws that were only noticed when the proof was implemented
as a Python program

Idea! Could we automate such proofs?
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Palindromes Automating such proofs

The idea

Build a finite-state machine that takes natural numbers as input,
expressed in the desired base

Allow the machine to “guess” representations of the input as a sum
of palindromes

The machine should accept an input if it verifies a guess, i.e., if the
input has a valid representation as a sum of palindromes

Use decidability algorithms to establish properties about the language
of binary representations accepted by this machine
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Palindromes Visibly Pushdown Automata

Introduction to VPAs

Visibly-pushdown automata

Popularized by Alur and Madhusudan in 2004, though similar ideas
have been around for longer

VPAs receive an input string, and read the string one letter at a time

They have a (finite) set of states and a stack

Upon reading a letter of the input string, the VPA can transition to a
new state, and might modify the stack

The states of the VPA are either accepting or non-accepting

If the VPA can end up in an accepting state after it is done reading
the input, then the VPA “accepts” the input, else it “rejects” it
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Palindromes Visibly Pushdown Automata

Using the VPA’s stack

The VPA can only take very specific stack actions

The input alphabet, Σ, is partitioned into three disjoint sets

Σc , the push alphabet
Σl , the local alphabet
Σr , the pop alphabet

If the letter of the input string we read is from the push alphabet, the
VPA pushes exactly one symbol onto its stack

If the letter of the input string we read is from the pop alphabet, the
VPA pops exactly one symbol off its stack

If the letter of the input string we read is from the local alphabet, the
VPA does not look at its stack at all

Rajasekaran, Shallit, and Smith Sums of Palindromes September 28, 2017 14 / 36



Palindromes Visibly Pushdown Automata

Example VPA

Here’s a VPA for the language {0n12n : n ≥ 1}

The push alphabet is {0}, the local alphabet is {1}, and the pop alphabet
is {2}.
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Palindromes Visibly Pushdown Automata

Determinisation and Decidability

A nondeterministic VPA can have several matching transition rules for
a single input letter

Nondeterministic VPAs are as powerful as deterministic VPAs

VPAs are closed under union, intersection and complement. There are
algorithms for all these operations.

Testing emptiness, universality and language inclusion are decidable
problems for VPAs

But a nondeterministic VPA with n states can have as many as 2Θ(n2)

states when determinized!
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Palindromes How it works

Example

As an example, let us see how a VPA could verify that 2189 is the
sum of 7 binary palindromes of length 9

We are using 7 summands for this example because the machine is
easier to understand when all summands are of the same length

The machine for the optimal bound of 4 is very similar, but needs a
lot more states
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Palindromes How it works

The machine

Note that guessing 7 palindromes over the alphabet {0,1} is
equivalent to guessing one palindrome over the alphabet {0, 1, . . . 7}
The first symbol guessed must be 7, because all our palindromes
must start (and end) with 1

The idea is to nondeterministically guess every possible combination
of 7 palindromes that could sum to 2189

We push our guesses onto the stack, and use the states to keep track
of the carry

Rajasekaran, Shallit, and Smith Sums of Palindromes September 28, 2017 18 / 36



Palindromes How it works

The input string

We set Σc = {a, b}, Σl = {c , d}, and Σr = {e, f }
The symbols a, c , and e correspond to 0, while b, d , and f
correspond to 1.

We feed the input string to the machine starting with the
least-significant digit

The first half of the input string is composed of symbols from Σc ,
while the second half is composed of symbols from Σr

We use the local alphabet for the last 3 symbols and for the “middle”
letter

(21892) = 100010001101
(21892)R = 101100010001
x = babbceefeccd
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Palindromes How it works

Step 0

We start out with an empty stack, and a carry of 0

Remaining input : babbceefeccd

Current state: 0

Stack: EMPTY
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Palindromes How it works

Step 1

Current state: 0

Stack: EMPTY

On reading the b, we must guess 7 because the most-significant digit of
our summands must be 1

Remaining input : abbceefeccd

New state: 3

New stack: EMPTY, 7
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Palindromes How it works

Step 2

Current state: 3

Stack: EMPTY, 7

On reading the a, we can guess 1 since 1 + 3 produces an output bit of 0

Remaining input : bbceefeccd

New state: 2

New stack: EMPTY, 7, 1
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Palindromes How it works

Step 3

Current state: 2

Stack: EMPTY, 7, 1

On reading the b, we can guess 3 since 3 + 2 produces an output bit of 1

Remaining input : bceefeccd

New state: 2

New stack: EMPTY, 7, 1, 3
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Palindromes How it works

Step 4

Current state: 2

Stack: EMPTY, 7, 1, 3

On reading the b, we can guess 1 since 1 + 2 produces an output bit of 1

Remaining input : ceefeccd

New state: 1

New stack: EMPTY, 7, 1, 3, 1
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Palindromes How it works

Step 5

Current state: 1

Stack: EMPTY, 7, 1, 3, 1

On reading the c , we can guess 1 since 1 + 1 produces an output bit of 0.
This is not pushed onto the stack since it is a local transition.

Remaining input : eefeccd

New state: 1

New stack: EMPTY, 7, 1, 3, 1
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Palindromes How it works

Step 6

Current state: 1

Stack: EMPTY, 7, 1, 3, 1

On reading the e, we pop 1 off the stack and verify that 1 + 1 produces an
output bit of 0

Remaining input : efeccd

New state: 1

New stack: EMPTY, 7, 1, 3
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Palindromes How it works

Step 7

Current state: 1

Stack: EMPTY, 7, 1, 3

On reading the e, we pop 3 off the stack and verify that 3 + 1 produces an
output bit of 0

Remaining input : feccd

New state: 2

New stack: EMPTY, 7, 1
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Palindromes How it works

Step 8

Current state: 2

Stack: EMPTY, 7, 1

On reading the f , we pop 1 off the stack and verify that 1 + 2 produces an
output bit of 1

Remaining input : eccd

New state: 1

New stack: EMPTY, 7
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Palindromes How it works

Step 9

Current state: 1

Stack: EMPTY, 7

On reading the e, we pop 7 off the stack and verify that 7 + 1 produces an
output bit of 0

Remaining input : ccd

New state: 4

New stack: EMPTY
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Palindromes How it works

Step 10

We next read ccd which corresponds to 4, which is exactly the carry
we have, so the VPA accepts the input string

Note that our guessed palindrome is 713111317. We have:
111 111 111 = 511
101 000 101 = 325
101 000 101 = 325
100 000 001 = 257
100 000 001 = 257
100 000 001 = 257
100 000 001 = 257

And, we have 511 + 325 · 2 + 257 · 4 = 2189
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Palindromes Our proofs

Proof Strategy

To prove our result, we built 2 VPAs:

For all n, A accepts all n-bit odd integers that are the sum of three
palindromes whose lengths are either n − 1, n − 2, n − 3 or n − 4
B accepts all valid representations of odd integers over the alphabet
{a, b, c , d , e, f }

We then prove that all inputs accepted by B are accepted by A

To prove that we use the ULTIMATE Automata Library

We simply have to say assert(IsIncluded(B, A)) in ULTIMATE
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Other results Larger bases

Results

For bases 3 and 4, we establish a bound of 3 for every sufficiently large
positive integer.

Theorem

Every natural number N > 256 is the sum of at most three base-3
palindromes.

Theorem

Every sufficiently large natural number N > 64 is the sum of at most three
base-4 palindromes.
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Other results Larger bases

Proof details

The VPAs for bases 3 and 4 get very large, and the IsIncluded

assertion times out in ULTIMATE

We use NFAs to prove our results for these bases

This poses a challenge: NFAs do not have a stack, which is what
made VPAs good for this problem

The solution is to “fold” our input and provide the machine with two
bits of input at the same time

For example, if our input is 12011210, then we give the machine
[1, 0][2, 1][0, 2][1, 1] as its input
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Other results Squares

Definition

A square is any string that is some smaller string repeated twice

Examples are TARTAR, PATPAT, and 100100

We call an integer a base-b square if its base-b representation is a
square

Examples are 3610 = 1001002 and 310 = 112.

Binary squares (b = 2) can be found as sequence A020330 in the
OEIS

3, 10, 15, 36, 45, 54, 63, 136, 153, 170, 187, 204, 221, . . .
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Other results Squares

Results

In an analogy of Lagrange’s 4-square theorem, we have

Theorem

Every natural number N > 686 is the sum of at most 4 binary squares.

We also have the following result

Theorem

Every natural number is the sum of at most two binary squares and at
most two powers of 2.
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Other results Squares
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