Sums of Palindromes: An Approach via Automata

Aayush Rajasekaran, Jeffrey Shallit, Tim Smith

University of Waterloo
September 28, 2017

Jon Borwein

Table of Contents

(1) Introduction
(2) Palindromes

- Previous work
- Automating such proofs
- Visibly Pushdown Automata
- How it works
- Our proofs
(3) Other results
- Larger bases
- Squares

Alphabets and Strings

- An alphabet, Σ, is a finite collection of symbols
- We are primarily concerned with the binary alphabet, $\Sigma_{2}=\{0,1\}$
- A string is any finite list of symbols from an alphabet
- Example: $x=0010101 \in \Sigma_{2}^{*}$
- For a positive integer N, we let $(N)_{b}$ denote the string that is its base- b representation
- Example: $(76)_{2}=1001100$

Definition

- A palindrome is any string that is equal to its reverse
- Examples are RADAR, MALAYALAM, and 10001
- We call an integer a base-b palindrome if its base-b representation is a palindrome
- Examples are $16_{10}=121_{3}$ and $297_{10}=100101001_{2}$
- Binary palindromes $(b=2)$ can be found as sequence A006995 in the On-Line Encyclopedia of Integer Sequences (OEIS)

$$
0,1,3,5,7,9,15,17,21,27,31,33,45,51,63, \ldots
$$

The problem

Question: Given a positive integer, N, what is the smallest number of base- b palindromes that add up to N ?

Current results

- William Banks (2015) showed that every positive integer is the sum of at most 49 decimal palindromes
- Javier Cilleruelo, Florian Luca and Lewis Baxter (2017) showed that for any base $b \geq 5$, all positive integers are the sum of three base- b palindromes

Our result

We have the following result for the binary case:
Theorem
Every natural number N is the sum of at most 4 binary palindromes. The number 4 is optimal.

To note that 4 is optimal, we observe that 176 is not the sum of 3 binary palindromes (or fewer).

Previous proofs are complicated (1)

Screenshot from Banks (2015)

2.4. Inductive passage from $\mathbb{N}_{\ell, k}\left(5^{+} ; c_{1}\right)$ to $\mathbb{N}_{\ell-1, k+1}\left(5^{+} ; c_{2}\right)$.

Lemma 2.4. Let $\ell, k \in \mathbb{N}, \ell \geqslant k+6$, and $c_{\ell} \in \mathcal{D}$ be given. Given $n \in \mathbb{N}_{\ell, k}\left(5^{+} ; c_{1}\right)$, one can find digits $a_{1}, \ldots, a_{18}, b_{1}, \ldots, b_{18} \in \mathcal{D} \backslash\{0\}$ and $c_{2} \in \mathcal{D}$ such that the number

$$
n-\sum_{j=1}^{18} q_{\ell-1, k}\left(a_{j}, b_{j}\right)
$$

lies in the set $\mathbb{N}_{\ell-1, k+1}\left(5^{+} ; c_{2}\right)$.
Proof. Fix $n \in \mathbb{N}_{\ell, k}\left(5^{+} ; c_{1}\right)$, and let $\left\{\delta_{j}\right\}_{j=0}^{\ell-1}$ be defined as in (1.1) (with $L:=\ell$). Let m be the three-digit integer formed by the first three digits of n; that is,

$$
m:=100 \delta_{\ell-1}+10 \delta_{\ell-2}+\delta_{\ell-3}
$$

Clearly, m is an integer in the range $500 \leqslant m \leqslant 999$, and we have

$$
\begin{equation*}
n=\sum_{j=k}^{\ell-1} 10^{j} \delta_{j}=10^{\ell-3} m+\sum_{j=k}^{\ell-4} 10^{j} \delta_{j} \tag{2.4}
\end{equation*}
$$

Let us denote

$$
\mathcal{S}:=\{19,29,39,49,59\}
$$

In view of the fact that

$$
9 \mathcal{S}:=\underbrace{\mathcal{S}+\cdots+\mathcal{S}}_{\text {nine copies }}=\{171,181,191, \ldots, 531\},
$$

it is possible to find an element $h \in 9 \mathcal{S}$ for which $m-80<2 h \leqslant m-60$. With h fixed, let s_{1}, \ldots, s_{9} be elements of \mathcal{S} such that

$$
s_{1}+\cdots+s_{9}=h .
$$

Previous proofs are complicated (2)

Screenshot from Cilleruelo et al. (2017)

II. $2 c_{m}=\mathbf{0}$. We distinguish the following cases:
II.2.i) $\boldsymbol{y}_{\boldsymbol{m}} \neq 0$.

δ_{m}	δ_{m-1}
0	0
$*$	y_{m}
$*$	$*$

δ_{m}	δ_{m-1}
1	1
$*$	$y_{m}-1$
$*$	$*$

$$
\begin{aligned}
& \text { II.2.ii) } \boldsymbol{y}_{\boldsymbol{m}}=0 . \\
& \text { II.2.ii.a) } \boldsymbol{y}_{\boldsymbol{m}-1} \neq 0 .
\end{aligned}
$$

δ_{m}	δ_{m-1}	δ_{m-2}				
0	0	$*$				
y_{m-1}	0	y_{m-1}				
$*$	z_{m-1}	z_{m-1}	\rightarrow	δ_{m}	δ_{m-1}	δ_{m-2}
:---:	:---:	:---:				
1	1	$*$				
$y_{m-1}-1$	$g-2$	$y_{m-1}-1$				
$*$	$z_{m-1}+1$	$z_{m-1}+1$				

The above step is justified for $z_{m-1} \neq g-1$. But if $z_{m-1}=g-1$, then $c_{m-1} \geq\left(y_{m-1}+z_{m-1}\right) / g \geq 1$, so $c_{m}=\left(z_{m-1}+c_{m-1}\right) / g=(g-1+1) / g=1$, a contradiction.
II.2.ii.b) $\boldsymbol{y}_{\boldsymbol{m - 1}}=\mathbf{0}, \boldsymbol{z}_{\boldsymbol{m - 1}} \neq \mathbf{0}$.

δ_{m}	δ_{m-1}	δ_{m-2}				
0	0	$*$				
0	0	0				
$*$	z_{m-1}	z_{m-1}	\longrightarrow	δ_{m}	δ_{m-1}	δ_{m-2}
:---:	:---:	:---:				
0	0	$*$				
1	1	1				
$*$	$z_{m-1}-1$	$z_{m-1}-1$				

II.2.ii.c) $y_{m-1}=0, z_{m-1}=0$.

If also $c_{m-1}=0$, then $\delta_{m-1}=0$, which is not allowed. Thus, $c_{m-1}=1$.

Previous proofs are complicated (3)

- These proofs are highly case-based
- Difficult to establish, difficult to understand
- Difficult to check too: The original Cilleruelo et al. proof had some minor flaws that were only noticed when the proof was implemented as a Python program
- Idea! Could we automate such proofs?

The idea

- Build a finite-state machine that takes natural numbers as input, expressed in the desired base
- Allow the machine to "guess" representations of the input as a sum of palindromes
- The machine should accept an input if it verifies a guess, i.e., if the input has a valid representation as a sum of palindromes
- Use decidability algorithms to establish properties about the language of binary representations accepted by this machine

Introduction to VPAs

- Visibly-pushdown automata
- Popularized by Alur and Madhusudan in 2004, though similar ideas have been around for longer
- VPAs receive an input string, and read the string one letter at a time
- They have a (finite) set of states and a stack
- Upon reading a letter of the input string, the VPA can transition to a new state, and might modify the stack
- The states of the VPA are either accepting or non-accepting
- If the VPA can end up in an accepting state after it is done reading the input, then the VPA "accepts" the input, else it "rejects" it

Using the VPA's stack

- The VPA can only take very specific stack actions
- The input alphabet, Σ, is partitioned into three disjoint sets
- Σ_{c}, the push alphabet
- Σ_{l}, the local alphabet
- Σ_{r}, the pop alphabet
- If the letter of the input string we read is from the push alphabet, the VPA pushes exactly one symbol onto its stack
- If the letter of the input string we read is from the pop alphabet, the VPA pops exactly one symbol off its stack
- If the letter of the input string we read is from the local alphabet, the VPA does not look at its stack at all

Example VPA

Here's a VPA for the language $\left\{0^{n} 12^{n}: n \geq 1\right\}$

The push alphabet is $\{0\}$, the local alphabet is $\{1\}$, and the pop alphabet is $\{2\}$.

Determinisation and Decidability

- A nondeterministic VPA can have several matching transition rules for a single input letter
- Nondeterministic VPAs are as powerful as deterministic VPAs
- VPAs are closed under union, intersection and complement. There are algorithms for all these operations.
- Testing emptiness, universality and language inclusion are decidable problems for VPAs
- But a nondeterministic VPA with n states can have as many as $2^{\Theta\left(n^{2}\right)}$ states when determinized!

Example

- As an example, let us see how a VPA could verify that 2189 is the sum of 7 binary palindromes of length 9
- We are using 7 summands for this example because the machine is easier to understand when all summands are of the same length
- The machine for the optimal bound of 4 is very similar, but needs a lot more states

The machine

- Note that guessing 7 palindromes over the alphabet $\{0,1\}$ is equivalent to guessing one palindrome over the alphabet $\{0,1, \ldots 7\}$
- The first symbol guessed must be 7 , because all our palindromes must start (and end) with 1
- The idea is to nondeterministically guess every possible combination of 7 palindromes that could sum to 2189
- We push our guesses onto the stack, and use the states to keep track of the carry

The input string

- We set $\Sigma_{c}=\{a, b\}, \Sigma_{I}=\{c, d\}$, and $\Sigma_{r}=\{e, f\}$
- The symbols a, c, and e correspond to 0 , while b, d, and f correspond to 1 .
- We feed the input string to the machine starting with the least-significant digit
- The first half of the input string is composed of symbols from Σ_{c}, while the second half is composed of symbols from Σ_{r}
- We use the local alphabet for the last 3 symbols and for the "middle" letter
- $\left(2189_{2}\right)=100010001101$
$\left(2189_{2}\right)^{R}=101100010001$
$x=b a b b c e e f e c c d$

Step 0

We start out with an empty stack, and a carry of 0
Remaining input: babbceefeccd
Current state: 0

Stack: EMPTY

Step 1

Current state: 0

Stack: EMPTY

On reading the b, we must guess 7 because the most-significant digit of our summands must be 1

Remaining input : abbceefeccd
New state: 3
New stack: EMPTY, 7

Step 2

Current state: 3

Stack: EMPTY, 7

On reading the a, we can guess 1 since $1+3$ produces an output bit of 0
Remaining input: bbceefeccd
New state: 2
New stack: EMPTY, 7, 1

Step 3

Current state: 2

Stack: EMPTY, 7, 1

On reading the b, we can guess 3 since $3+2$ produces an output bit of 1 Remaining input: bceefeccd

New state: 2
New stack: EMPTY, 7, 1, 3

Step 4

Current state: 2

Stack: EMPTY, 7, 1, 3

On reading the b, we can guess 1 since $1+2$ produces an output bit of 1 Remaining input: ceefeccd

New state: 1
New stack: EMPTY, 7, 1, 3, 1

Step 5

Current state: 1

Stack: EMPTY, 7, 1, 3, 1
On reading the c, we can guess 1 since $1+1$ produces an output bit of 0 . This is not pushed onto the stack since it is a local transition.

Remaining input : eefeccd
New state: 1
New stack: EMPTY, 7, 1, 3, 1

Step 6

Current state: 1

Stack: EMPTY, 7, 1, 3, 1
On reading the e, we pop 1 off the stack and verify that $1+1$ produces an output bit of 0

Remaining input : efeccd
New state: 1
New stack: EMPTY, 7, 1, 3

Step 7

Current state: 1

Stack: EMPTY, 7, 1, 3

On reading the e, we pop 3 off the stack and verify that $3+1$ produces an output bit of 0

Remaining input : feccd
New state: 2
New stack: EMPTY, 7, 1

Step 8

Current state: 2

Stack: EMPTY, 7, 1

On reading the f, we pop 1 off the stack and verify that $1+2$ produces an output bit of 1

Remaining input : eccd
New state: 1
New stack: EMPTY, 7

Step 9

Current state: 1

Stack: EMPTY, 7

On reading the e, we pop 7 off the stack and verify that $7+1$ produces an output bit of 0

Remaining input: ccd
New state: 4
New stack: EMPTY

Step 10

- We next read ccd which corresponds to 4 , which is exactly the carry we have, so the VPA accepts the input string
- Note that our guessed palindrome is 713111317 . We have:
$111111111=511$
$101000101=325$
$101000101=325$
$100000001=257$
$100000001=257$
$100000001=257$
$100000001=257$
- And, we have $511+325 \cdot 2+257 \cdot 4=2189$

Proof Strategy

- To prove our result, we built 2 VPAs:
- For all n, A accepts all n-bit odd integers that are the sum of three palindromes whose lengths are either $n-1, n-2, n-3$ or $n-4$
- B accepts all valid representations of odd integers over the alphabet $\{a, b, c, d, e, f\}$
- We then prove that all inputs accepted by B are accepted by A
- To prove that we use the ULTIMATE Automata Library
- We simply have to say assert(IsIncluded(B, A)) in ULTIMATE

Results

For bases 3 and 4, we establish a bound of 3 for every sufficiently large positive integer.

Theorem
Every natural number $N>256$ is the sum of at most three base-3 palindromes.

Theorem

Every sufficiently large natural number $N>64$ is the sum of at most three base-4 palindromes.

Proof details

- The VPAs for bases 3 and 4 get very large, and the IsIncluded assertion times out in ULTIMATE
- We use NFAs to prove our results for these bases
- This poses a challenge: NFAs do not have a stack, which is what made VPAs good for this problem
- The solution is to "fold" our input and provide the machine with two bits of input at the same time
- For example, if our input is 12011210 , then we give the machine $[1,0][2,1][0,2][1,1]$ as its input

Definition

- A square is any string that is some smaller string repeated twice
- Examples are TARTAR, PATPAT, and 100100
- We call an integer a base-b square if its base-b representation is a square
- Examples are $36_{10}=100100_{2}$ and $3_{10}=11_{2}$.
- Binary squares $(b=2)$ can be found as sequence A020330 in the OEIS

$$
3,10,15,36,45,54,63,136,153,170,187,204,221, \ldots
$$

Results

In an analogy of Lagrange's 4-square theorem, we have
Theorem
Every natural number $N>686$ is the sum of at most 4 binary squares.

We also have the following result
Theorem
Every natural number is the sum of at most two binary squares and at most two powers of 2.

Acknowledgments

- Matthias Heizmann, Alexander Nutz, and Christian Schilling, the developers of ULTIMATE
- Dirk Nowotka and Parthasarathy Madhusudan, for independently suggesting the "folding" trick which lets us use NFAs
- Rein Otsason, for his help with the research and assistance in preparing these slides

