Meta-optimisation: Lower bounds for higher faces

Guillermo Pineda, Julien Ugon and David Yost

Jonathan M. Borwein Commemorative Conference
September 2017

A polytope is the convex hull of a finite set.

A polytope is the convex hull of a finite set.
In a standard optimisation problem, we have a domain P (possibly a polytope), a reasonable function $g: P \rightarrow \mathbb{R}$ (possibly convex), and we wish to find

$$
\min _{x \in P} f(x)
$$

or perhaps

$$
\max _{x \in P} f(x) .
$$

We will be interested in another optimisation problem; our domain \mathcal{P} will be a collection of polytopes (of the same dimension), and for some natural functions $f: \mathcal{P} \rightarrow \mathbb{R}$ we want to find

$$
\min _{P \in \mathcal{P}} f(P) .
$$

Given a d-dimensional polytope with a certain number of vertices, it is interesting to bound the total number of m-dimensional faces (for $1 \leq m<d$).

Given a d-dimensional polytope with a certain number of vertices, it is interesting to bound the total number of m-dimensional faces (for $1 \leq m<d$).
Precise upper bounds for the numbers of m-dimensional faces were obtained in 1970 by McMullen and Shephard, so we will concentrate on lower bounds.
Barnette (1973) established a precise lower bound for simplicial polytopes, but for general polytopes, lower bounds are not so easy to obtain.

Let us define $F_{m}(v, d)=\{n$: there is a d-polytope with v vertices and n faces of dimension $m\}$.

Let us define $F_{m}(v, d)=\{n$: there is a d-polytope with v vertices and n faces of dimension $m\}$.
Following Grünbaum (1967), we set

$$
\phi_{m}(v, d)=\binom{d+1}{m+1}+\binom{d}{m+1}-\binom{2 d+1-v}{m+1} .
$$

Let us define $F_{m}(v, d)=\{n$: there is a d-polytope with v vertices and n faces of dimension $m\}$.
Following Grünbaum (1967), we set

$$
\phi_{m}(v, d)=\binom{d+1}{m+1}+\binom{d}{m+1}-\binom{2 d+1-v}{m+1} .
$$

Grünbaum conjectured that $\phi_{m}(v, d)=\min F_{m}(v, d)$ for $d<v \leq 2 d$.
(Easy to show that this is false for $v \geq 2 d+1$.)

Let us define $F_{m}(v, d)=\{n$: there is a d-polytope with v vertices and n faces of dimension $m\}$.
Following Grünbaum (1967), we set

$$
\phi_{m}(v, d)=\binom{d+1}{m+1}+\binom{d}{m+1}-\binom{2 d+1-v}{m+1} .
$$

Grünbaum conjectured that $\phi_{m}(v, d)=\min F_{m}(v, d)$ for $d<v \leq 2 d$.
(Easy to show that this is false for $v \geq 2 d+1$.)
He proved that this conjecture is true for every m and $v \leq d+4$.

Let us define $F_{m}(v, d)=\{n$: there is a d-polytope with v vertices and n faces of dimension $m\}$.
Following Grünbaum (1967), we set

$$
\phi_{m}(v, d)=\binom{d+1}{m+1}+\binom{d}{m+1}-\binom{2 d+1-v}{m+1} .
$$

Grünbaum conjectured that $\phi_{m}(v, d)=\min F_{m}(v, d)$ for $d<v \leq 2 d$.
(Easy to show that this is false for $v \geq 2 d+1$.)
He proved that this conjecture is true for every m and $v \leq d+4$.
McMullen (1971) proved this conjecture for facets, i.e. for the case $m=d-1$ and for all $v \leq 2 d$; he actually calculated $\min F_{d-1}(v, d)$ for all $v \leq 2 d+\frac{1}{4} d^{2}$.

Let us define $F_{m}(v, d)=\{n$: there is a d-polytope with v vertices and n faces of dimension $m\}$.
Following Grünbaum (1967), we set

$$
\phi_{m}(v, d)=\binom{d+1}{m+1}+\binom{d}{m+1}-\binom{2 d+1-v}{m+1} .
$$

Grünbaum conjectured that $\phi_{m}(v, d)=\min F_{m}(v, d)$ for $d<v \leq 2 d$.
(Easy to show that this is false for $v \geq 2 d+1$.)
He proved that this conjecture is true for every m and $v \leq d+4$.
McMullen (1971) proved this conjecture for facets, i.e. for the case $m=d-1$ and for all $v \leq 2 d$; he actually calculated $\min F_{d-1}(v, d)$ for all $v \leq 2 d+\frac{1}{4} d^{2}$.
Until 2014, no further progress had been made on this problem.

Then, we proved that Grünbaum's conjecture is true in the case $m=1$, i.e.

$$
\min F_{1}(v, d)=\phi_{1}(v, d)
$$

for $d<v \leq 2 d$,

Then, we proved that Grünbaum's conjecture is true in the case $m=1$, i.e.

$$
\min F_{1}(v, d)=\phi_{1}(v, d)
$$

for $d<v \leq 2 d$, and moreover that the minimising polytope is unique.

Then, we proved that Grünbaum's conjecture is true in the case $m=1$, i.e.

$$
\min F_{1}(v, d)=\phi_{1}(v, d)
$$

for $d<v \leq 2 d$, and moreover that the minimising polytope is unique.

Then, we proved that Grünbaum's conjecture is true in the case $m=1$, i.e.

$$
\min F_{1}(v, d)=\phi_{1}(v, d)
$$

for $d<v \leq 2 d$, and moreover that the minimising polytope is unique.

We have also obtained precise values for $\min F_{1}(2 d+1, d)$ and $\min F_{1}(2 d+2, d)$.

Then, we proved that Grünbaum's conjecture is true in the case $m=1$, i.e.

$$
\min F_{1}(v, d)=\phi_{1}(v, d)
$$

for $d<v \leq 2 d$, and moreover that the minimising polytope is unique.

We have also obtained precise values for $\min F_{1}(2 d+1, d)$ and $\min F_{1}(2 d+2, d)$.
Let us remark that for all d, and all sufficiently large v, we have $\min F_{1}(v, d)={ }_{2}^{1} d$ if either v or d is even (known), and
$\min F_{1}(v, d)=\frac{1}{2}(v+1) d-1$ if both v and d are odd (new).

Theorem

Let P be a d-dimensional polytope with $d+k$ vertices, where $0<k \leq d$.
(i) If P is a $(d-k)$-fold pyramid over the k-dimensional prism based on a simplex, then P has $\phi_{1}(d+k, d)$ edges.
(ii) Otherwise P has $>\phi_{1}(d+k, d)$ edges.

Figure 1. Triplices

Theorem

Let P be a d-dimensional polytope with $d+k$ vertices, where $0<k \leq d$.
(i) If P is a $(d-k)$-fold pyramid over the k-dimensional prism based on a simplex, then P has $\phi_{1}(d+k, d)$ edges.
(ii) Otherwise P has $>\phi_{1}(d+k, d)$ edges.

The polytope described in (i) will be called a triplex, and denoted $M_{k, d-k}$.
In fact, the set $F_{1}(d+k, d)$ contains gaps if $k \geq 4$; the number of edges of a non-minimising polytope is at least

$$
\phi_{1}(d+k, d)+\max \{2, k-3\} .
$$

Recently, we have proved that Grünbaum's conjecture is true for all faces of sufficiently high dimension.

Recently, we have proved that Grünbaum's conjecture is true for all faces of sufficiently high dimension.
Theorem
Let P be a d-dimensional polytope with v vertices, where $d<v \leq 2 d$. Suppose that $\frac{\sqrt{5}-1}{2} d \leq m \leq d-2$. Then

$$
\min F_{m}(v, d)=\phi_{m}(v, d)
$$

Recently, we have proved that Grünbaum's conjecture is true for all faces of sufficiently high dimension.

Theorem
Let P be a d-dimensional polytope with v vertices, where $d<v \leq 2 d$. Suppose that $\frac{\sqrt{5}-1}{2} d \leq m \leq d-2$. Then

$$
\min F_{m}(v, d)=\phi_{m}(v, d)
$$

and the corresponding triplex $M_{v-d, 2 d-v}$ is the unique minimiser.

Recently, we have proved that Grünbaum's conjecture is true for all faces of sufficiently high dimension.
Theorem
Let P be a d-dimensional polytope with v vertices, where $d<v \leq 2 d$. Suppose that $\frac{\sqrt{5}-1}{2} d \leq m \leq d-2$. Then

$$
\min F_{m}(v, d)=\phi_{m}(v, d)
$$

and the corresponding triplex $M_{v-d, 2 d-v}$ is the unique minimiser.
The hypothesis $m \geq \frac{\sqrt{5}-1}{2} d$ can be weakened to

$$
m \geq \frac{3}{5}(d-1)
$$

Recently, we have proved that Grünbaum's conjecture is true for all faces of sufficiently high dimension.
Theorem
Let P be a d-dimensional polytope with v vertices, where $d<v \leq 2 d$. Suppose that $\frac{\sqrt{5}-1}{2} d \leq m \leq d-2$. Then

$$
\min F_{m}(v, d)=\phi_{m}(v, d)
$$

and the corresponding triplex $M_{v-d, 2 d-v}$ is the unique minimiser.
The hypothesis $m \geq \frac{\sqrt{5}-1}{2} d$ can be weakened to

$$
m \geq \frac{3}{5}(d-1)
$$

provided $d \leq 15$,

Recently, we have proved that Grünbaum's conjecture is true for all faces of sufficiently high dimension.
Theorem
Let P be a d-dimensional polytope with v vertices, where $d<v \leq 2 d$. Suppose that $\frac{\sqrt{5}-1}{2} d \leq m \leq d-2$. Then

$$
\min F_{m}(v, d)=\phi_{m}(v, d)
$$

and the corresponding triplex $M_{v-d, 2 d-v}$ is the unique minimiser.
The hypothesis $m \geq \frac{\sqrt{5}-1}{2} d$ can be weakened to

$$
m \geq \frac{3}{5}(d-1)
$$

provided $d \leq 15$, or $d=16$ is we drop the uniqueness claim.

For the case $m=d-1$, i.e. for facets, we recall the results of McMullen:

Theorem

Fix k with $2 \leq k \leq d$. Then
(i) $\min F_{d-1}(d+k, d)=\phi_{d-1}(d+k, d)=d+2$;
(ii) the minimum is attained by $M_{k, d-k}$;
(iii) the minimiser is unique, i.e. there is only one polytope with $d+k$ vertices and $d+2$ facets, if and only if $k-1$ is not composite (i.e. $k=2$ or $k-1$ is a prime number).

For the case $m=d-1$, i.e. for facets, we recall the results of McMullen:

Theorem

Fix k with $2 \leq k \leq d$. Then
(i) $\min F_{d-1}(d+k, d)=\phi_{d-1}(d+k, d)=d+2$;
(ii) the minimum is attained by $M_{k, d-k}$;
(iii) the minimiser is unique, i.e. there is only one polytope with $d+k$ vertices and $d+2$ facets, if and only if $k-1$ is not composite (i.e. $k=2$ or $k-1$ is a prime number).
And for more than $2 d$ vertices:

Theorem

Fix $k>d$. Then there is a polytope P with $d+k$ vertices and $d+2$ facets if, and only if, $k-1$ is a product of integers, say $m n$, with $m+n \leq d$. Different decompositions of $k-1$ give rise to combinatorially distinct polytopes.

And now, $2 d+1$ vertices: we can also calculate $\min F_{m}(2 d+1, d)$ for $m=1, m=d-1$ and $m=d-2$. The answer depends on some number theory.
Slicing one corner from the base of a square pyramid yields a polyhedron with 7 vertices and 6 faces, one of them a pentagon. We call this a pentasm.

Figure 2. Pentasms

And now, $2 d+1$ vertices: we can also calculate $\min F_{m}(2 d+1, d)$ for $m=1, m=d-1$ and $m=d-2$. The answer depends on some number theory.
Slicing one corner from the base of a square pyramid yields a polyhedron with 7 vertices and 6 faces, one of them a pentagon. We call this a pentasm.
We will use the same name for the higher-dimensional version, obtained by slicing one corner from the quadrilateral base of a ($d-2$)-fold pyramid. It has $2 d+1$ vertices and can also be represented as the Minkowski sum of a d-dimensional simplex, and a line segment which lies in the affine span of one 2 -face but is not parallel to any edge.

First, edges:
Theorem
Let P be a d-dimensional polytope with $2 d+1$ vertices.
(i) If P is d-dimensional pentasm, then P has $d^{2}+d-1$ edges.
(ii) Otherwise the numbers of edges is $>d^{2}+d-1$,

First, edges:

Theorem

Let P be a d-dimensional polytope with $2 d+1$ vertices.
(i) If P is d-dimensional pentasm, then P has $d^{2}+d-1$ edges.
(ii) Otherwise the numbers of edges is $>d^{2}+d-1$, or P is the sum of two triangles.
This shows that the pentasm is the unique minimiser of the number of edges if $d \geq 5$.
If $d=4$, the sum of two triangles has 9 vertices, and is the unique minimiser, with only 18 edges.
If $d=3$, the sum of two triangles can have 7,8 or 9 vertices; the example with $v=7$ has 11 edges, the same as the pentasm.
Summarising, $\min F_{1}(9,4)=18$, and $\min F_{1}(2 d+1, d)=d^{2}+d-1$ for all $d \neq 4$.

Then, facets (McMullen):
Theorem
Consider the class of d-polytopes with $2 d+1$ vertices.
(i) If d is a prime, then the pentasm has the minimal number of facets, namely $d+3$, but it is not the unique minimiser.
(ii) If d is a product of 2 primes, the minimal number of facets is
$d+2$, and the minimiser is unique.
(iii) If d is a product of 3 or more primes, the minimal number of facets is $d+2$, and the minimiser is not unique.

Finally, ridges:
Theorem
Consider the class of d-polytopes with $2 d+1$ vertices.
(i) If d is a prime, the minimal number of ridges is $\frac{1}{2}\left(d^{2}+5 d-2\right)$, and the pentasm is the unique minimiser.
(ii) If d is a product of two primes, the minimal number of ridges is $\frac{1}{2}\left(d^{2}+3 d+2\right)$, and the minimiser is unique.
(iii) If d is a product of three or more primes, the minimal number of ridges is $\frac{1}{2}\left(d^{2}+3 d+2\right)$, and the minimiser is not unique.

Theorem
Let P be a d-dimensional polytope with $2 d+2$ vertices, where $d \geq 8, d=6$ or $d=3$.
(i) If P is one of two particular polytopes, then P has $d^{2}+2 d-3$ edges.
(ii) Otherwise the numbers of edges is $>d^{2}+2 d-3$.

Theorem

Let P be a d-dimensional polytope with $2 d+2$ vertices, where $d \geq 8, d=6$ or $d=3$.
(i) If P is one of two particular polytopes, then P has $d^{2}+2 d-3$ edges.
(ii) Otherwise the numbers of edges is $>d^{2}+2 d-3$.

If $d=7$, there is a third minimising polytope with 16 vertices and 60 edges.
If $d=4$, there two more minimising polytopes with 10 vertices and 21 edges.
If $d=5$, the unique minimiser is the sum of a tetrahedron and triangle; this clearly has 12 vertices and 30 edges; $30<32$.
Summarising, $\min F_{1}(12,5)=30$, and $\min F_{1}(2 d+2, d)=d^{2}+2 d-3$ for all $d \neq 5$.
The case of $2 d+3$ vertices appears to be difficult.

A compact convex set A is said to be decomposable if it can be expressed as a Minkowski sum $A=B+C$, where B, C are not similar to A. For example, a euclidean disc is

A compact convex set A is said to be decomposable if it can be expressed as a Minkowski sum $A=B+C$, where B, C are not similar to A. For example, a euclidean disc is decomposable because it is the Minkowski sum of two Reuleaux triangles.

A compact convex set A is said to be decomposable if it can be expressed as a Minkowski sum $A=B+C$, where B, C are not similar to A. For example, a euclidean disc is decomposable because it is the Minkowski sum of two Reuleaux triangles. It is well known (to those who know it) that a d-polytope with $<2 d$ vertices is indecomposable; and that a d-polytope with exactly $2 d$ vertices is decomposable if and only if it is a prism based on a simplex.

A compact convex set A is said to be decomposable if it can be expressed as a Minkowski sum $A=B+C$, where B, C are not similar to A. For example, a euclidean disc is decomposable because it is the Minkowski sum of two Reuleaux triangles. It is well known (to those who know it) that a d-polytope with $<2 d$ vertices is indecomposable; and that a d-polytope with exactly $2 d$ vertices is decomposable if and only if it is a prism based on a simplex.
We have completely characterised all decomposable d-polytopes with $2 d+1$ vertices; for $d \geq 5$, the only examples are prisms, pentasms and capped prisms.

A compact convex set A is said to be decomposable if it can be expressed as a Minkowski sum $A=B+C$, where B, C are not similar to A. For example, a euclidean disc is decomposable because it is the Minkowski sum of two Reuleaux triangles. It is well known (to those who know it) that a d-polytope with $<2 d$ vertices is indecomposable; and that a d-polytope with exactly $2 d$ vertices is decomposable if and only if it is a prism based on a simplex.
We have completely characterised all decomposable d-polytopes with $2 d+1$ vertices; for $d \geq 5$, the only examples are prisms, pentasms and capped prisms.
With K. Przesławski, we have completely characterised all decomposable d-polytopes with $<d^{2}+2 d-2$ edges. In 3 dimensions, we can do more. There are 301 polyhedra with 8 or fewer vertices; we have classified them all as decomposable or indecomposable.

A compact convex set A is said to be decomposable if it can be expressed as a Minkowski sum $A=B+C$, where B, C are not similar to A. For example, a euclidean disc is decomposable because it is the Minkowski sum of two Reuleaux triangles. It is well known (to those who know it) that a d-polytope with $<2 d$ vertices is indecomposable; and that a d-polytope with exactly $2 d$ vertices is decomposable if and only if it is a prism based on a simplex.
We have completely characterised all decomposable d-polytopes with $2 d+1$ vertices; for $d \geq 5$, the only examples are prisms, pentasms and capped prisms.
With K. Przesławski, we have completely characterised all decomposable d-polytopes with $<d^{2}+2 d-2$ edges. In 3 dimensions, we can do more. There are 301 polyhedra with 8 or fewer vertices; we have classified them all as decomposable or indecomposable.
There are 708 polyhedra with 16 or fewer edges; with D. Briggs, we have classified 703 of them as decomposable or indecomposable.

Some discussion of methods?

Some discussion of methods?
Let us say that three vertices form a triangle if they are pairwise adjacent. It is worth noting that a triangle is not necessarily a face. Many authors have shown that a polytope is indecomposable if it contains "sufficiently many" triangles.

Some discussion of methods?
Let us say that three vertices form a triangle if they are pairwise adjacent. It is worth noting that a triangle is not necessarily a face. Many authors have shown that a polytope is indecomposable if it contains "sufficiently many" triangles.
What is the 3-dimensional analogue of a triangle?

Some discussion of methods?
Let us say that three vertices form a triangle if they are pairwise adjacent. It is worth noting that a triangle is not necessarily a face. Many authors have shown that a polytope is indecomposable if it contains "sufficiently many" triangles.
What is the 3-dimensional analogue of a triangle?
Hint: a triangle is a 3-cycle whose vertices are not colinear.

Some discussion of methods?
Let us say that three vertices form a triangle if they are pairwise adjacent. It is worth noting that a triangle is not necessarily a face. Many authors have shown that a polytope is indecomposable if it contains "sufficiently many" triangles. What is the 3-dimensional analogue of a triangle?
Hint: a triangle is a 3-cycle whose vertices are not colinear. Answer: 4-cycles whose vertices are not coplanar are the right objects to consider.

Some discussion of methods?
Let us say that three vertices form a triangle if they are pairwise adjacent. It is worth noting that a triangle is not necessarily a face. Many authors have shown that a polytope is indecomposable if it contains "sufficiently many" triangles.
What is the 3-dimensional analogue of a triangle?
Hint: a triangle is a 3-cycle whose vertices are not colinear.
Answer: 4-cycles whose vertices are not coplanar are the right objects to consider.
More generally, affinely independent cycles are (with a suitable definition) indecomposable geometric graphs.

Some discussion of methods?
Let us say that three vertices form a triangle if they are pairwise adjacent. It is worth noting that a triangle is not necessarily a face. Many authors have shown that a polytope is indecomposable if it contains "sufficiently many" triangles.
What is the 3-dimensional analogue of a triangle?
Hint: a triangle is a 3-cycle whose vertices are not colinear.
Answer: 4-cycles whose vertices are not coplanar are the right objects to consider.
More generally, affinely independent cycles are (with a suitable definition) indecomposable geometric graphs.
In particular, if a polytope contains an affinely independent cycle, which touches every maximal face, then it is indecomposable. Some examples:

Figure 2: BD173 and BD179

Figure 3: BD187 and BD190

Figure 4: BD192 and BD199

Thank you for your attention

