Optimal Backward Error & the Dahlquist Test Problem

Robert M Corless¹

Joint work with Yalçin Kaya² and Robert H C Moir¹

¹Department of Applied Mathematics The University of Western Ontario
²Division of Information Technology, Engineering and the Environment School of Information Technology and Mathematical Sciences University of South Australia

> 2015 AMMCS-CAIMS Congress Modified for McMaster University October 8, 2015

> > ◆□> <圖> <필> <필> < Ξ</p>

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Correct	Numerical Solutions					
00000						
Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere

Suppose that you have an initial-value problem (ODE) to solve:

$$\dot{x}=f(t,x), \quad x(t_0)=x_0, \quad t_0\leq t\leq t_{\mathit{final}}.$$

- Would you bet \$1000 that your numerical solution to *your* initial-value problem was correct?
- What if someone else wrote the solver?
- What if you had an easy way to test the solution before you bet?

• What does "correct" mean anyway?

Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere
00000	000					
-						

• Suppose $x_{ref}(t)$ is the "true" reference solution to the IVP $\dot{x} = f(t, x), \quad x(t_0) = x_0.$

We do not know $x_{ref}(t)$ (else why compute?)

Suppose z(t) is our computed solution, interpolating the skeleton (t_k, x_k) which has mesh widths (step sizes)
 h_k = t_{k+1} - t_k.

• The "forward error" is
$$z(t) - x_{ref}(t)$$
.

• The "backward error" (residual) is $\Delta = \dot{z}(t) - f(t, z(t))$.

 $\Delta(t)$ is computable, and can often be understood or interpreted as a model perturbation: $\dot{z} = f(t, z(t)) + \Delta(t)$.

Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere
00000	000					

• The "local error" needs a new concept:

"local reference solution"

the reference solution to $\dot{x} = f(t, x)$, $x(t_k) = x_k$.

- Call these $x_k(t)$, $t_k \leq t \leq t_{k+1}$.
- The "local errors" are $z(t) x_k(t)$ on $t_k \le t \le t_{k+1}$.

• Typically these are largest at t_{k+1}^- .

Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere
00000	000					
<i>c</i>	New State Collections					

 Forward error and residual are related by "conditioning" (sensitivity), e.g. by

Gröbner-Alexeev nonlinear variation of constants formula

$$z(t) - x_{ref}(t) = \int_{t_0}^t G(t, \tau, z, x_{ref}) \Delta(\tau) d\tau.$$

• If $||\Delta(t)|| = O(h^p)$ as $h = mean \ h_k \to 0$ then $||z - x_{ref}|| = O(h^p)$ also (we say the numerical method has order p).

Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere
	000					

- J. Wilkinson first popularized backward error in numerical linear algebra.
- He attributed it to Givens, but von Neumann & Goldstine had the notion of "condition number" ("figure of merit").
- Henrici realized the notion was very general.
- Warming & Hyett and then Griffiths & Sanz-Serna looked at "the method of modified equations".
- Zadunaisky invented "defect correction", an iterated improvement scheme using backward error.
- Stetter proved that, asymptotically as $h \to 0$, $\|\Delta\| \sim (\text{local error})/h.$
- Enright, in the 1980s, showed defect (residual) *control* was a viable strategy for RK solvers; Shampine used it for BVP solvers (esp bvp4c in MATLAB).
- The book Corless & Fillion uses backward error throughout.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere
	000					
Some H	distorical Remarks					

Remark: backward error is not a panacea — there are problems for which small forward error is possible but not backward error.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere		
	000							
Backwa	Backward Error from Built-In Interpolants							

- Most codes supply interpolants: for graphical output, for event location, for handling delay DE.
- These interpolants should be $O(h^p)$ accurate, but *sometimes* aren't.

Example

In MATLAB, ode45 uses a fifth-order Runge-Kutta Fehlberg formula, but has only a fourth-order interpolant: so z'(t) will only be third-order accurate.

This sometimes overestimates $\Delta(t) := \dot{z}(t) - f(t, z)$.

 Some years ago RMC proposed finding "optimal" interpolants, that minimized

$$\|\Delta\|_2^2 = rac{1}{h}\int_{t_n}^{t_{n+1}}\Delta^H(au)\Delta(au)d au.$$

• This leads to the Euler-Lagrange equations

$$\dot{z} - f(t, z) = \Delta$$

 $\dot{\Delta} + J_f^H \Delta = 0,$

to be solved as a Boundary-Value problem with $z(t_n) = x_n$, $z(t_{n+1}) = x_{n+1}$.

This works, but it's not what we'll talk about today.

くして 「「」 (山下) (山下) (山下) (山下)

Ontimal	Optimal Interpolants for Optimal Residual (~-Norm)								
		00000							
Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere			

 YK suggested we look also at minimizing ||∆||_∞, which leads to optimal control problems: find u(t) such that

$$\dot{z} = f(t,z) + u(t)$$

steers z(t) from $z(t_n) = x_n$ to $z(t_{n+1}) = x_{n+1}$ with minimal $||u||_{\infty}$.

- These turn out to be solvable in some cases using the Pontrjagin maximum principle, and in others by using optimization packages such as AMPL.
- We are interested in the *relative* optimality:

$$\dot{z}=f(t,z)(1+\delta(t)).$$

• We'll just do some "baby" optimal control problems here.

Optimal Interpolants for Optimal Residual (∞ -Norm)

Suppose f(t, x) is scalar, and separable: f(x, t) = X(x)T(t); so that the equation ż = f(t, z)(1 + δ(t)) is also separable.

• Then,

$$\dot{z} = X(z)T(t)(1+\delta(t)) \Rightarrow rac{dz}{X(z)} = T(t)dt + T(t)\delta(t)dt.$$

$$\int_{x_n}^{z(t)} \frac{d\zeta}{X(\zeta)} - \int_{t_n}^t T(\tau) d\tau = \int_{t_n}^t T(\tau) \delta(\tau) d\tau$$

giving the constraint

$$C = \int_{x_n}^{x_{n+1}} \frac{d\zeta}{X(\zeta)} - \int_{t_n}^{t_n+h} T(\tau) d\tau = \int_{t_n}^{t_n+h} T(\tau) \delta(\tau) d\tau.$$

• *C* is in principle known.

Optima	I Interpolants for Optimal Resi	dual (∞-Norm)				
		000000				
Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere

• By the triangle inequality,

$$|\mathcal{C}| \leq \int_{t_n}^{t_n+h} |\mathcal{T}(au)| d au \quad \cdot \quad \|\delta(t)\|_\infty.$$

• So no matter what control $\delta(t)$ is chosen,

$$\|\delta\|_{\infty} \geq \frac{|C|}{\int_{t_n}^{t_n+h} |T(\tau)| d\tau}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Ontima	Ontimal Internolants for Ontimal Residual (~-Norm)							
		000000						
Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere		

By choosing

$$\delta(\tau) = \overline{\operatorname{signum}(T(\tau))} \cdot \frac{C}{\int_{t_n}^{t_n+h} |T(\tau)| d\tau}$$

 $(\text{signum}(re^{i\theta}) = e^{i\theta})$ this bound is achieved while satisfying the constraint:

$$\int_{t_n}^{t_n+h} T(\tau)\delta(\tau)d\tau = \int_{t_n}^{t_n+h} T(\tau) \frac{\overline{\operatorname{signum}(T(\tau))} \cdot (C)}{\int_{t_n}^{t_n+h} |T(\tau)|d\tau} d\tau = C.$$

• This explicitly gives us our minimum residual (and the optimal interpolant is *z*(*t*)).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Note: more general equations need the full maximum principle.

Intro 00000	Backward Error and Residual	Optimal Residual ○○○○○●	Dahlquist Test Problem & Stability	Examples 00000000000	Future Work 0	Refere
Optima	I Interpolants for Optimal Resi	dual (∞ -Norm)				

- We've solved a number of examples this way, including $\dot{x} = x^2$, a non-compact example, and $\dot{x} = -\sqrt{x}$ (Torricelli's law, which is not Lipschitz), and several systems.
- We note that this method of assessment is *independent* of the numerical method used: all we need is
 (t_n, x_n), (t_n + h, x_{n+1}), and the original equation.
- We have examined several such methods.
- Today we'll look at perhaps the simplest interesting problem:

$$\dot{x} = \lambda x, \qquad x(t_n) = x_n.$$

Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere
			••••••			
Dahlqu	ist Test Problem					

• Without loss of generality we can shift the origin to t_n

$$\dot{x} = \lambda x$$
, $x(0) = x_n$ on $0 \le t \le h$.

- This is the Dahlquist test problem.
- For $\operatorname{Re}(\lambda) \ll 0$ it is the simplest example of a "stiff" problem.
- It arises also on linearization of nonlinear problems and doing eigenvalue analysis.

• It's more important to numerical analysis than one might think.

Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere
			000000000000			
Dahlqu	ist Test Problem					

- Considering the parameter $\mu = \lambda h$ and the function $R(\mu)$, which is the approximation of the exponential function provided by a given numerical method (the exponential being the solution to the reference problem), we obtain a classical measure of the stability of the numerical method.
- For |R(µ)| < 1, the numerical solution of the Dahlquist test problem is uniformly bounded in n ≥ 0.
- This determines the classical stability region in the complex plane of the given numerical method.
- These regions give rise to a variety of "familiar diagrams" for familiar numerical methods.

Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere		
00000			000000000000					
Classica	Classical Stability: Euler Method							

Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere				
			000000000000							
Classic	Classical Stability: Implicit Euler Method									

▲□▶ ▲□▶ ▲国▶ ▲国▶ 三国 - のへで

Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere				
00000			000000000000							
Classica	Classical Stability: Implicit Midpoint Rule (Or Any Exactly A-Stable Method)									

Implicit Midpoint Rule Residual Analysis

Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere				
			0000000000000							
Classic	Classical Stability: RKF45									

Fourth Order Part RKF45 Method Residual Analysis

-6 -4 8 0 2 4 6 8

• • • • •	Classical	ə — -	100 9	<u>; - · -</u>	70 %	- 50 %	<u> </u>	20	%
	5%								

Fifth Order Part RKF45 Method Residual Analysis

	Classical d —	-100 %	70 %	50 %	• 20	%
	5%					

 Intro
 Backward Error and Residual
 Optimal Residual
 Dahlquist Test Problem & Stability
 Examples
 Future Work
 Refere

 00000
 000
 000000
 0000000
 0000000000
 0
 0000000000
 0

RKF45 Order Star

• By considering not $|R(\mu)| < 1$ but the relative forward error $|R(\mu)e^{-\mu}|$ we are led to the theory of "order stars", which considers the regions

$$A_+: |R(\mu)e^{-\mu}| > 1, A_0: |R(\mu)e^{-\mu}| = 1, A_-: |R(\mu)e^{-\mu}| < 1.$$

Intro Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere
		0000000000000			

Optimal Relative Backward Error (∞ -Norm)

• But we want the relative backward error:

• For
$$f(x) = \lambda x$$
, we get $\frac{dz}{z} = \lambda dt + \delta(t) dt$, so

$$\int_{x_n}^{x_{n+1}} \frac{dz}{z} - \lambda \int_{t_n}^{t_n+h} d\tau = \lambda \int_{t_n}^{t_n+h} \delta(\tau) d\tau,$$

or

$$\left| \ln_k \left(\frac{x_{n+1}}{x_n} \right) - \lambda h \right| = \left| \lambda \int_{t_n}^{t_n + h} \delta(\tau) d\tau \right| \le |\lambda h| \, \|\delta\|_{\infty}.$$

• So, $\|\delta\|_{\infty} \geq \left|\frac{1}{\mu} \ln_k(R(\mu)) - 1\right|$, and equality is obtained if

$$\delta(\mu) = \frac{1}{\mu} \ln_k(R(\mu)) - 1.$$

• N.B. $\ln_k a := \ln a + 2\pi i k$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Intro Backward Error and Residual	Optimal Residual	Daniquist Test Problem & Stability	Examples	Future vvork	Refere
	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0		

• Indeed this is the exact solution to the same kind of problem

$$x_n = R(\mu)^n x_0 = e^{\frac{\ln_k R(\mu)}{h}nh} x_0.$$

• So,

$$\Lambda = \frac{\ln_k R(\mu)}{h} = \lambda \frac{\ln_k R(\mu)}{\mu}, \quad \dot{y} = \Lambda y!$$

Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere				
			0000000000000							
Optima	Detimal Relative Backward Error (∞ -Norm)									

$$y_{n+1} = R(\mu)y_n$$
 e.g. $R(\mu) = 1 + \mu$ Euler
or $R(\mu) = (1 - \mu)^{-1}$ Implicit Euler
Then $y_n = R^n(\mu)y_0$ by induction

$$= e^{n \ln R(\mu)} y_0 = e^{n(\ln R(\mu) + 2\pi ik)} y_0$$
$$= e^{n \ln_k R(\mu)} y_0 = e^{nh\mu \frac{\ln_k R(\mu)}{\mu}} y_0$$
$$= e^{\lambda t_n \cdot (1+\delta)} y_0 \quad \text{if} \quad 1+\delta = \frac{\ln_k R(\mu)}{\mu}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $\therefore \quad \text{interpolant } z(t) = \mathrm{e}^{\lambda(1+\delta)t} y_0 \text{ satisfies}$ $\dot{z}(t) = \lambda(1+\delta) z(0) = y_0 \ .$

Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere			
00000			00000000000000						
Optima	Detimal Relative Backward Error (∞ -Norm)								

Define:

$$\mathcal{K}_{\mathcal{R}}(\mu) = ext{round} \left(rac{ \operatorname{Im}(\mu - \ln \mathcal{R}(\mu)) }{2\pi}
ight)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

(a kind of unwinding number, cf $K(z) = rac{z - \ln e^z}{2\pi i} = \lceil rac{\ln(z) - \pi}{2\pi} \rceil$)

	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere			
00000			000000000000000000000000000000000000000						
Optimal Relative Backward Error (∞ -Norm)									

Theorem:

$${\sf K}_{\sf R}(\mu) = {\sf arg}_k {\sf min} \left| \delta
ight|$$

Proof:

$$\arg_{k} \min |\delta| = \frac{\arg_{k} \min |\ln_{k}(R\mu)) - \mu|}{\mu}$$
$$= \arg_{k} \min \left| \ln_{k}(\rho e^{i\theta}) - (\sigma + i\tau) \right|$$
$$= \arg_{k} \min |\ln \rho - \sigma + i(\theta + 2\pi i k - \tau)|$$

k cannot affect the real part, and minimizes the imaginary part exactly when k is the nearest integer to $\frac{\tau-\theta}{2\pi}$. QED.

N.B. there may be more than one such k but they give the same δ .

Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere			
00000			000000000000000000000000000000000000000						
Optima	Optimal Relative Backward Error (∞ -Norm)								

• This will give us a *quantitative* assessment of the quality of the method $x_{n+1} = R(\mu)x_n$.

Example: Euler Method

$$x_{n+1} = x_n + h\lambda x_n = (1+h\lambda)x_n = (1+\mu)x_n.$$

- Now, $R(\mu) \approx e^{\mu}$ so $\delta = \frac{\ln_k R(\mu)}{\mu} 1 \approx 0$, but the *size* of δ tells us the relative backward error
- Note: In general |δ| = O(h^p) as h → 0, so this is a nonlinear pseudospectral problem (plot contours of |δ| in the complex μ plane).

Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere
00000			0000000000000			
Remark	s					

- If $|\delta| > 1$ then the problem we've solved is more than 100% different to the problem we wanted to solve.
- The curve $|\delta| = 1$ gives a qualitative upper limit: μ outside that region means the solution (decaying or not) is pretty lousy (probably worthless).
- If $|\delta| < 0.05$ then we've solved a problem within 5% of the one we wanted to (analogous to the 95% confidence limit!)
- If $|\delta| < \varepsilon$ (user's tolerance) then the solver has done its job [you win your bet!]

Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere
				000000000000000000000000000000000000000		
Euler M	lethod					

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere
				000000000000000		
Implicit	Euler Method					

Implicit Euler Method Residual Analysis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Implicit	Midpoint Rule					
				000000000000000000000000000000000000000		
Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere

Implicit Midpoint Rule Residual Analysis

Implicit Midpoint Rule Residual Analysis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere
00000				000000000000000000000000000000000000000		
RKF45						

Fourth Order Part RKF45 Method Residual Analysis

-6 -4 2 0 2 4 6 8

• • • • •	Classical d —	-100 %	70%	50 %	20 %
	5 %				

Fifth Order Part RKF45 Method Residual Analysis

	Classical d —	-100 %	70 %	50 %	• 20	%
	5%					

Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere
				000000000000000000000000000000000000000		
RKF45						

Fourth Order Part RKF45 Method Residual Analysis

100 %		70 %	50 % -	- 20 %	- 5	5 %
····· Classical	9					

Fifth Order Part RKF45 Method Residual Analysis

10	00 %	70 %	50 %	20 %	5	%
····· CI	lassical ð					

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

SDIRK	2-Stage 3rd Order					
00000				000000000000000000000000000000000000000		
Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere

Larger g SDIRK Method Residual Analysis

 Classical 0 -	-100 %	70 % 5	0 % 20 %
 5 %			

Smaller g SDIRK Method Residual Analysis

	Classical	ə —	- 100 %	70 %	50 %	- 20 %
	5%					

SDIRK	2-Stage 3rd Order					
				000000000000		
Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere

- 100 %		70 %	50 % -	20 %	- 5 %
····· Classical	9				

Smaller g SDIRK Method Residual Analysis

-	-	100 %		70	%-	-:	50 9	б —	- 20	%	 5	%
	•	Classical d)									

High O	rder Talvor Series Methods					
				000000000000000000000000000000000000000		
Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

High O	rder Talvor Series Methods					
				000000000000000000000000000000000000000		
Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

High O	rder Diagonal Padé Methods					
				0000000000		
Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere

High O	rder Diagonal Padé Methods					
				00000000000		
Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere
00000					•	
E	D'anti ant					

Future work on this project will include:

- look at more methods, more pictures, more systems
- try to test the "preference change" predictions
- look at symplectic methods
- prove some things about the pictures

Referen	ces					
Intro	Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples	Future Work	Refere

- CALVO, MP, MURUA, A, & SANZ-SERNA, JM. 1994. Modified equations for ODEs. Contemporary Mathematics, 172, 63–63.
- CORLESS, ROBERT M. 1994. Error backward. Contemporary Mathematics, 172, 31–31.
- ENRIGHT, WAYNE H. 1989. A new error-control for initial value solvers. Applied Mathematics and Computation, 31, 288–301.
- ENRIGHT, WAYNE H, & HAYES, WAYNE B. 2007. Robust and reliable defect control for Runge-Kutta methods. ACM Transactions on Mathematical Software (TOMS), 33(1), 1.
- GRCAR, JOSEPH F. 2011. John von Neumann's analysis of Gaussian elimination and the origins of modern Numerical Analysis. SIAM review, 53(4), 607–682.
- GRIFFITHS, DF, & SANZ-SERNA, JM. 1986. On the scope of the method of modified equations. SIAM Journal on Scientific and Statistical Computing, 7(3), 994–1008.
- HENRICI, PETER. 1964. Elements of numerical analysis. Wiley.
- TURING, ALAN M. 1948. Rounding-off errors in matrix processes. The Quarterly Journal of Mechanics and Applied Mathematics, 1(1), 287–308.
- VON NEUMANN, JOHN, & GOLDSTINE, HERMAN H. 1947. Numerical inverting of matrices of high order. Bulletin of the American Mathematical Society, 53(11), 1021–1099.
- WARMING, RF, & HYETT, BJ. 1974. The modified equation approach to the stability and accuracy analysis of finite-difference methods. Journal of computational physics, 14(2), 159–179.

(日) (日) (日) (日) (日) (日) (日) (日)

WILKINSON, JAMES HARDY. 1963. Rounding errors in algebraic processes. Prentice-Hall Series in Automatic Computaton. Prentice-Hall.

Intro Backward Error and Residual	Optimal Residual	Dahlquist Test Problem & Stability	Examples Fi	uture Work	Refere

Thank You!

Optimal Backward Error & the Dahlquist Test Problem

Robert M Corless¹

Joint work with Yalçin Kaya² and Robert H C Moir¹

¹Department of Applied Mathematics The University of Western Ontario
²Division of Information Technology, Engineering and the Environment School of Information Technology and Mathematical Sciences University of South Australia

> 2015 AMMCS-CAIMS Congress Modified for McMaster University October 8, 2015