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Correct Numerical Solutions

Suppose that you have an initial-value problem (ODE) to solve:

ẋ = f (t, x), x(t0) = x0, t0 ≤ t ≤ tfinal .

Would you bet $1000 that your numerical solution to your
initial-value problem was correct?

What if someone else wrote the solver?

What if you had an easy way to test the solution before you
bet?

What does “correct” mean anyway?
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Correct Numerical Solutions

Suppose xref (t) is the “true” reference solution to the IVP
ẋ = f (t, x), x(t0) = x0.

We do not know xref (t) (else why compute?)

Suppose z(t) is our computed solution, interpolating the
skeleton (tk , xk ) which has mesh widths (step sizes)
hk = tk+1 − tk .

The “forward error” is z(t)− xref (t).

The “backward error” (residual) is ∆ = ż(t)− f (t, z(t)).

∆(t) is computable, and can often be understood or interpreted as
a model perturbation: ż = f (t, z(t)) + ∆(t).
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Correct Numerical Solutions

The “local error” needs a new concept:

“local reference solution”

the reference solution to ẋ = f (t, x), x(tk ) = xk .

Call these xk (t), tk ≤ t ≤ tk+1.

The “local errors” are z(t)− xk (t) on tk ≤ t ≤ tk+1.

Typically these are largest at t−k+1.
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Correct Numerical Solutions

Forward error and residual are related by “conditioning”
(sensitivity), e.g. by

Gröbner-Alexeev nonlinear variation of constants formula

z(t)− xref (t) =

∫ t

t0

G (t, τ, z , xref )∆(τ)dτ.

If ‖∆(t)‖ = O(hp) as h = mean hk → 0 then
‖z − xref ‖ = O(hp) also (we say the numerical method has
order p).
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Some Historical Remarks

J. Wilkinson first popularized backward error in numerical
linear algebra.

He attributed it to Givens, but von Neumann & Goldstine had
the notion of “condition number” (“figure of merit”).

Henrici realized the notion was very general.

Warming & Hyett and then Griffiths & Sanz-Serna looked at
“the method of modified equations”.

Zadunaisky invented “defect correction”, an iterated
improvement scheme using backward error.

Stetter proved that, asymptotically as h→ 0,
‖∆‖ ∼ (local error)/h.

Enright, in the 1980s, showed defect (residual) control was a
viable strategy for RK solvers; Shampine used it for BVP
solvers (esp bvp4c in Matlab).

The book Corless & Fillion uses backward error throughout.
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Some Historical Remarks

Remark: backward error is not a panacea — there are problems for
which small forward error is possible but not backward error.
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Backward Error from Built-In Interpolants

Most codes supply interpolants: for graphical output, for
event location, for handling delay DE.

These interpolants should be O(hp) accurate, but sometimes
aren’t.

Example

In Matlab, ode45 uses a fifth-order Runge-Kutta Fehlberg
formula, but has only a fourth-order interpolant: so z ′(t) will only
be third-order accurate.
This sometimes overestimates ∆(t) := ż(t)− f (t, z).
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Optimal Interpolants for Optimal Residual (2-Norm)

Some years ago RMC proposed finding “optimal”
interpolants, that minimized

‖∆‖2
2 =

1

h

∫ tn+1

tn

∆H(τ)∆(τ)dτ.

This leads to the Euler-Lagrange equations

ż − f (t, z) = ∆

∆̇ + JH
f ∆ = 0,

to be solved as a Boundary-Value problem with
z(tn) = xn, z(tn+1) = xn+1.

This works, but it’s not what we’ll talk about today.
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Optimal Interpolants for Optimal Residual (∞-Norm)

YK suggested we look also at minimizing ‖∆‖∞, which leads
to optimal control problems: find u(t) such that

ż = f (t, z) + u(t)

steers z(t) from z(tn) = xn to z(tn+1) = xn+1 with minimal
‖u‖∞.

These turn out to be solvable in some cases using the
Pontrjagin maximum principle, and in others by using
optimization packages such as AMPL.

We are interested in the relative optimality:

ż = f (t, z)(1 + δ(t)).

We’ll just do some “baby” optimal control problems here.
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Optimal Interpolants for Optimal Residual (∞-Norm)

Suppose f (t, x) is scalar, and separable: f (x , t) = X (x)T (t);
so that the equation ż = f (t, z)(1 + δ(t)) is also separable.

Then,

ż = X (z)T (t)(1 + δ(t))⇒ dz

X (z)
= T (t)dt + T (t)δ(t)dt.

So, ∫ z(t)

xn

dζ

X (ζ)
−
∫ t

tn

T (τ)dτ =

∫ t

tn

T (τ)δ(τ)dτ

giving the constraint

C =

∫ xn+1

xn

dζ

X (ζ)
−
∫ tn+h

tn

T (τ)dτ =

∫ tn+h

tn

T (τ)δ(τ)dτ.

C is in principle known.
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Optimal Interpolants for Optimal Residual (∞-Norm)

By the triangle inequality,

|C | ≤
∫ tn+h

tn

|T (τ)|dτ · ‖δ(t)‖∞.

So no matter what control δ(t) is chosen,

‖δ‖∞ ≥
|C |∫ tn+h

tn
|T (τ)|dτ

.
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Optimal Interpolants for Optimal Residual (∞-Norm)

By choosing

δ(τ) = signum(T (τ)) · C∫ tn+h
tn

|T (τ)|dτ

(signum(re iθ) = e iθ) this bound is achieved while satisfying
the constraint:∫ tn+h

tn

T (τ)δ(τ)dτ =

∫ tn+h

tn

T (τ)
signum(T (τ)) · (C )∫ tn+h

tn
|T (τ)|dτ

dτ = C .

This explicitly gives us our minimum residual (and the optimal
interpolant is z(t)).

Note: more general equations need the full maximum
principle.
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Optimal Interpolants for Optimal Residual (∞-Norm)

We’ve solved a number of examples this way, including
ẋ = x2, a non-compact example, and ẋ = −

√
x (Torricelli’s

law, which is not Lipschitz), and several systems.

We note that this method of assessment is independent of the
numerical method used: all we need is
(tn, xn), (tn + h, xn+1), and the original equation.

We have examined several such methods.

Today we’ll look at perhaps the simplest interesting problem:

ẋ = λx , x(tn) = xn.
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Dahlquist Test Problem

Without loss of generality we can shift the origin to tn

ẋ = λx , x(0) = xn on 0 ≤ t ≤ h.

This is the Dahlquist test problem.

For Re(λ)� 0 it is the simplest example of a “stiff” problem.

It arises also on linearization of nonlinear problems and doing
eigenvalue analysis.

It’s more important to numerical analysis than one might
think.
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Dahlquist Test Problem

Considering the parameter µ = λh and the function R(µ),
which is the approximation of the exponential function
provided by a given numerical method (the exponential being
the solution to the reference problem), we obtain a classical
measure of the stability of the numerical method.

For |R(µ)| < 1, the numerical solution of the Dahlquist test
problem is uniformly bounded in n ≥ 0.

This determines the classical stability region in the complex
plane of the given numerical method.

These regions give rise to a variety of “familiar diagrams” for
familiar numerical methods.



Intro Backward Error and Residual Optimal Residual Dahlquist Test Problem & Stability Examples Future Work References

Classical Stability: Euler Method
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Classical Stability: Implicit Euler Method
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Classical Stability: Implicit Midpoint Rule (Or Any Exactly A-Stable Method)



Intro Backward Error and Residual Optimal Residual Dahlquist Test Problem & Stability Examples Future Work References

Classical Stability: RKF45
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RKF45 Order Star

By considering not |R(µ)| < 1 but the relative forward error
|R(µ)e−µ| we are led to the theory of “order stars”, which
considers the regions
A+ : |R(µ)e−µ| > 1,A0 : |R(µ)e−µ| = 1,A− : |R(µ)e−µ| < 1.
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Optimal Relative Backward Error (∞-Norm)

But we want the relative backward error:

For f (x) = λx , we get dz
z = λdt + δ(t)dt, so∫ xn+1

xn

dz

z
− λ

∫ tn+h

tn

dτ = λ

∫ tn+h

tn

δ(τ)dτ,

or ∣∣∣∣lnk

(
xn+1

xn

)
− λh

∣∣∣∣ =

∣∣∣∣λ∫ tn+h

tn

δ(τ)dτ

∣∣∣∣ ≤ |λh| ‖δ‖∞.
So, ‖δ‖∞ ≥

∣∣∣ 1
µ lnk (R(µ))− 1

∣∣∣, and equality is obtained if

δ(µ) =
1

µ
lnk (R(µ))− 1.

N.B. lnk a := ln a + 2πik
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Optimal Relative Backward Error (∞-Norm)

Indeed this is the exact solution to the same kind of problem

xn = R(µ)nx0 = e
lnk R(µ)

h
nhx0.

So,

Λ =
lnk R(µ)

h
= λ

lnk R(µ)

µ
, ẏ = Λy !



Intro Backward Error and Residual Optimal Residual Dahlquist Test Problem & Stability Examples Future Work References

Optimal Relative Backward Error (∞-Norm)

yn+1 = R(µ)yn e.g. R(µ) = 1 + µ Euler
or R(µ) = (1− µ)−1 Implicit Euler

Then yn = Rn(µ)y0 by induction

= en ln R(µ)y0 = en(ln R(µ)+2πik)y0

= en lnk R(µ)y0 = e
nhµ

lnk R(µ)

µ y0

= eλtn·(1+δ)y0 if 1 + δ =
lnk R(µ)

µ

∴ interpolant z(t) = eλ(1+δ)ty0 satisfies

ż(t) = λ(1 + δ)z(0) = y0 .
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Optimal Relative Backward Error (∞-Norm)

Define:

KR(µ) = round

(
Im(µ− lnR(µ))

2π

)
(a kind of unwinding number, cf K (z) = z−ln ez

2πi = d Im(z)−π
2π e )
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Optimal Relative Backward Error (∞-Norm)

Theorem:
KR(µ) = argk min |δ|

Proof:

argk min |δ| =
argk min |lnk (Rµ))− µ|

µ

= argk min
∣∣∣lnk (ρeiθ)− (σ + iτ)

∣∣∣
= argk min |ln ρ− σ + i(θ + 2πik − τ)|

k cannot affect the real part, and minimizes the imaginary part
exactly when k is the nearest integer to τ−θ

2π . QED.

N.B. there may be more than one such k but they give the same δ .
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Optimal Relative Backward Error (∞-Norm)

This will give us a quantitative assessment of the quality of
the method xn+1 = R(µ)xn.

Example: Euler Method

xn+1 = xn + hλxn = (1 + hλ)xn = (1 + µ)xn.

Now, R(µ) ≈ eµ so δ = lnk R(µ)
µ − 1 ≈ 0, but the size of δ tells

us the relative backward error

Note: In general |δ| = O(hp) as h→ 0, so this is a nonlinear
pseudospectral problem (plot contours of |δ| in the complex µ
plane).
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Remarks

If |δ| > 1 then the problem we’ve solved is more than 100%
different to the problem we wanted to solve.

The curve |δ| = 1 gives a qualitative upper limit: µ outside
that region means the solution (decaying or not) is pretty
lousy (probably worthless).

If |δ| < 0.05 then we’ve solved a problem within 5% of the
one we wanted to (analogous to the 95% confidence limit!)

If |δ| < ε (user’s tolerance) then the solver has done its job
[you win your bet!]
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Euler Method
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Implicit Euler Method
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Implicit Midpoint Rule



Intro Backward Error and Residual Optimal Residual Dahlquist Test Problem & Stability Examples Future Work References

RKF45
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RKF45
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SDIRK 2-Stage 3rd Order
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SDIRK 2-Stage 3rd Order
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High Order Talyor Series Methods



Intro Backward Error and Residual Optimal Residual Dahlquist Test Problem & Stability Examples Future Work References

High Order Talyor Series Methods
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High Order Diagonal Padé Methods
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High Order Diagonal Padé Methods
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Future Directions

Future work on this project will include:

look at more methods, more pictures, more systems

try to test the “preference change” predictions

look at symplectic methods

prove some things about the pictures
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Thank You!
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