LOCAL ELICITATION OF MONOTONICITY IN SOLVING GENERALIZED EQUATIONS AND PROBLEMS OF OPTIMIZATION

> **Terry Rockafellar** University of Washington, Seattle University of Florida, Gainesville

Jonathan M. Borwein Commemorative Converence Newcastle, Australia 25–29 September 2017

Context: Convex Functions and Variational Analysis

 \rightarrow another domain in which Jon Borwein participated heavily! **Optimization:** starting with a research explosion in the 1950s, it was realized that <u>convex versus nonconvex</u> was the real watershed in optimization, instead of the traditional <u>linear versus nonlinear</u>.

Convex functions: studies of the role of convexity and inequality constraints in optimization led to very new prespectives where:

- real-valued functions could instead be <u>extended-real-valued</u>,
- their graphs needed to be replaced by their epigraphs,
- set-valued subgradient mappings can generalize differentiation.

Variational analysis: extensions beyond convexity led to:

- variational geometry with unilateral tangents and normals,
- variational convergence/epiconvergence replacing pointwise,
- variational ineqs./generalized equations, variational principles,
- monotonicity properties that generalize "positive definiteness."

• Problems of finding a zero of a maximal monotone mapping have many applications in optimization, equilibrium, and elsewhere

• The proximal point algorithm generates, from any starting point, a sequence that converges to some particular solution

• Spingarn (1983) invoked that for a <u>partial inverse</u> of the mapping to get a procedure conducive to problem decomposition

• Rock. and Wets (1991) followed that lead in developing the progressive hedging algorithm in convex stochastic programming

• Penannen (2002) showed how <u>localized</u> max monotonicity in the proximal point algorithm guarantees <u>local</u> convergence

These ideas can be articulated even if local max monotonicity is just <u>elicitable</u>. In optimization that is how <u>augmented Lagrangians</u> are able to support multiplier methods through <u>second-order</u> theory

Problem Format for Discussion and Elaboration

Ingredients:

- a Hilbert space H, taken here to be finite-dimensional
- some subspace $L \supset H$ with orthogonal complement L^{\perp}
- some set-valued mapping $T: H \Rightarrow H$

 $\operatorname{gph} T = \{(z, w) \mid w \in T(z)\} \subset H \times H$

Basic Problem

determine $\bar{z} \in L$ and $\bar{w} \in L^{\perp}$ such that $\bar{w} \in T(\bar{z})$

The "monotone" case of this: *T* being maximal monotone monotonicity: $\langle w' - w, z' - z \rangle \ge 0$ when $w \in T(z)$, $w' \in T(z')$ maximality: $\not\exists$ monotone $T' \ne T$ with gph $T' \supset$ gph T

Subspace interpretation: L stands for a "linkage constraint"

Connection with Variational Inequalities

Variational inequality: $-F(\bar{z}) \in N_C(\bar{z})$ for $F: H \rightarrow H$ some continuous mapping $C \subset H$ some nonempty closed convex set N_{C} = the normal cone mapping associated with C, $v \in N_C(z) \iff z \in C, \langle v, z' - z \rangle < 0, \forall z' \in C$ Variational inequality with linkage: $C = L \cap B$ where $L \subset H$ is a subspace, $B \subset H$ is a closed convex set **Normal cone formula:** assuming $L \cap \operatorname{ri} B \neq \emptyset$, say $N_{L\cap B}(z) = N_L(z) + N_B(z)$ with $N_L(z) = \begin{cases} L^{\perp} & \text{if } z \in L \\ \emptyset & \text{if } z \notin L \end{cases}$ **Reduction to the basic problem:** taking $T = F + N_B$ $-F(\bar{z}) \in N_{L \cap B}(\bar{z}) \iff \bar{z} \in L$ and $\exists \bar{w} \in L^{\perp} \cap (F + N_B)(\bar{z})$ **Monotone case:** T is max mono. if F is monotone rel. to B, $\langle F(z') - F(z), z' - z \rangle > 0 \quad \forall z', z \in B$

Partial Inverse Approach of Spingarn, 1983

• Represent *H* as the product space $L \times L^{\perp}$

• Write z and w as (x, u) and (v, y) with $x, v \in L$, $u, y \in L^{\perp}$ Then $L = \{(x, u) \mid u = 0\}, \quad L^{\perp} = \{(v, y) \mid v = 0\}$, so that

 $ar{z} \in L$, $ar{w} \in L^{\perp}$, $ar{w} \in T(ar{z})$ corresponds to $(0, ar{y}) \in T(ar{x}, 0)$

Partial inverse: of T with respect to L $\widetilde{T} : H \Rightarrow H$ defined by $(v, u) \in \widetilde{T}(x, y) \iff (v, y) \in T(x, u)$ Then $(0, \overline{y}) \in T(\overline{x}, 0)$ corresponds to $(0, 0) \in \widetilde{T}(\overline{x}, \overline{y})$

Spingarn's observation: T is max mono. $\iff T$ is max mono.

The proximal point algorithm can then be applied to \widetilde{T} to solve $(0,0) \in \widetilde{T}(\bar{x},\bar{y})$ and thereby solve $\bar{z} \in L$, $\bar{w} \in L^{\perp}$, $\bar{w} \in T(\bar{z})$

The topic here: extending this beyond just the monotone case

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Spingarn's Application of the Proximal Point Algorithm

Recall context: solving $(0,0) \in \widetilde{T}(\bar{x},\bar{y})$ for the partial inverse $\widetilde{T}(x,y) = \{(v,u) \mid (v,y) \in T(x,u)\}$ under max monotonicity

Proximal point iterations: generating (x_k, y_k) for k = 1, 2, ... $(x_{k+1}, y_{k+1}) = [I + r^{-1}\tilde{T}]^{-1}(x_k, y_k), \quad r > 0$

Elaboration: this works out in terms of T and the notation $u_{k+1} = r^{-1}[y_{k+1} - y_k], \quad y_{k+1} = y_k - ru_{k+1},$ to mean $(0,0) \in T_k(x_{k+1}, u_{k+1})$ for the max monotone mapping $T_k(x, u) = T(x, u) - (0, y_k) + r[(x, u) - (x_k, 0)]$

Reverting to earlier notation by letting z_k and w_k stand for $(x_k, 0)$ and $(0, y_k)$, and \hat{z}_{k+1} for (x_{k+1}, u_{k+1}) , we get iterations as follows

- from $z_k \in L$ and $w_k \in L^{\perp}$ determine \hat{z}_{k+1} by solving $0 \in T_k(\hat{z}_{k+1})$ where $T_k(z) = [T + rI](z) - [w_k + rz_k]$
- take $z_{k+1} = P_L(\hat{z}_k)$ (projection), $w_{k+1} = w_k r[z_{k+1} \hat{z}_{k+1}]$

Motivating Background in Optimization Duality

Framework: Hilbert spaces X and U, finite-dimensional, some lsc proper function $f : X \times U \rightarrow (-\infty, \infty]$

Optimization problem: minimize f(x, 0) with respect to x perturbed version: minimize f(x, u) in x for some $u \neq 0$

Typical first-order condition: utilizing general subgradients \bar{x} locally optimal $\leftrightarrow \exists \bar{y} \in U$ such that $(0, \bar{y}) \in \partial f(\bar{x}, 0)$

Connection to the basic problem: through its portrayal above

 $H = X \times U, \ L = X \times \{0\}, \ L^{\perp} = \{0\}, \ T = \partial f$

Convex case of this: f(x, u) is a <u>convex</u> function of (x, u)then $T = \partial f$ is <u>maximal monotone</u>

Duality: then too, $(0, \bar{y}) \in \partial f(\bar{x}, 0) \iff (\bar{x}, 0) \in \partial f^*(0, \bar{y})$

Associated dual problem: minimize $f^*(0, y)$ with respect to y peturbed version: minimize $f^*(v, y)$ in y for some $v \neq 0$

Partial Inverse Interpretation in the Optimization Setting

Lagrangian function: $l(x, y) = \inf_{u} \{ f(x, u) - \langle y, u \rangle \}$ f(x, u) convex in $u \Rightarrow f(x, u) = \sup_{y} \{ l(x, y) + \langle y, u \rangle \}$

Common situation in subgradient calculus:

 $(v, y) \in \partial f(x, u) \iff (v, -u) \in \partial l(x, y)$ and then the partial inverse of ∂f can be identified with $\widetilde{T}: (x, y) \rightrightarrows \{(v, u) \mid (v, -u) \in \partial l(x, y)\}$

Specialization to the convex case:

- this holds with I(x, y) convex in x, concave in y
- $(v, -u) \in \partial I(x, y) \iff v \in \partial_x I(x, y), \ u \in \partial_y [-I](x, y)$
- $(0, \bar{y}) \in \partial f(\bar{x}, 0) \iff (\bar{x}, \bar{y})$ is a Lagrangian saddle point
- \bullet Spingarn's application of the proximal point algorithm to
 - ${\mathcal T}$ leads to subproblems involving the corresponding

Augmented Lagrangian function:

 $I_r(x,y) = \inf_u \left\{ f(x,u) - \langle y, u \rangle + \frac{r}{2} ||u||^2 \right\}, \ r > 0$

Augmented Lagrangian Details in Nonlinear Programming

Problem: minimize f(x, 0) with respect to x where $f(x, u) = \delta_C(x) + g(x) + \delta_K(G(x) + u)$ in the case of $g: X \to R$ and $G: X \to U$ both smooth, $C \subset X$ closed convex, $K \subset U$ closed convex cone

Corresponding Lagrangians — in terms of $Y = K^* = polar$ cone

 $I(x,y) = \delta_{\mathcal{C}}(x) + g(x) + \langle y, G(x) \rangle - \delta_{Y}(y)$ $I_{r}(x,y) = \delta_{\mathcal{C}}(x) + g(x) + \langle y, G(x) \rangle + \frac{r}{2} ||G(x)||^{2} - \frac{r}{2} \text{dist}_{Y}^{2}(y + rG(x))$

Convex case: $g(x) + \langle y, G(x) \rangle$ convex in $x \in C$ when $y \in Y$

Corresponding execution of Spingarn's algorithm

$$x_{k+1} = \operatorname*{argmin}_{x} \{ l_r(x, y_k) + \frac{r}{2} ||x - x_k||^2 \}, \ y_{k+1} = y_k - r[x_{k+1} - x_k]$$

= the proximal method of multipliers of Rockafellar (1976)!

Localization of the General Procedure and its Convergence

Definition: a mapping $T : H \rightrightarrows H$ is max monotone locally at $(\bar{z}, \bar{w}) \in \operatorname{gph} T$ if \exists neighborhood N of (\bar{z}, \bar{w}) such that

- $\langle w' w, z' z \rangle \ge 0$ for all (z, w), (z', w'), in $N \cap \operatorname{gph} T$,
- gph T can't be extended in N without violating this condition

Local convergence theorem of Pennanen, 2002

The proximal point algorithm for finding $(\bar{z}, 0) \in \text{gph } T$ converges **locally** to a solution if T is max monotone **locally** at a solution $(\bar{z}, 0)$ and the iterations proceed from some z_k close enough to \bar{z}

Application here: finding $\bar{z} \in L$, $\bar{w} \in L^{\perp}$, with $\bar{w} \in T(\bar{z})$ Pennanen's convergence result can be invoked for \tilde{T} instead of T

Local convergence of Spingarn's partial inverse procedure

The algorithm for finding $(\bar{z}, \bar{w}) \in (L \times L^{\perp}) \cap \text{gph } T$ converges **locally** to a solution if T is max monotone **locally** at a solution (\bar{z}, \bar{w}) and the iterations go from (z_k, w_k) close enough to (\bar{z}, \bar{w})

Extension to Problems With "Elicitable" Monotonicity

Problem to be solved: find $\bar{z} \in L$, $\bar{w} \in L^{\perp}$, with $\bar{w} \in T(\bar{z})$

Projection device: Let $P_{L^{\perp}}$ be the projection on L^{\perp} , so that $P_{L^{\perp}} = I - P_L$ and $z \in L \Leftrightarrow P_{L^{\perp}}(z) = 0$

Observation: solutions are unaffected if T is replaced by $T_s = T + sP_{I^{\perp}}$ for some s > 0

Definition of elicitability

Local maximal monotonicity is **elicitable** at a solution (\bar{z}, \bar{w}) at level $\bar{s} > 0$ if T_s is maximal monotone locally at (\bar{z}, \bar{w}) for $s \ge \bar{s}$

\implies the algorithm can be applied to T_s in place of T

Corresponding modification of the algorithm

- there are two parameters: s > 0 sufficiently high and r > s
- the *w* update is now $w_{k+1} = w_k (r s)[z_{k+1} \hat{z}_{k+1}]$

Elicitation Via Augmented Lagrangians in Optimization

Recall framework: $T = \partial f$ for lsc f(x, u) on $X \times U$ convex in u $\widetilde{T}: (x, y) \rightrightarrows \{(v, u) \mid (v, -u) \in \partial l(x, y)\}$, where $l(x, y) = \inf_{u} \{f(x, u) - \langle y, u \rangle\}$ Lagrangian

Algorithm derivation: apply the proximal point algorithm to Telicitation with s > 0: apply it instead to the partial inverse \widetilde{T}_s where $T_s = T + sP_{L^{\perp}}$ for the projection $P_{L^{\perp}} : (x, u) \to (0, u)$ New perspective: $\widetilde{T}_s : (x, y) \rightrightarrows \{(v, u) \mid (v, -u) \in \partial l_s(x, y)\}$ for $l_s(x, y) = \inf_u \{f(x, u) - \langle y, u \rangle + \frac{s}{2} ||u||^2\}$ augmented Lagrangian

Key insight for elicitation

Local max monotonicity of T_s at a solution (\bar{x}, \bar{y}) means that the augmented Lagrangian $l_s(x, y)$ is locally convex-concave at (\bar{x}, \bar{y})

How realistic is it to rely on this holding when s is high enough?

Elicitation Specialized to Nonlinear Programming

Problem: minimize g(x) subject to $x \in C$, $G(x) \in K$ i.e., min f(x, 0) for $f(x, u) = \delta_C(x) + g(x) + \delta_K(G(x) + u)$ C = closed convex set, K = closed convex cone, Y = polar

Augmented Lagrangian: with parameter r > 0

 $I_r(x,y) = \delta_C(x) + g(x) + \langle y, G(x) \rangle + \frac{r}{2} ||G(x)||^2 - \frac{r}{2} \operatorname{dist}_Y^2(y + rG(x))$

Standard case of NLP: $C = R^n$, $Y = R^q_+ \times R^{m-q}$

Known fact for the standard case of NLP

The so-called **strong second-order sufficient conditions** for optimality of \bar{x} with multiplier vector \bar{y} induce $l_r(x, y)$ to be convex-concave around (\bar{x}, \bar{y}) when r > 0 is sufficiently high

Conjecture: this holds beyond the standard case and even for much more general problem formats in optimization

second-order optimality theory needs further work to resolve this

More the Role of Second-Order Optimality

Traditional paradigm: develop second-order sufficient conditions that are as close as possible to second-order necessary conditions **Contemporary reality:** problems are solved numerically and second-order conditions are the key to understanding convergence

Duality result in standard NLP — Rock. (1974)

 (\bar{x}, \bar{y}) is a local saddle point of the augmented Lagrangian $I_r(x, y)$ $\iff \bar{x}$ is locally optimal and the function $p(u) = \inf_x f(x, u)$ has the property that $p(u) \ge p(0) - \langle \bar{y}, u \rangle - \frac{r}{2} ||u||^2$ for u near 0

convexity-concavity of $I_r(x, y)$ near (\bar{x}, \bar{y}) extends this to a nbhood

Conjecture about the general analog of SSOC beyond NLP

For the theory of augmented Lagrangians much more broadly, this should be the existence of a neighborhood of (\bar{x}, \bar{y}) on which, for r high enough, $l_r(x, y)$ is concave in y but strongly convex in x

References

[1] J.E. Spingarn (1983) "Partial inverse of a monotone operator," *Applied Mathematics and Optimization* 10, 247–265.

[2] T. Pennanen (2002) "Local convergence of the proximal point algorithm and multiplier methods without monotonicity," *Math. of Operations Research* 27, 170–191.

[3 R.T. Rockafellar (1974) "Augmented Lagrange multiplier functions and duality in nonlinear programming," *SIAM J. Control* 12, 268–285.

[4] R.T. Rockafellar, R.J-B Wets (1998) Variational Analysis, No. 317 in the series *Grundlagen der Mathematischen Wissenschaften*, Springer-Verlag.

website: www.math.washington.edu/~rtr/mypage.html