

Figure: Organic Math Workshop, Simon Fraser University, December 12-14, 1995

"Sometimes it is easier to see than to say"

Veselin Jungić
Simon Fraser University Burnaby, British Columbia, Canada

September 27, 2017

"Sometimes it is easier to see than to say."

Setting: You are introducing definite integrals to your calculus students

Settings: You are introducing definite integrals to your calculus students
2. The Definite Integral. Suppose f is a continuous function defined on the closed interval $[a, b]$, we divide a, b into n subintervals of equal width $\Delta x=(b-a) / n$. Let
$x_{0}=a, x_{1}, x_{2}, \ldots, x_{\kappa}=b$
be the end points of these subintervals. Let
$x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}$
be any sample points in these subintervals, so x_{*}^{*} lies in the ith subinterval $\left[x_{,},-, x,\right]$.
Then the definite integral of f from a to b is written as $\int_{a}^{b} f(x) d x$,
and is defined as follows:

$$
\int_{a}^{0} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

Setting: Example 1

Setting: Example 1

Setting: Example 1

$$
\begin{aligned}
\sum_{k=1}^{n} f\left(a+k \frac{(b-a)}{n}\right)\left(\frac{b-a}{n}\right) & =\sum_{k=1}^{n}\left(-\left(1+\frac{2 k}{n}\right)^{2}+3\right)\left(\frac{2}{n}\right) \\
& =\sum_{k=1}^{n}\left(-\left(1+\frac{4 k}{n}+\frac{4 k^{2}}{n^{2}}\right)+3\right)\left(\frac{2}{n}\right) \\
& =\sum_{k=1}^{n}\left(-1-\frac{4 k}{n}-\frac{4 k^{2}}{n^{2}}+3\right)\left(\frac{2}{n}\right) \\
& =\sum_{k=1}^{n}\left(\frac{4}{n}-\frac{8 k}{n^{2}}-\frac{8 k^{2}}{n^{3}}\right) \\
& =\sum_{k=1}^{n} \frac{4}{n}-\sum_{k=1}^{n} \frac{8 k}{n^{2}}-\sum_{k=1}^{n} \frac{8 k^{2}}{n^{3}} \\
& =\frac{4}{n} \sum_{k=1}^{n} 1-\frac{8}{n^{2}} \sum_{k=1}^{n} k-\frac{8}{n^{3}} \sum_{k=1}^{n} k^{2}
\end{aligned}
$$

Setting: Help!

$$
\begin{aligned}
\sum_{k=1}^{n} f\left(a+k \frac{(b-a)}{n}\right)\left(\frac{b-a}{n}\right) & =\sum_{k=1}^{n}\left(-\left(1+\frac{2 k}{n}\right)^{2}+3\right)\left(\frac{2}{n}\right) \\
& =\sum_{k=1}^{n}\left(-\left(1+\frac{4 k}{n}+\frac{4 k^{2}}{n^{2}}\right)+3\right)\left(\frac{2}{n}\right) \\
& =\sum_{k=1}^{n}\left(-1-\frac{4 k}{n}-\frac{4 k^{2}}{n^{2}}+3\right)\left(\frac{2}{n}\right) \\
& =\sum_{k=1}^{n}\left(\frac{4}{n}-\frac{8 k}{n^{2}}-\frac{8 k^{2}}{n^{3}}\right) \\
& =\sum_{k=1}^{n} \frac{4}{n}-\sum_{k=1}^{n} \frac{8 k}{n^{2}}-\sum_{k=1}^{n} \frac{8 k^{2}}{n^{3}} \\
& =\frac{4}{n} \sum_{k=1}^{n} 1-\frac{8}{n^{2}} \sum_{k=1}^{n} k-\frac{8}{n^{3}} \sum_{k=1}^{n} k^{2}
\end{aligned}
$$

Setting: It worked!

Problem:

How can you quickly convince your students that those identities are true?

Reminder:

"Sometimes it is easier to see than to say."

Dynamical Visual Models - One:

$$
1+3+\ldots+(2 n-1)=n^{2}
$$

Figure: The sum of the first n positive odd integers

Facts:

- Known to Pythagoras, c. $570-500$ BCE

Facts:

- Known to Pythagoras, c. 570 - 500 BCE
- The first inductive proof has been attributed to Francesco Maurolico, 1494-1575,

Dynamical Visual Models - Two:

$$
1+2+\ldots+n=\frac{n(n+1)}{2}
$$

Figure: The sum of the first n positive integers

Fact:

We follow Pythagoras' proof.

Dynamical Visual Models - Three:

$$
1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Figure: The sum of the squares of the first n positive integers

Facts:

- Known to Aryabhata, 476-550

Facts:

- Known to Aryabhata, 476-550
- Nelsen attributed the idea of this proof to Martin Gardner and Dan Kalman.

Facts:

- Known to Aryabhata, 476-550
- Nelsen attributed the idea of this proof to Martin Gardner and Dan Kalman.
- Sometimes it is called the Greek rectangle method.

Dynamical Visual Models - Four:

$$
1^{3}+2^{3}+\ldots+n^{3}=\left(\frac{n \cdot(n+1)}{2}\right)^{2}
$$

Figure: The sum of the cubes of the first n positive integers

Facts:

- Known as Nicomachus's theorem

Facts:

- Known as Nicomachus's theorem
- Nicomachus, 60 - 120; Aryabhata, 476-550; Abu Bakr Al-Karaji, 953-1029; Al-Qabisi, ? - 967; Gersonides, 1288-1344; Nilakantha Somayaji, 1444 - 1544.

Facts:

- Known as Nicomachus's theorem
- Nicomachus, 60 - 120; Aryabhata, 476-550; Abu Bakr Al-Karaji, 953-1029; Al-Qabisi, ? - 967; Gersonides, 1288-1344; Nilakantha Somayaji, 1444-1544.
- We follow the idea that is attributed to Abu Bakr al-Karaji.

Proof:

- Let $n \in \mathbb{N}$ and let $A=\left[0, \frac{n(n+1)}{2}\right] \times\left[0, \frac{n(n+1)}{2}\right]$.

Proof:

- Let $n \in \mathbb{N}$ and let $A=\left[0, \frac{n(n+1)}{2}\right] \times\left[0, \frac{n(n+1)}{2}\right]$.
- A is a square and $\mu(A)=\left(\frac{n(n+1)}{2}\right)^{2}$.

Proof:

- Let $n \in \mathbb{N}$ and let $A=\left[0, \frac{n(n+1)}{2}\right] \times\left[0, \frac{n(n+1)}{2}\right]$.
- A is a square and $\mu(A)=\left(\frac{n(n+1)}{2}\right)^{2}$.

For $i \in[1, n]$, let $A_{i}=\left[0, \frac{i(i-1)}{2}\right] \times$
$\left[\frac{i(i-1)}{2}, \frac{i(i+1)}{2}\right] \cup\left[\frac{i(i-1)}{2}, \frac{i(i+1)}{2}\right] \times\left[0, \frac{i(i+1)}{2}\right]$.

Proof:

- Let $n \in \mathbb{N}$ and let $A=\left[0, \frac{n(n+1)}{2}\right] \times\left[0, \frac{n(n+1)}{2}\right]$.
- A is a square and $\mu(A)=\left(\frac{n(n+1)}{2}\right)^{2}$.

For $i \in[1, n]$, let $A_{i}=\left[0, \frac{i(i-1)}{2}\right] \times$
$\left[\frac{i(i-1)}{2}, \frac{i(i+1)}{2}\right] \cup\left[\frac{i(i-1)}{2}, \frac{i(i+1)}{2}\right] \times\left[0, \frac{i(i+1)}{2}\right]$.

- $\cup_{i=1}^{n} A_{i}=A, i \neq j \Rightarrow \mu\left(A_{i} \cap A_{j}\right)=0$, and $\mu\left(A_{i}\right)=i^{3}$

Proof:

- Let $n \in \mathbb{N}$ and let $A=\left[0, \frac{n(n+1)}{2}\right] \times\left[0, \frac{n(n+1)}{2}\right]$.
- A is a square and $\mu(A)=\left(\frac{n(n+1)}{2}\right)^{2}$.

For $i \in[1, n]$, let $A_{i}=\left[0, \frac{i(i-1)}{2}\right] \times$ $\left[\frac{i(i-1)}{2}, \frac{i(i+1)}{2}\right] \cup\left[\frac{i(i-1)}{2}, \frac{i(i+1)}{2}\right] \times\left[0, \frac{i(i+1)}{2}\right]$.

- $\cup_{i=1}^{n} A_{i}=A, i \neq j \Rightarrow \mu\left(A_{i} \cap A_{j}\right)=0$, and $\mu\left(A_{i}\right)=i^{3}$
- $\sum_{i=1}^{n} \mu\left(A_{i}\right)=\mu(A) \Rightarrow \sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$

Disclamer:

$$
64=65
$$

Figure: Fibonacci Jigsaw Puzzle

Why Dynamical Visual Models in a Math Classroom?

Gaining insight and intuition or just knowledge.

- the first of "Eight Rules for Computation" by David Bailey and Jonathan Borwein.

Acknowledgments:

Visual models created by Damir Jungić.

Thank you!

vjungic@sfu.ca

