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Abstract

We consider the asymptotic behaviour of some interesting
functions that arise naturally in

I analysis of algorithms (analysis of the average behaviour
of the binary Euclidean algorithm) and in

I number theory (proving algebraic independence results
using Mahler’s method).

The asymptotic behaviour of these functions was first explored
via computation and later explained via Mellin transforms.
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Summary

The talk has two parts:

I Part I Analysis of the binary Euclidean algorithm
(with contributions by Don Knuth and Brigitte Vallée)

I Part II Asymptotics of a Mahler function
(with contributions by Michael Coons and Wadim Zudilin)

At first sight the two parts seem unrelated, but by considering
Mellin transforms we’ll see that they are very similar.
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Part I — Analysis of the binary Euclidean algorithm

The binary Euclidean algorithm is a variant of the classical
Euclidean algorithm for finding greatest common divisors.

It avoids divisions and multiplications, except by powers of two,
so is potentially faster than the classical algorithm on a binary
machine.
I will describe the binary algorithm and consider its average
case behaviour. In particular, I will discuss some conjectures
which were verified computationally in the 1970s and recently
proved by Ian Morris (2014), extending earlier work by Gérard
Maze (2005) and by Brigitte Vallée in the 1990s.
Analogous results for the classical algorithm were conjectured
by Gauss (1800), and eventually proved by Kuz’min (1928),
Lévy (1929) and Wirsing (1974).

Richard Brent Part I — The binary Euclidean algorithm



Part I — Analysis of the binary Euclidean algorithm

The binary Euclidean algorithm is a variant of the classical
Euclidean algorithm for finding greatest common divisors.
It avoids divisions and multiplications, except by powers of two,
so is potentially faster than the classical algorithm on a binary
machine.

I will describe the binary algorithm and consider its average
case behaviour. In particular, I will discuss some conjectures
which were verified computationally in the 1970s and recently
proved by Ian Morris (2014), extending earlier work by Gérard
Maze (2005) and by Brigitte Vallée in the 1990s.
Analogous results for the classical algorithm were conjectured
by Gauss (1800), and eventually proved by Kuz’min (1928),
Lévy (1929) and Wirsing (1974).

Richard Brent Part I — The binary Euclidean algorithm



Part I — Analysis of the binary Euclidean algorithm

The binary Euclidean algorithm is a variant of the classical
Euclidean algorithm for finding greatest common divisors.
It avoids divisions and multiplications, except by powers of two,
so is potentially faster than the classical algorithm on a binary
machine.
I will describe the binary algorithm and consider its average
case behaviour. In particular, I will discuss some conjectures
which were verified computationally in the 1970s and recently
proved by Ian Morris (2014), extending earlier work by Gérard
Maze (2005) and by Brigitte Vallée in the 1990s.

Analogous results for the classical algorithm were conjectured
by Gauss (1800), and eventually proved by Kuz’min (1928),
Lévy (1929) and Wirsing (1974).

Richard Brent Part I — The binary Euclidean algorithm



Part I — Analysis of the binary Euclidean algorithm

The binary Euclidean algorithm is a variant of the classical
Euclidean algorithm for finding greatest common divisors.
It avoids divisions and multiplications, except by powers of two,
so is potentially faster than the classical algorithm on a binary
machine.
I will describe the binary algorithm and consider its average
case behaviour. In particular, I will discuss some conjectures
which were verified computationally in the 1970s and recently
proved by Ian Morris (2014), extending earlier work by Gérard
Maze (2005) and by Brigitte Vallée in the 1990s.
Analogous results for the classical algorithm were conjectured
by Gauss (1800), and eventually proved by Kuz’min (1928),
Lévy (1929) and Wirsing (1974).

Richard Brent Part I — The binary Euclidean algorithm



Notation

lg(x) denotes log2(x).

Val2(u) denotes the dyadic valuation of the positive integer u,
i.e. the greatest integer j such that 2j | u.
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The binary Euclidean algorithm

The idea of the binary Euclidean algorithm is to avoid the
“division” operation r ← u mod v of the classical algorithm, but
retain O(log N) worst (and average) case for inputs u, v ≤ N.

We assume that the algorithm is implemented on a binary
computer so division by a power of two is easy. In particular, we
assume that the “shift right until odd” operation

u← u/2Val2(u)

or equivalently

while even(u) do u← u/2

can be performed in constant time, although time O(Val2(u))
would be sufficient.
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Definition of the algorithm

It is easy to take account of the largest power of two dividing
the inputs, so for simplicity we assume that u and v are odd
positive integers.

Following is a simplified version of the algorithm given in
Knuth, The Art of Computer Programming, §4.5.2.

Algorithm B
B1. t← |u− v|;

if t = 0 return u;
B2. t← t/2Val2(t);
B3. if u ≥ v then u← t else v← t;

go to B1.
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History

The binary Euclidean algorithm is often attributed to Silver and
Terzian (unpublished, 1962) and Stein (1967). However, it
seems to go back almost as far as the classical Euclidean
algorithm. Knuth (§4.5.2) quotes a translation of a first-century
AD Chinese text Chiu Chang Suan Shu on how to reduce a
fraction to lowest terms:

If halving is possible, take half.

Otherwise write down the denominator and the
numerator, and subtract the smaller from the greater.

Repeat until both numbers are equal.

Simplify with this common value.

This looks very much like Algorithm B !

Richard Brent History



History

The binary Euclidean algorithm is often attributed to Silver and
Terzian (unpublished, 1962) and Stein (1967). However, it
seems to go back almost as far as the classical Euclidean
algorithm. Knuth (§4.5.2) quotes a translation of a first-century
AD Chinese text Chiu Chang Suan Shu on how to reduce a
fraction to lowest terms:

If halving is possible, take half.

Otherwise write down the denominator and the
numerator, and subtract the smaller from the greater.

Repeat until both numbers are equal.

Simplify with this common value.

This looks very much like Algorithm B !

Richard Brent History



History

The binary Euclidean algorithm is often attributed to Silver and
Terzian (unpublished, 1962) and Stein (1967). However, it
seems to go back almost as far as the classical Euclidean
algorithm. Knuth (§4.5.2) quotes a translation of a first-century
AD Chinese text Chiu Chang Suan Shu on how to reduce a
fraction to lowest terms:

If halving is possible, take half.

Otherwise write down the denominator and the
numerator, and subtract the smaller from the greater.

Repeat until both numbers are equal.

Simplify with this common value.

This looks very much like Algorithm B !

Richard Brent History



The worst case

At step B1, u and v are odd, so t = |u− v| is even. Thus, step
B2 always reduces t by at least a factor of two. Using this fact, it
is easy to show that step B3 is executed at most

blg(u + v)c

times. Thus, if N = max(u, v), step B3 is executed at most
lg(N) + O(1) times.

If step B2 is replaced by single-bit shifts

while even(t) do t← t/2

the overall worst case time is still O(log N).
Hint for proof: consider lg(uv).
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Numerical example: gcd(123, 456)

Binary (123, 456) : 456→ 456/23 = 57

(123, 57) : 123− 57 = 66→ 66/2 = 33

(57, 33) : 57− 33 = 24→ 24/23 = 3

(33, 3) : 33− 3 = 30→ 30/2 = 15

(15, 3) : 15− 3 = 12→ 12/22 = 3

(3, 3) : 3− 3 = 0 =⇒ gcd = 3

Classical (123, 456) : 456 mod 123 = 87

(123, 87) : 123 mod 87 = 36

(87, 36) : 87 mod 36 = 15

(36, 15) : 36 mod 15 = 6

(15, 6) : 15 mod 6 = 3

(6, 3) : 6 mod 3 = 0 =⇒ gcd = 3
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A continuous model

To analyse the expected behaviour of Algorithm B, we can
follow what Gauss did for the classical algorithm, and construct
a continuous model. This was first done in my 1976 paper, and
made rigorous by Vallée (1998), Maze (2005) & Morris (2014).

Assume that the initial inputs (u0, v0) to Algorithm B are
uniformly and independently distributed in (0,N), apart from the
restriction that they are odd. Let (un, vn) be the value of (u, v)
after n iterations of step B3.
Let

xn =
min(un, vn)
max(un, vn)

,

and let Fn(x) be the probability distribution function of xn

(in the limit as N →∞). Thus F0(x) = x for x ∈ [0, 1].
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Plausible assumption

We make the plausible assumption that Val2(t) takes the value k
with probability 2−k at step B2.

It is a plausible approximation because Val2(t) at step B2
depends on the least significant bits of u and v, whereas the
comparison at step B3 depends on the most significant bits, so
one would expect the steps to be (almost) independent.
A rigorous justification has recently been given by Ian Morris,
who shows that the assumption is correct in the limit as
N →∞.
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The recurrence for Fn

Consider the effect of steps B2 and B3. We can assume that
u > v so t = u− v. If Val2(t) = k then X = v/u is transformed to

X′ = min
(

u− v
2kv

,
2kv

u− v

)
= min

(
1− X
2kX

,
2kX

1− X

)
.

It follows that X′ < x iff

X <
1

1 + 2k/x
or X >

1
1 + 2kx

.

Thus, the recurrence for F̃n(x) = 1− Fn(x) is

F̃n+1(x) =
∑
k≥1

2−k
(

F̃n

(
1

1 + 2k/x

)
− F̃n

(
1

1 + 2kx

))

and F̃0(x) = 1− x for x ∈ [0, 1].
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The recurrence for fn

Differentiating the recurrence for F̃n we obtain a recurrence for
the probability density fn(x) = F′n(x) = −F̃

′
n(x):

fn+1(x) =
∑
k≥1

(
1

x + 2k

)2

fn

(
x

x + 2k

)

+
∑
k≥1

(
1

1 + 2kx

)2

fn

(
1

1 + 2kx

)
.

This recurrence seems nicer than the one for F̃n since the
“weights” (x + 2k)−2 and (1 + 2kx)−2 are positive. On the other
hand, fn(x) is unbounded on (0, 1) (for n ≥ 1), whereas F̃n(x) is
bounded on [0, 1].
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Conjectures (now proved)

In my 1976 paper I gave numerical and analytic evidence that
Fn(x) converges to a limiting distribution F(x) as n→∞, and
that fn(x) converges to the corresponding probability density
f (x) = F′(x).

Assuming the existence of F, it is shown in my 1976 paper that
the expected number of iterations of Algorithm B is ∼ K lg N as
N →∞, where K = 0.705 . . . is a constant defined by

K = ln 2/E∞ ,

and

E∞ = ln 2 +
∫ 1

0

( ∞∑
k=2

(
1− 2−k

1 + (2k − 1)x

)
− 1

2(1 + x)

)
F(x) dx .

These conjectures are now theorems, thanks to Morris (2014).
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Simplifications

We can simplify the expression for K to obtain

K = 2/b ,

where

b = 2−
∫ 1

0
lg(1− x)f (x) dx .

Using integration by parts we obtain an equivalent expression

b = 2 +
1

ln 2

∫ 1

0

1− F(x)
1− x

dx .
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A discrepancy
In my 1976 paper I claimed that, for all n ≥ 0 and x ∈ (0, 1],

Fn(x) = αn(x) lg(x) + βn(x) , (1)

where αn(x) and βn(x) are analytic and regular in the disk
|x| < 1. From (1) we can derive recurrence relations for the
functions αn(x) and βn(x), e.g.

2αn+1(2x)− αn+1(x) = αn

(
x

1 + x

)
− 3fn(1)x,

and similarly for βn(x).

Using this method, Knuth (1997) found

K = 0.70597 12461 01945 · · ·

but using a direct discretisation method I found

K = 0.70597 12461 01916 · · ·

Why the discrepancy?
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Some detective work

After a flurry of emails we (Brent and Knuth) tracked down the
error. It was found independently, and at the same time, by
Flajolet and Vallée, who were in email contact with us.

(Knuth was in a hurry to finalise the third edition of volume 2
of The Art of Computer Programming.)
We found that eqn. (1): Fn(x) = αn(x) lg(x) + βn(x) is incorrect
for n ≥ 1. A small oscillatory term, not expressible in this form
with αn(x), βn(x) regular in the disk |x| < 1, is missing!
To explain this, we need to consider Mellin transforms.
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Mellin transforms

The Mellin transform of a function g(x) is defined by

g∗(s) =
∫ ∞

0
g(x)xs−1dx .

It is easy to see that, if

h(x) =
∑
k≥1

2−kg(2kx) ,

then the Mellin transform of h is

h∗(s) =
∑
k≥1

2−k(s+1)g∗(s) =
g∗(s)

2s+1 − 1
.
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Mellin inversion
Under suitable conditions we can apply the Mellin inversion
formula to obtain

h(x) =
1

2πi

∫ c+i∞

c−i∞
h∗(s)x−sds ,

where c is a real constant lying in a certain interval.

Applying these results to g(x) = 1/(1 + x), whose Mellin
transform is g∗(s) = π/ sinπs for 0 < <s < 1, we find

h(x) =
∑
k≥1

2−k

1 + 2kx

as a sum of residues of( π

sinπs

) x−s

2s+1 − 1

in the left half-plane <s ≤ 0.
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Application of Mellin inversion

This gives

h(x) = xP(lg x) + x lg x + 1 +
x
2
− 2

1
x2 +

4
3

x3 − 8
7

x4 + · · · ,

where

P(t) =
2π
ln 2

∞∑
n=1

sin 2nπt
sinh(2nπ2/ ln 2)

comes from the poles of 1/(2s+1 − 1) at

s = −1± 2πin
ln 2

, n ∈ {1, 2, 3, . . .}.
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The “wobbles” caused by P(t)

Because the residues at the non-real poles are tiny, thanks to
the sinh term in the denominator, P(t) is a very small periodic
function:

|P(t)| < 7.8× 10−12

for real t.

Thus, numerical computations performed using single-precision
(36-bit) floating-point arithmetic did not reveal the error incurred
by omitting the term involving P(t).
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Application to F1(x)

Using the results obtained by Mellin transforms, we find that

F1(x) = 1 + h(1/x)− h(x) = −xP(lg x) + α1(x) lg(x) + β1(x),

where
α1(x) = −x,

β1(x) =
x(5x− 1)
6(1 + x)

+
3
2

∞∑
j=2

(−2x)j

(2j−1 − 1)(2j+1 − 1)
.

Observe that α1(x) and β1(x) are regular in |x| < 1, but the term
xP(lg x) is not. Thus, the assumption underlying Knuth’s
evaluation of K is incorrect, although the numerical effect is
small since the function P(t) is so small.
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A conjecture of Vallée

Let λ = f (1), where f = F′ is the limiting probability density as
above. Brigitte Vallée (1997/8) conjectured that

λ

b
=

2 ln 2
π2 ,

or equivalently that

Kλ =
4 ln 2
π2 . (2)
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Numerical results

Using an improvement of the discretisation method of my 1976
paper, and the equivalent of more than fifty decimal places
working precision, I computed the limiting probability density f ,
then K, λ = f (1), and Kλ. The results were

K = 0.7059712461 0191639152 9314135852 8817666677

λ = 0.3979226811 8831664407 6707161142 6549823098

Kλ = 0.2809219710 9073150563 5754397987 9880385315

These are believed to be correctly rounded values.

Vallée’s conjecture (2) is that

Kλ = 4 ln 2/π2 .

The computed value of Kλ agrees with 4 ln 2/π2 to the 40
decimals shown (in fact to 44 decimals).
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Proofs

Vallée proved her conjecture under the assumption of a
spectral condition.

The conjecture was proved rigorously by Ian Morris (2014)
without assuming any spectral condition.
The proofs depend on some rather sophisticated functional
analysis, e.g. the theory of Hardy spaces and Ruelle operators,
and are too long to give here – if you are interested, see the
original papers by Vallée, Maze and Morris.
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Part II – Asymptotics of a Mahler function

One of the first significant contributions of Mahler
is an approach, now called “Mahler’s method”, yielding
transcendence and algebraic independence results for
the values at algebraic points of a large family of
power series satisfying functional equations of a
certain type. In the seminal paper [9] 1 Mahler
established that the Fredholm series f (z) =

∑
k≥0 z2k

,
which satisfies f (z2) = f (z)− z, takes transcendental
values at any nonzero algebraic point in the open unit
disk.

J. Borwein, Y. Bugeaud and M. Coons
The legacy of Kurt Mahler
AustMS Gazette, March 2014, pg. 16.

1K. Mahler, Math. Ann. 101 (1929), 342–366.
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The function F(z)

Dilcher and Stolarsky [Acta Arithmetica, 2009] introduced a
Mahler function F(z) = 1 + z + · · · satisfying the recurrence

F(z) = (1 + z + z2)F(z4)− z4F(z16).

F(z) is related to the Stern sequence.
NB: F here is unrelated to the F of Part I.
We consider the asymptotic behaviour of F(z) as z→ 1−. This
has applications to algebraic independence results.
Specifically, BCZ (2015) proved that the functions
F(z),F(z4),F′(z), and F′(z4) are algebraically independent
over C(z); it follows (thanks to a result of Kumiko Nishioka) that
F(α),F(α4),F′(α), and F′(α4) are independent over Q for any
nonzero algebraic number α in the unit disk.
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The Stern sequence

Stern’s diatomic sequence (or Stern-Brocot sequence)
is defined by

a0 = 0,

a1 = 1,

a2n = an for n > 0,

a2n+1 = an + an+1 for n > 0.

This sequence has many interesting properties (see the OEIS
entry A002487). For example, an/an+1 runs through all the
reduced nonnegative rationals exactly once.
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Some properties of F(z)

Dilcher and Stolarsky (2009) defined F(z) using a polynomial
analogue of the Stern sequence, and deduced the recurrence

F(z) = (1 + z + z2)F(z4)− z4F(z16). (3)

However, for our purposes it is simpler to define F(z) by the
recurrence (3) and the auxiliary condition F(z) = 1 + O(z) as
z→ 0.
Using Mahler’s method, Adamczewski (2010) proved that F(α)
is transcendental for every algebraic α, 0 < |α| < 1.
Independently, Michael Coons (2010) proved that F(z) is a
transcendental function, along with results on transcendence
at algebraic arguments.
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The auxiliary function µ(z)

We are interested in the behaviour of F(z) for z ∈ [0, 1), and in
particular the asymptotic behaviour of F(z) as z→ 1−.

It is useful to define an auxiliary function µ : [0, 1) 7→ R by

µ(z) =
F(z)
F(z4)

. (4)

From the recurrence for F(z) and (4), µ(z) satisfies the
recurrence

µ(z) = 1 + z + z2 − z4

µ(z4)
. (5)

Our strategy is to analyse the asymptotic behaviour of µ(z) and
then deduce the corresponding behaviour of F(z).
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µ(z) as a continued fraction

Observe that µ(z) may be written as a continued fraction

µ(z) = (1 + z + z2)− z4/µ(z4)

= (1 + z + z2)− z4

(1 + z4 + z2·4)− z42/µ(z42)
= · · ·

Since µ(z) = F(z)/F(z4), we have an explicit expression for
F(z) as an infinite product:

F(z) =
∞∏

k=0

µ
(

z4k
)
. (6)

In this sense we have an explicit solution for F(z) as an infinite
product of continued fractions.
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Some properties of F(z) as an analytic function

Lemma
The Maclaurin series

F(z) =
∞∑

n=0

fnzn

has coefficients fn ∈ {0, 1}. Also, F(z) is strictly monotonic
increasing and unbounded for z ∈ [0, 1), and can not be
analytically continued past the unit circle.

From the functional equation for F(z) it follows that F(z) has a
singularity at z = exp(2πi/2k) for all non-negative integers k.
Thus, there is a dense set of singularities on the unit circle,
which is a natural boundary.
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Properties of µ(z)

Lemma
If µ1 := limx→1− µ(x) and µ′1 := limx→1− µ

′(x), then

µ1 =
3 +
√

5
2

= ρ2 ≈ 2.618 (7)

and

µ′1 =
21 + 8

√
5

11
≈ 3.535. (8)

Sketch of proof.
Let Q(x) be the larger root of Q(x) = 1 + x + x2 − x4/Q(x).
Show that µ(x) < Q(x) for all x ∈ (0, 1). Hint – use induction on
x = x4−n

0 , where x0 is sufficiently small.
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µ(x) and µ′(x) for x ∈ [0, 1)

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1
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What can we say about µ′′(x)?

It appears from the graph of µ′(x) that µ′′(x) is unbounded as
x→ 1−, and this is indeed true. We have the following result,
where the constant 2 lg(ρ) is best possible.2

Lemma
Let α ≤ 2 lg(ρ) ≈ 1.388. Then, for t ∈ (0, 1) we have

µ′′(e−t) = O(tα−2) (9)

and
µ(e−t) = µ1 − tµ′1 + O(tα). (10)

2As in Part I, We write lg(x) for log2(x).
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Why the exponent α ≈ 1.388?

Differentiating the recurrence for µ(z) twice, we obtain

µ′′(e−t) = A(t) + B(t)µ′′(e−4t),

where A(t) is bounded, and

B(t) = 16e−10t/µ(e−4t)2 = 16/µ2
1 + O(t).

The exponent α is chosen so that 16/µ2
1 ≤ 42−α, since this

inequality is necessary (and sufficient) for the inductive proof to
go through.
Since µ1 = ρ2, we have to choose α ≤ 2 lg(ρ) ≈ 1.388.
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Mellin transforms

Our strategy is to deduce the asymptotic behaviour of µ(z) and
F(z) as z→ 1− from certain Mellin transforms.

Specifically, define

F(s) :=
∫ ∞

0
ln(F(e−t)) ts−1 dt

and
M(s) :=

∫ ∞
0

ln(µ(e−t)) ts−1 dt.

The integrals converge in the half-plane <(s) > 0. For <(s) ≤ 0
we define F(s) andM(s) by analytic continuation (if possible).
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Properties of the Mellin transforms

Since
lnµ(e−t) = ln F(e−t)− ln F(e−4t),

we see that
M(s) = (1− 4−s)F(s).

We can deduce the behaviour of ln F(e−t) for small positive t
from knowledge of the singularities of F(s).
Since F(s) = (1− 4−s)−1M(s), it is sufficient to determine the
singularities ofM(s) and (easy) those of (1− 4−s)−1.
First we use the Lemmas above to extend the domain of
definition ofM(s) into the left half-plane.
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Analytic continuation ofM(s)

Define
µ̃(t) := ln(µ(e−t))− ln(µ1)e−λt,

where

λ :=
µ′1

µ1 lnµ1
≈ 1.403 .

Since λ ≥ 1, µ̃(t) = O(e−t) as t→ +∞.
Also, from the Lemmas above, as t→ 0+ we have

µ̃(t) = (λ lnµ1 − µ′1/µ1)t + O(tα).

Our choice of λ makes the coefficient of t vanish, so
µ̃(t) = O(tα).
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Analytic continuation ofM(s)

Let
M̃(s) :=

∫ ∞
0

µ̃(t)ts−1 dt.

Since µ̃(t) = O(tα), the integral converges for <(s) > −α.

Now

M(s) = M̃(s) + ln(µ1)λ−sΓ(s)

gives the analytic continuation ofM(s) into the half-plane

H := {s ∈ C : <(s) > −2 lg(ρ)}.

In H, the only singularities ofM(s) occur at the singularities of
Γ(s), i.e. at s ∈ {0,−1}.
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Singularities of F(s) in H

The Mellin transform F(s) = (1− 4−s)−1M(s) has three types
of singularities in H.

(a) A double pole at s = 0, since Γ(s) has a pole there, and the
denominator 1− 4−s vanishes at s = 0.

(b) Poles at s = ikπ/ ln(2) for k ∈ Z\{0}, since the denominator
1− 4−s vanishes at these points.

(c) A pole at s = −1, since Γ(s) has a pole there.
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Asymptotics of ln F(e−t)

Theorem
For arbitrary ε > 0 and small positive t,

ln F(e−t) = − lg(ρ) ln(t) + c0 +
∞∑

k=1

ak(t) + c1t + O(t2 lg(ρ)−ε),

where c0 ≈ 0.1216 and c1 ≈ 0.4501 are constants, and

ak(t) =
1

ln 2
<
(
M
(

ikπ
ln 2

)
exp(−ikπ lg(t))

)
.

Note. It is easy to see that ak(4t) = ak(t), so the ak(t) are
periodic in log(t).
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The oscillatory terms ak(t)

We can write

ak(t) = Ak cos(kπ lg(t)) + Bk sin(kπ lg(t)).

Define

Ck :=
√

A2
k + B2

k = max
t>0
|ak(t)| = |M(ikπ/ ln 2)|

ln 2
.

Numerically, we find
C1 ≈ 2.1× 10−3, C2 ≈ 2.2× 10−6, C3 ≈ 2.8× 10−9,
C4 ≈ 3.3× 10−12, . . .
The constants Ck appear to decrease exponentially fast as
k→∞.
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Sketch proof of the theorem

Consider the singularity of type (a).

Define L(s) :=M(s)/Γ(s). Then

L(0) = 2 ln ρ, L′(0) = M̃(0)− 2 ln(λ) ln(ρ) ≈ 0.06.

Near the double pole at s = 0,

F(s) =
L(0)
2 ln 2

s−2 + c0 s−1 + O(1),

where

c0 =
(ln 2− γ)L(0) + L′(0)

2 ln 2
.

Standard arguments applied to the inverse Mellin transform
now give the first two terms (− lg(ρ) ln(t) + c0).
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Sketch proof continued

Now consider the singularities of type (b).

These are simple poles at s = ikπ/ ln 2 for k ∈ Z\{0}.
From the pole at ikπ/ ln 2 we get a term

Tk(t) :=
1

ln 4
M
(

ikπ
ln 2

)
exp(−ikπ lg(t)).

Combining the terms Tk(t) and T−k(t) for k ≥ 1, the imaginary
parts cancel and we are left with the oscillatory term ak(t).
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Sketch proof continued

Now consider the singularity of type (c).

At s = −1, F(s) has a pole with residue

c1 =
λ lnµ1

3
=

µ′1
3µ1

=
23 + 3

√
5

66
.

This accounts for the term c1t.
Finally, the error term O(t2 lg(ρ)−ε) allows for the fact that we
have only considered the singularities of F(s) in H.
There could be (in fact are) other singularities in the half-plane

{s ∈ C : <(s) ≤ −2 lg(ρ)}.
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A corollary

All that we actually need for the applications is the following.

Corollary
For z ∈ [0, 1),

F(z) =
C(z)

(1− z)lg ρ
,

where C(z) is a positive oscillatory term, bounded away from
zero and infinity.
Remark
We do not need the full machinery of Mellin transforms to
deduce the Corollary. Instead we could use the quantitiative
version of Perron’s theorem due to Coffman (1964).
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A conjecture
We conjecture thatM(s) and F(s) = (1− 4−s)−1M(s) have
poles at s = −2 lg(ρ) + ikπ/ ln(2) for k ∈ Z.

This would account for numerical evidence that the error e1(t)
in the linear approximation to µ(e−t) is of order t2 lg(ρ) but
e1(t)/t2 lg(ρ) does not tend to a limit as t→ 0+; instead it has
small oscillations that are periodic in lg t.

k t = 2−k µ(e−t) e1(t) e1(t)/t2 lg ρ

20 9.5367e-7 2.6180306 1.1708e-8 2.6790
21 4.7684e-7 2.6180323 4.4999e-9 2.6958
22 2.3842e-7 2.6180331 1.7079e-9 2.6787
23 1.1921e-7 2.6180336 6.5648e-10 2.6956
24 5.9605e-8 2.6180338 2.4917e-10 2.6786

Approximation of µ(e−t) for t = 2−k, 20 ≤ k ≤ 24,
e1(t) = µ(e−t)− (µ1 − tµ′1).

Richard Brent Conjecture
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