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research questions

∙ Bacterial Genomics (with Andrew Francis and Volker
Gebhardt)
∙ How to reconstruct phylogeny trees?

∙ Foundations of Computing (with James East, James D.
Mitchell, Chrystopher L. Nehaniv).
∙ What is computable with n states?
∙ What is the structure of finite computations?

Precise answers can be obtained in abstract algebra, in
computational group and semigroup theory.
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why computational?

∙ More examples, more raw data for the mathematical
reasoning.
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bacterial changes

Single celled organisms with circular chromosome.

∙ Local changes such as single nucleotide
polymorphisms (SNPs):

ACGGCCCTTAGG −→ ACGGCCATTAGG

∙ Regional changes such as inversion that affect whole
regions along the chromosome.

1 2 3 4 5 6 1 2 6345

(Regional changes include inversion, translocation, deletion and
others.)

∙ Topological changes that produce knots and links in
the DNA. 3



biology→math

Genome→ permutations
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Sequences of evolutionary→ Sequences of generators

Genomic distance→ Length of geodesic words

Genomic space→ Cayley-graph 4
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Reference genome and the signed permutation
[1, 2, 3,−7,−6,−5,−4, 8].
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where does the difficulty from?

∙ The groups are finite and well-studied (symmetric,
hyperoctahedral), but big, e.g. S80

∙ The generating sets are unusual, “biological”.

For example,

∙ 2-inversions of the circular genome (vs. linear)
∙ looking at the “width” as well

Strategy: Calculate and look at small, but non-trivial
examples to get insights.
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symmetries of irreducible generating sets

1 Z2 Z2 × Z2 Z3 D8 S3 S4 S5
S2 1
S3 1 1
S4 8 5 1
S5 150 25 1 1 1
S6 7931 645 11 6 4 20 2 2
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abstract and transformation semigroups

Definition
A semigroup is a set S with
an associative binary
operation S× S→ S.

Example (Flip-flop monoid)
1 a b

1 1 a b
a a a b
b b a b

Definition
A transformation semigroup
(X, S) is a set of states X and
a set S of transformations
s : X → X closed under
function composition.

Example (Transformations)

=
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flip-flop, the 1-bit memory semigroup

write 0 write 1 read

[11] [22] [12]

So these are computational devices... ≈ automata

With transformation semigroups, we get all semigroups.
(Cayley’s theorem)
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degree 2 transformation semigroups

[11],[12],[21],[22]

[11],[12],[22]

[12],[22][11],[22] [11],[12] [12],[21]

[11][22] [12]
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data flood

Number of subsemigroups of full transformation
semigroups.

#subsemigroups #conjugacy classes #isomorphism classes
T0 1 1 1
T1 2 2 2
T2 10 8 7
T3 1 299 283 267
T4 3 161 965 550 132 069 776 131 852 491

After discounting the state-relabelling symmetries the
database of degree 4 transformation semigroups is still
around 9GB.
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size distribution
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size distribution – logarithmic scale
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diagram semigroups – typical elements

∈ PBn,

∈ Bn, ∈ Pn

∈ PTn, ∈ I∗
n
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diagram semigroups – typical elements

∈ In, ∈ Bn

∈ Tn, ∈ TLn

∈ Sn, 1n
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diagram semigroups

P1 ↪→ T2
P2 ↪→ T5

B1 ∼= T1
B2 ↪→ T3

TL1 ∼= T1
TL2 ↪→ T2
TL3 ↪→ T4

P1 ↪→ B2

Tn In I∗
n Bn

Sn
1n

TLn

PTn

Bn

PBn

Pn
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Order n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
PBn 2(2n)2 16 65536 236 264 2100 2144

Bn 2n2 2 16 512 65536 225 236

Pn B2n =
∑2n

1 S(2n, k) 2 15 203 4140 115975 4213597
PTn (n+ 1)n 2 9 64 625 7776 117649
I∗
n

∑n
1 k!

(
S(n, k)

)2 1 3 25 339 6721 179643
Tn nn 1 4 27 256 3125 46656
In

∑n
0 k!

(n
k
)2 2 7 34 209 1546 13327

Bn (2n− 1)!! 1 3 15 105 945 10395
Sn n! 1 2 6 24 120 720

TLn, Jn Cn = 1
n+1

(2n
n
)

1 2 5 14 42 132
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computational horizon

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
PBn 1262
Bn 4 385
Pn 4 272
PTn 4 50 94232
In 4 23 2963
I∗
n 2 6 795
Tn 2 8 283 132069776
Bn 2 6 42 10411
TLn 2 4 12 232 12592 324835618
Sn 1 2 4 11 19 56
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deeper into semigroup structure

Given a semigroup S, the equivalence relation J is
defined by

t J s ⇐⇒ S1tS1 = S1sS1,

where S1 is S with an identity adjoined in case S is not a
monoid.

In other words,

t J s ⇐⇒ ∃p,q,u, v ∈ S1 such that t = psq and s = utv

The equivalence classes of J are “local pools of
reversibility”.
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a = ( 1 2 3 4 52 2 1 2 4 ), b = ( 1 2 3 4 53 5 2 3 2 ), b = ( 1 2 3 4 53 5 4 5 4 ) and
M = 〈a,b, c〉. |M| = 31

{1, 2, 3, 4, 5}
1

{1, 2, 4}
a

{2, 3, 5}
b

{3, 4, 5}
c

{1, 2, 4}
ba

{1, 2, 4}
ca

{2, 5} {2, 3} {4, 5}
b2,b3 cb,bcb bc,b2c

{1, 4} {3, 5}
caca cac
aca ac

{2, 4}
b2a
b3a

{1, 2}
bcba
cba

{1, 4} {3, 5}
baca bac

{1, 4} {3, 5}
baba bab
aba ab

{1} {2} {3} {4} {5}
ababa a2 abab abc a2c
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transformation semigroups of degree 3

x axis : size of the semigroups

y axis : the number of D-classes
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subsemigroups of the degree 5 jones monoid

x axis : size of the semigroups

y axis : the number of D-classes
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inverse semigroups (of partial permutations)

x axis : size of the semigroups

y axis : the number of D-classes
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transformation semigroups of degree 4

x axis : size of the semigroups

y axis : the number of D-classes
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transformation semigroups of degree 4

x axis : size of the semigroups

y axis : the number of D-classes
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even more structure, all green’s relations

L, R equivalence relations

t R s ⇐⇒ tS1 = sS1,
t L s ⇐⇒ S1t = S1s,

t J s ⇐⇒ S1tS1 = S1sS1

L ◦ R = R ◦ L = D

J = D in the finite case

t R s ⇐⇒ ∃p,q ∈ S1 such that t = sp and s = tq

t L s ⇐⇒ ∃p,q ∈ S1 such that t = ps and s = qt
t J s ⇐⇒ ∃p,q,u, v ∈ S1 such that t = psq and s = utv
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“eggbox” picture

Tables are D-classes. Columns are L-classes, rows are
R-classes. Shaded cells are H-classes that contain
idempotents – used for locating subgroups of the
semigroup. T3:
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temperley-lieb, jones monoid

Catalan numbers, sequences of well-formed parentheses.

corresponds to (()(()))()

Applications in Physics: statistical mechanics,
percolation problem.

=

So the usual semigroup thing: look at the eggbox picture,
locate the idempotents.
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first glimpse through the usual eggbox diagrams

J9
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top level

J16
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level 2
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level 3
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level 4
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level 5
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level 6
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level 7
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level 8
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level 9
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mathematics & computation

The Good We can discover/construct more and more
new, interesting and useful mathematics by
using computers.

The Bad There is a gap between mathematical rigour
and the correctness of software
implementations and the physicality of
computation.

and The Ugly Developing software is still detrimental to
academic career.
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Blog on computational semigroup theory:

compsemi.wordpress.com

Thank You!
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