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Are you ready for Information-based Medicine ? 

 
Picture from: Personalized Healthcare 2010: Are you ready for information-based Medicine? 

http://www-935.ibm.com/services/in/index.wss/ibvstudy/igs/x1022583?cntxt=x1022520 

 

 

 



 
 

 Dementia and Alzheimer’s Disease (AD) 

 
Proportion of each age group  

identified as having dementia or AD. 
(ABS 2009, Survey of Disability, Ageing and Careres). 

 

 

One new case of dementia every 6 minutes.  

1.2 million Australians are caring with somebody with dementia. 
 

 

By the 2060s, spending on dementia is set to outstrip that of 
any other health condition. 

 
 



Our approach is largely based on 
Combinatorial Optimization  
and Mathematical Modelling  

 

Make sense of a deluge of data/information. 

Find hidden patterns (e.g. those only present in samples from patients 
that have a disease). 

Make predictions (e.g. who can get a disease).  

It could inform particular lifestyle changes  

     development of new models  
    modify clinical practice   
    translational research  

 

 

 



Our problems are big and challenging 

SNPs (Single Nucleotide Polymorphisms)  

 Differences in DNA bases common to a certain small percentage of 
the population 

 Combinations of them can lead to increased disease risks 

  

 Typically 4,000 to 100,000 samples, ~ 500,000 SNPs 

  

Gene Expression (Microarrays)  

 Typically 200 to 2,000 samples, ~ 50,000 probe sets 

 

“Extended” Gene Expression datasets 

  Typically <2000 samples, ~ 2,500,000,000 pairs of probe sets 





Selection of optimal multi-drug therapeutic combinations 

 
A kernelisation approach for multiple d-Hitting Set and its application in optimal multi-drug therapeutic combinations. 

Mellor D, Prieto E, Mathieson L, Moscato P. 
PLoS One. 2010 Oct 18;5(10):e13055 

  
 

A Princeton researcher found in 2010 that a combination of three drugs  (out of tens of 
thousands tested by the National Cancer Institute) was able to “target” efficiently all cell 

lines of the NCI60 panel. 
 

The problem: Takes 24 hours, and does not have a performance guarantee (IP could be lost 
by working with suboptimal solutions). Is there a better solution? 

 
Our Solution: In less than two months, we showed (top right corner) that indeed three is the 

optimal number, but that there are other solutions, and that the best can be found in five 
seconds with our methods.  

 
        
 
  

Potential: Guide the design of therapeutic combination approaches with biologists “in the loop” as the fast 
turnaround of our methods would allow them to iterate between in silico and wet lab experimentation.  

 
Note: Everolimus/Afinitor (Novartis) appeared as part of the group of selected three. 

 
 
 (Left) A Minimal set 

of drugs (three) that 
hit melanoma cell 
lines at least two 

times and all other 
cell lines zero (not 

shown) or one time.  

(Right) A Minimal set of drugs 
(three) that breast cancer cell lines 

(excluding the disputed MDA-N 
cell line) 

Relaxing the restriction on hitting 
non-breast cancer cell lines it is 
possible to hit more BC cell lines 

repeatedly.  



Alzheimer’s Disease diagnosis  

 
Gómez Ravetti M, Moscato P (2008) Identification of a 5-Protein Biomarker 

Molecular Signature for Predicting Alzheimer's Disease. PLoS ONE 3(9): e3111. 
doi:10.1371/journal.pone.0003111   

 

Stanford researchers found that a panel of 18 proteins 
could predict clinical AD five years in advance (Nature 

Medicine, 2007) 
 

In less than two months, we showed that we could 
reduce the panel to only 5, maintaining the performance 

quite independently of the classifier 
  

Differences in Abundances of Cell-Signalling Proteins in Blood  
Reveal Novel Biomarkers for Early Detection Of Clinical Alzheimer's Disease 

There is hope to the 
possibility of 

separating Mild 
Cognitive Impaired 

individuals that 
progress to AD from 
does that progress to 
other dementias (in 

green) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

The Problem: Computing all possible SNP-SNP pairs of interactions in several 
genome-wide association studies. The need is to identify a large number of 

significant interactions to then correlate with statistically relevant “hits” on pathways 
and gene ontology associations. 

 
 
x 

 
 

Identification of Genome-Wide SNP–SNP and SNP–Clinical Boolean 
Interactions in Age-Related Macular Degeneration 

 
 
 

Or “How I Learned to Stop Worrying… about spending one million dollars” 
 
 

 
 

 
  
  

 
 
 
 
 
 
 
 
 
 

The Solution: Statistical analysis of SNP-SNP pairs of interactions in several 
genome-wide association studies via GPU computing. Followed by combinatorial 
optimisation techniques to identify cliques in weighted graphs.  Identification of 

commonalities in clique via Gene Ontology statistical associations, leading to 
working hypotheses and predictive analytics. 

 
Prediction now confirmed: Netrin-DCC axis in 77,000 samples.  

 



Our solution: We prioritized the number of SNPs/loci for further investigation using highly sophisticated supercomputer-based 
algorithms.  We focused on identifying highly connected groups (these are called cliques, quasi-cliques in Mathematics). We 
illustrate here how we developed whole genome visualization methods which are employed to reveal the most important 
interactions in the largest cliques. The observed topologies can be analysed and they are shown to be highly complex but not 
random. This gives novel insights in multifactorial diseases. 



Novel whole genome visualization techniques have also been developed to uncover interactions of SNPs with 
environmental variables.  The integration of the information of these two types of maps helps life scientists by 
providing new working hypotheses for wet lab validations.  

 





Impact of microarray methods  
in the Life Sciences and Medical Research 

Jan. 17, 2005: 8,592 June 13, 2015: 67,758  !!!   



Instance size: 5120 genes x 512 experiments 
 
        

Microarray Clustering  
(Deceivingly similar to the TSP problem –  
a trap for countless computer scientists) 



TSP algorithms have been suggested,  
but on 930x930 cities… 

        

 
Data Clustering a 930x930 matrix  

(again deceivingly similar to the TSP problem,  
this is of great relevance for the field of Systems Biology) 

  



Memetic Algorithms  
27 years is a long time... 

• I proposed the denomination in 1989 for work we started a year 
before. 

 

• Since then several papers appeared, including: 

– Formal Memetic Algorithms 

– Competent Memetic Algoritms 

– .....   ... so I am probably the pioneer of: 
 

– Informal and Incompetent Memetic Algorithms 



Memetic Algorithms (Moscato, 1989 @ Caltech) 

 

• Thousands of papers in all fields of science and technology 
• A dedicated journal (Memetic Computing, Springer) 
• IEEE dedicated a Task Force to the subject 
• Many international Workshops, etc. 

 

• In 2013, the IP & Science division of Thomson Reuters identified "Memetic 
Computing" as one of the world's top ten research fronts of the combined 
areas of Mathematics, Computer Science and Engineering. The selection 
was done from approximately "8,000 research fronts currently identified". 

      http://sciencewatch.com/sites/sw/files/sw-article/media/research-fronts-2013.pdf 

 

 

 

 

 

 



Building a “solved case” of  
Microarray Clustering to test performance of our methods 

Instance size: 5120 genes x 512 conditions 
 

       Original Data             After randomization  



Ordering microarray data 
Lenna image – 5120 x 512 – No noise 
 
   Eisen (1998) 

Cluster analysis and display of genome-wide expression patterns 
www.pnas.org/content/95/25/14863.long 

by MB Eisen - 1998 - Cited by 13,412 
 

(from Google Scholar, August 1, 2013). 

Cited by 15,001 papers available online!! 



Ordering microarray data 
Lenna image – 5120 x 512 – No noise 
 
   Eisen (1998) 

CLICK and EXPANDER: a system for clustering 
and visualizing gene expression data 

R Sharan, A Maron-Katz, R Shamir - 
Bioinformatics, 2003 - Oxford Univ Press 

Cited by 289 

CLICK(2001) 



Ordering microarray data 
Lenna image – 5120 x 512 – No noise 
 
   Eisen (1998) CLICK(2001) EBI (2003) 



Ordering microarray data 

Lenna image – 5120 x 512 – No noise 
                                                                        
Eisen (1998)               CLICK(2001)            EBI (2003) 

Our Memetic 
Algorithm 
(2007) 



Top-off-the-shelf solutions  
vs. creating new algorithms 

Original ordering                  Random permutation            GeneSpring                        Memetic Algorithm  
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Ordering samples and genes: A need for personalized medicine 

TIGR Multiexperiment Viewer software  
developed by  

The Institute for Genomic Research  
Input dataset (930 rows & 930 columns) 



Ordering samples and genes: A need for personalized medicine 

Unperturbed dataset  Memetic Algorithm final result 



Where the real challenges are… 

 “From the point of view of the formal criteria that we have developed in 
this book, the local improvement algorithms and their many variants are 
totally unattractive. They do not in general return the optimal solution, 
they tend to have exponential worst-case complexity, and they are not 
even guaranteed to return solutions that are in any well-defined sense 
“close” to the optimum. Still, for many NP-complete problems, in practice 
they often turn out to be the ones that perform best ! Explaining and 
predicting the impressive empirical success of some of these algorithms is 
one of the most challenging frontiers of the theory of computation today. ”  

 
H. Lewis and C.H. Papadimitriou, 
Elements of the Theory of Computation,  
2nd edition… 



1988 - MAs as “the next logical step” 

• Many good algorithmic approaches exist for a problem. 
 

• Local search methods are generally easy to implement and give good results 
for many, if not all (?), problems in NP. 

 

• Exact algorithms can sometimes prove optimality, even for large instances. 
Problem-instance dependent running times. 

 

• Why not hybridize always ?  

• When does randomization help? 

• When “does not pay” to hybridize the algorithms ? 



It was not an easy start… 



Three periods of MAs 

• (1989-94) 

– Work in relative isolation (CALTECH, La Plata, Edinburgh, EPFL): “classical 
problems” TSP, QAP, Binary  Perceptron, Scheduling and Coloring - TS 
and SA used as optimizers.  

• (1994-2000)  

– Fast evolution – MAs Home Page -Timetabling – Applications in 
Operations Research - Use of exact techniques in complete MAs starts – 
Great results in TSPs (Merz & CONCORDE).  

• (2000 - current)  

– Expanding number of applications and users - Cooperation with exact 
algorithms is better established - Links with Bioinformatics & 
Parameterized Complexity.      



Reality check: Largest instance solved to optimality (1998): usa13509, 
CONCORDE group (their slide).  



Tour-merging approach (CONCORDE) 

• “Finding tours in the TSP” paper (1999) by the CONCORDE team. 
 

• Obtained a tour only 0.00002% more costly than optimal for usa13509. 
 

• Great solutions by an approach that iterates Chained-LK (their basic individual 
optimizer) with Tour-merging (for recombination). 
 

 “it is likely that  
ideas drawn from genetic algorithms  
can be combined with tour merging  

to produce a powerful class of heuristics.”  
  
• Of course, the approach they are using is a MAs (first proposed in 1989).  

 
• Interest in multi-parent recombination has been rekindled (check also TSP results 

by Hisao Tamaki). 
 
 



Union of 10 LKH tours for r15934 

Figure 1 from “Tour Merging via Branch-
decomposition”,  
W. Cook and P. Seymour, INFORMS Journal 
on Computing, 15(3):233-248, 2003.  
 
 
But what if some edges (for instance the 
long ones in this figure) are present in 
all 10 parent solutions but are not in 

the optimal tour ? 
 

For small k this could be serious. 
 

For larger k is less of an issue, but the 
optimal recombination will take more 

time.  



(1996-2000) Is there a systematic way  
to design efficient MAs ? 

To reach the desired goal through three research directions 

First direction: 
“Identify NP optimisation problems for which the paradigm of Evolutionary Search  

has been proved not competitive  
in comparison with the best exact or approximation  

algorithms and the best known heuristics   
that use other paradigms” 

“Min Number Partitioning” 

Weakly NP-complete  



(1996-2000) Is there a systematic way  
to design efficient MAs ? 

Second Research direction 

“To identify the problems for which the Evolutionary Search strategy has proven to 
be a good alternative and to try to identify the reasons for the success” 

Asymmetric Travelling Salesman Problem   

(Strongly NP-complete) 

Several applications of memetic algorithms 

Class of Polynomial Merger Algorithms  



(1996-2000) Is there a systematic way  
to design efficient MAs ? 

Third research direction 
 

“For the problems that have been identified in the second research direction, it is 
important to find links with the Theory of Computational Complexity, and the 

complexity classes 
(regarding approximability) to  

which these problems belong.”  
 

Approximability… very disappointed…  
then looked at Parameterized Complexity 

 



Running times of  
some approximation algorithms 

 Data from recent top-conferences (STOC, SODA, FOCS…) 
PTAS (the jewel of the crown) 

 

Running times for a 20% error 

Euclidean TSP   O(n15,000) 

Max Ind. Set. Geom. Graphs O(n523,804) 

Multiple Knapsack   O(n9,375,000) 

Max Subforest   O(n958,267,391) 

Gen. 4-Proc. Job. Sched.        > O(n10E51) 

 Data from: “Some new directions and questions in Parameterized Complexity”, Rod Downey and 
Catherine McCartin,  
Lecture Notes in Computer Science 3340, pp 12-26, 2004.  



 
The Parameterized Complexity of  

Multiparent Recombination  
  
 
 

Pablo Moscato and Carlos Cotta (*)  
 

Newcastle Bioinformatics Initiative 
 

School of Electrical Engineering and Computer Science  
The University of Newcastle, AUSTRALIA 

Pablo.Moscato@newcastle.edu.au 
 

(*) University of Malaga, SPAIN 
ccottap@lcc.uma.es  

 
 

 



There is a long story until we reached this talk… 
(more during my tutorial this afternoon) 

• 1988-89, Moscato and Norman (M&N), memetic algorithms (MAs) (@CALTECH) for the 
TSP (traveling salesman problem).  
 

• 1990-1, Edinburgh (@EPCC), (M and N), “Strategic Edge Crossover”, far superior 
results than the OX crossover.  
 

• 1991, M&N present MAs and their results to  
 Nicholas Radcliffe (NR).   

 
– NR presents to M&N his work on Forma Analysis 

 
– Two natural questions arise that from that meeting:  

• “Why is so hard to come up with good recombination methods?”.  
•  “ Is this problem harder with more than a pair of parents ?” 

 
– M suggests that “the problem” is “NP-complete”… 

 
– … and the questions sleeps for ages…   

 



Why does an interesting research  
question sleep for ages ? 

• A technological  answer:  
– M&N were interested in MAs with linear speed-up in distributed heterogeneous 

systems and transputers. Synchronization of processes requires 2-parent 
recombination only (if you just think in terms of speed-up…).  

 
• A practitioner’s  answer:   

– “Why multiparent recombination should be interesting if 2-parent recombination 
seems to be working well in a variety of fields ?” 

 
• A (bad) theoretician’s  answer:   

– “Why is this problem relevant?  Who is studying it?” 
 

• A (peer-reviewed) anonymous answer: 
– “Only Moscato and Cotta are interested in these recombinations.” 
– (Not true, among others, Fred Glover was pointing to these issues for particular 

types of Scatter Search method for many years).  
 
 



Recombination can be regarded as a heuristic way  
to address new types of  

combinatorial optimization problems !!! 

 
• THIRD (BETTER-THAN-WORST)  HAMILTONIAN CYCLE 

 Instance: Graph G(V,E,W), and two hamiltonian cycles C1 and C2 
of G, such that C1≠C2, and w.l.o.g. Length(C1) ≤ Length(C2).   

    Question: ∃ another C´, Hamiltonian cycle of G,  
  such that C´≠  C1, C2; and Length(C´) < Length(C2)  ? 
 

 Unknown computational complexity !!! (NP-complete ?) 
 This means.... Less chances of being fired !  
  (not only MAs help us to address NP-hard problems...  
             ...they help us to create new ones !!) 



A chance to revisit old friends 

• Recombination would also help us to revisit some old combinatorial 
optimization problems.  
 

• RESTRICTED  HAMILTONIAN CYCLE (RHC) 
 Instance: Graph G(V,E) and a Hamiltonian path P of G.  
 Question: ∃ a Hamiltonian cycle in G ? 
 Computational complexity known !!!  
  NP-complete... (see Papadimitriou & Steiglitz, Combinatorial 

Optimization, Chapter 19, pp. 477-480). 
 
 This means.... May be there is a way of reducing RHC to our previous 

problem and prove it NP-Complete. (???) 

    



Parameterized Complexity  
 

 

 A new classification of problems is necessary. Reductions that are 
normally used to prove that a problem is NP-complete generally do not 
preserve certain structural properties. Importance of parameters 
present in real-world instance of interest. 

 Definition: A parameterized problem is a pair <x,k>, where x is an 
instance and k > 0 a constant, is said to be fixed-parameter tractable  
(and in class FPT) if there exists and algorithm that solves the problem 
in time O(f(k) |x|α) where |x| is a  measure of the size of x, and f(k) 
an arbitrary function of  k only, and α a constant independent of  k 

and n.  

 



k-Vertex Cover  
 

Example of a problem in FPT  

 Instance: a graph G(V,E) and an integer k > 0. 

 Question: Is there a set V ’ ⊆ V, such that for any edge (u,v) ∈ E, at 
least u or v is a member of  V ’ and |V ’|≤ k ? 

 Decision problem is NP-complete in the strong sense...   

 Approximability of the optimisation problem ? During at least  two 
decades the best approximation algorithm had been one with ρ = 1, 
(gap of 100 %).  

 Recently is has been proved that there is no approximation algorithm 

with ρ < 1/6 (under the P ≠ NP conjecture).  



Parameterized Complexity results 

 Fellows & Langston, 1986: O(f(k) n3). 

 Johnson, ‘87: O(f(k) n2).  
 Fellows, ‘88: O(2k n). 
 Buss, ‘89: O(kn + 2k k2k+2 ). 
 Balasubramanian et al., ‘92: O(kn + 2k k2 ). 
  Papadimitriou & Yannakakis, ‘93: O(3k n). 
 Balasubramanian et al. ‘98: O(kn + 1.32472kk2). 
 Downey, Fellows, & Stege, ‘99: O(kn + 1.31951k k2). 
 Niedermeier and Rossmanith, ’99: O(kn + 1.29175k k2). 
 Stege and Fellows, ’99: O(kn + max{1.25542 k k2, 1.2906kk}). 
 Niedermeier and Rossmanith, ’00: O(kn + 1.2906k ). 
  Chen, Kanj, & Jia, ‘99: O(kn + 1.286k). 
 Chen, Kanj and Xia, ‘05: O(kn + 1.2738k). 

 

 

  

      



 
 
 

Evolving L-Systems  
as an intelligent design approach  

to find classes of 
difficult-to-solve Traveling Salesman 

Problem instances 
 

 
 
 
 
 

Farhan Ahammed and Pablo Moscato 
 
 

In Applications of Evolutionary Computation 
Lecture Notes in Computer Science Volume 6624, 2011, pp 1-11  

 



Introduction 

 Suppose we have: 
 A program (that implements a particular algorithm) 
 An instance that the algorithm solves “really fast”.  

 Question: Can we modify this instance slightly so that 
it becomes “difficult-to-solve” for the given program? 
 The size of the instance does not change 
 Structure is somewhat “preserved” – we’re not creating 

a completely new/different instance 



Introduction Cont’d 

 Build an instance generator to create many (easy-to-
solve) instances 

 Use the instance generator to create similar 
instances that are now much more difficult to solve. 

 Success with evolutionary algorithms.  



 Idea: A TSP instance can be made more difficult for 
an exact algorithm if some cities are “moved” (or 
perturbed) a small distance 

 

 

 Cities A and B have been moved 

 An exact algorithm might now consider the new 
inferior option (connecting A to B) 

On the Performance of Heuristics  
on Finite and Infinite Fractal Instances of the Euclidean Traveling Salesman Problem,  
Pablo Moscato, Michael G. Norman, 10(2), pp. 121–132, Published Online: May 1, 1998. 



Testing our idea 

 Concorde (best exact algorithm in 2007) 

 Instance generators based on iterated-function 
systems and L-systems 
 For each instance generated, certain cities are chosen 

to be perturbed slightly 

 A local search technique is used to find new 
modified fractals that produce difficult-to-solve 
instances 



Our contribution 

 A framework for finding new instance generators 

 Input: 
 A program 
 An instance generator 
 A method of modifying an instance generator 

 Output: 
 A new instance generator, which creates instances of 

the same size and similar structure to the original, but 
more difficult to solve for the given program 



Finding new instance generators 



Lindenmayer Systems (L-Systems) 

 Grammar-based method of describing  

 Example: F\90 F\90 F\90 F 



Quadratic Koch Island 

Quadratic Koch island 
Order n = 3 
Axiom = F+F+F+F 
Rule = F → F+F-F-FF+F+F-F 
δ = 90° 



Quadratic Koch Island 
http://greengene.republika.pl 





Perturbation of a city position 

εϕθε IGFGF @\ 180\ \@←



Comparing L-Systems 

 Each L-System can generate multiple TSP instances of 
various sizes 

 Given two L-Systems L and L’, we can generate 
instances of sizes {i : i=s1, s2,…,sn} 

 Compute the running times required by Concorde 
 Average:  ti, ti’  
 Std Dev:  σi, σi’ 

 The fitness of L’, relative to L is: 

( ) ( )[ ]∑ −−−=
i

iiiiL ttiLf σσ 2'2')'(



Evolutionary “attack” of algorithms 

 Moscato and Norman (’98) showed that 
Peano/Hilbert-like iterative process that can be used 
to generate arbitrary large TSP instances with known 
optimal solutions (to use as testbeds).  

 Cotta and Moscato (’03)* proposed an evolutionary 
computation-based attack on algorithms 
 Sorting algorithms: bubblesort, quicksort, shellsort, etc. 
 Lower bounds for the worst-case scenarios 
 * Applied Mathematics Letters, 16:41–47, 2003. 



Evolutionary “attack” of algorithms 

 Langdon and Poli (’05) used genetic programming to 
find fitness landscapes which highlight strengths and 
weaknesses of different Particle Swarm Optimisation 
algorithms 

 van Hermert (’06) used EAs to find weaknesses in 
combinatorial optimisation algorithms 
 Binary constraint satisfaction, boolean satisfiability and 

traveling salesperson problems 
 Shared patterns among “difficult-to-solve” instances  

 



Evolutionary “attack” of algorithms 

 Most work is concerned with finding instances which 
represent the worst-cases scenarios 

 The situation we’re looking at: 
 Make minor changes to easy-to-solve instances and turn 

them into difficult-to-solve instances OF THE SAME SIZE 
 Use L-Systems to generate instances that Concorde can 

solve (quickly) 
 Modify the instances such that the new instances are 

slightly different, but still have similar “local” 
characteristics 



Leaf2 – Original version 

Fractal of order 12 
754 cities 



Ev-Leaf2 – Evolved instance 

Fractal of order 12 
754 cities 



Comparison of running times 
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Branch-and-bound nodes comparison  
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MNPeano – original design 

MNPeano  
order 7, 

724 cities, 
0.2 seconds for 

Concorde to solve 



Ev-MNPeano – Evolved design 

Ev-MNPeano 
order 7 

724 cities, 
35.4 seconds for 
Concorde to solve 



E-MNPeano (superimposed) 

Ev-MNPeano 
order 7 

724 cities, 
35.4 seconds for 
Concorde to solve 



Leaf2 results  

Order Cities  Time(s)   No. BB Nodes 
   Leaf2 Ev-Leaf2   Leaf2 Ev-Leaf2 
 
8  108   0.366   0.16  1.000   1.000 
9  176   0.525   6.4           1.133   5.533 
10  286   1.152   18.6  1.000   21.800 
11  464   2.564   65.8 1.000   22.467 
12  754   7.901   103.2  1.000   26.467 
13  1218  12.61   5196.3 1.000  497.333 
14  1972  41.03   8442.55  1.667  303.245 



MNPeano results 

Order Cities  Time(s)   No. BB Nodes 
   MNP  Ev-MNP   MNP Ev-MNP 
 
5  180   0.045 0.696  1    1 
6  364   0.094 21.311  1    4 
7  724   0.242 35.380  1    1 
8  1452   0.518 15278.5 1    177 
9  2900  1.264 10916.55  1    18 



Partial Summary 

 Grammars were used to generate instances of a 
combinatorial optimisation problem on which an 
algorithm performs “increasingly badly” (proven 
exponential time?) 

 Instances share the same structure design patterns 

 A local search optimisation technique was used to 
find a modification 
 When applied to the instances, more difficult-to-solve 

instances are found 



Partial Summary (cont) 

 The results show large increases in time and 
decisions needed (B&B nodes) when solving the 
modified instances  
 Same sizes and similar structures to original instances 

 This approach can help with investigating the worst-
case scenarios of algorithms for which a theoretical 
analysis is difficult to perform 



Final points for discussion 

 “P≠NP?” the question is not helpful to develop useful practical solutions  

 Theory of Computer Science “does not scale” (15,000 NP-complete 
problems and counting…). Approximability failed to deliver over four 
decades! 

 The approximability of an NP optimisation problem appears to be 
uncorrelated with the “hardness” of being solved in practice with 
evolutionary programming techniques. Parameterized complexity appears 
to be a better paradigm to study the complexity of recombination 
problems arising in memetic algorithms (Concorde is a good example) 

 The “FPT Toolkit” of Downey & Fellows  can be sometimes reused to solve to 
optimality the “dynastically optimal” problem in recombination and they 
can be useful in practice.  



... And more conclusions...  
 

 Possibility of establishing an algorithmic design framework of recombination 
problems 

 “Hard Puzzles Conjecture” (such that HPC implies P≠NP) (Fellows and Rosamond, in 
In Computation and Logic in the Real World: Third Conference on Computability in 
Europe, CiE 2007).  

“there exist intrinsically hard instances of NP-hard problems  
(e.g., GRAPH 3-COLORING)  

that uniformly defeat all algorithms,  
whose only purpose is to efficiently (i.e. in time O(n^c))  

find a 3-coloring of a single instance of size n,  
when the algorithms are uniformly bounded in size by c.”  

 
 A man-machine approach for creating these instances, will inform the field on the key 

obstructions to develop exact algorithm and practical solutions for important problems.  
 
 
 

 

 



 
Remember, this is just a personal view  
 



Thank you for listening ! 



Conclusions obtained from previous 
work... 
 Hybridization in MAs should continue due to the good results in several 

application areas 

 Complete memetic algorithms -> good research direction.  

 The approximability of an NP optimisation problem appears to be 
uncorrelated with the “hardness” of being solved in practice with 
evolutionary programming techniques.  

 Parameterized complexity appears to be a better paradigm to study the 
complexity of recombination problems arising in memetic algorithms.  

 The “FPT Toolkit” of Downey & Fellows  can be sometimes reused to solve to 
optimality the “dynastically optimal” problem in recombination and they 
can be useful in practice.   



... And more conclusions...  
 Possibility of establishing a solid computational complexity theory of recombination 

problems  

 Classes uPMA and PMA. 

 Computational complexity of multi-parent recombination (... links to Genetic 
Engineering issues ?). 

 Benefits of using methods from Modal Logic and Multi-Agent Belief Logic for the 
introduction of problem (and instance) dependent knowledge.  

 Possibility of using the generated “on-line” knowledge to guide exact and GRASP-like 
algorithms by taking advantage of the learning processes in each agent.  

 Use of Logic Programming and  belief update methods to update the population’s 
shared knowledge.. 



Next steps 

 FPT algorithms and Parameterized Complexity 

 As a “tool” 
 At the recombination step: use of exact algorithms to solve subproblems in the 

metaheuristic. 
 No need to use randomization when a good exact algorithm can 

optimally solve a subproblem of interest. 

 Complete MAs 

 Hybridization with mathematical programming 
commercial solvers 

 Hybridization with logic programming and constraint 
programming solvers 

 Challenges, challenges, challenges !!!! 



Future issues 
 

 MAs with multiple representations 

 Frameworks for MAs to exploit code reuse 

 MemePool Project 

 Polynomial Merger Algorithms 

 Problems outside NP 

 Linear Programming ? 

 Maximum Cardinality Matching ? 

 Problems in PSPACE ? 

 GAs vs MAs  

 Complete Memetic Algorithms 



Next steps 

 Role of FPT algorithms and Parameterized Complexity in MA research 

 As a “tool” 
 At the recombination step: use of exact algorithms to solve subproblems in the 

metaheuristic. 

 No need to use randomization when a good exact algorithm can optimally solve a 
subproblem of interest. 

 Complete MAs 

 Hybridization with mathematical programming commercial solvers 
 

 Hybridization with logic programming and constraint programming solvers 

 Challenges, challenges, challenges !!! 



Next steps 

 FPT algorithms and Parameterized Complexity 

 As a “tool” 
 At the recombination step: use of exact algorithms to solve subproblems in the 

metaheuristic. 
 No need to use randomization when a good exact algorithm can 

optimally solve a subproblem of interest. 

 Complete MAs 

 Hybridization with mathematical programming 
commercial solvers 

 Hybridization with logic programming and constraint 
programming solvers 

 Challenges, challenges, challenges !!!! 



Final Conclusions 

 Hybridization in MAs should continue due to the good results in several 
application areas 

 Complete memetic algorithms -> good research direction.  

 The approximability of an NP optimisation problem appears to be 
uncorrelated with the “hardness” of being solved in practice with 
evolutionary programming techniques.  

 Parameterized complexity appears to be a better paradigm to study the 
complexity of recombination problems arising in memetic algorithms.  

 The “FPT Toolkit” of Downey & Fellows  can be sometimes reused to solve to 
optimality the “dynastically optimal” problem in recombination and they 
can be useful in practice.   



... And more conclusions...  
 

 Possibility of establishing an algorithmic design framework of recombination 
problems 

 “Hard Puzzles Conjecture” (such that HPC implies P≠NP) (Fellows and Rosamond, in 
In Computation and Logic in the Real World: Third Conference on Computability in 
Europe, CiE 2007).  

“there exist intrinsically hard instances of NP-hard problems  
(e.g., GRAPH 3-COLORING)  

that uniformly defeat all algorithms,  
whose only purpose is to efficiently (i.e. in time O(n^c))  

find a 3-coloring of a single instance of size n,  
when the algorithms are uniformly bounded in size by c.”  

 
 A man-machine meta-evolutionary memetic approach for creating these instances, 

will inform the field on the key obstructions to develop exact algorithm and practical 
solutions for important problems.  
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