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Classical box integrals
Bn(s) is the order-s moment of separation between a random point
and a vertex of the n-cube:

Bn(s) := 〈|x |s〉x ∈ [0,1]n =

∫
x∈[0,1]n

|x |s Dx

∆n(s) is the order-s moment of separation between two random
points in the n-cube:

∆n(s) := 〈|x − y |s〉x ,y ∈ [0,1]n =

∫
x ,y∈[0,1]n

|x − y |s DxDy
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String-generated Cantor Set
(SCS) expectations



String-generated Cantor Sets

Ternary expansion for coordinates
of x = (x1, . . . , xn) ∈ [0, 1]n (with
xjk ∈ {0, 1, 2}):

U(c) := #{1’s in ternary vector c}

x1 = 0 . x11 x12 x13 . . .

x2 = 0 . x21 x22 x23 . . .
...

xn = 0 . xn1 xn2 xn3 . . .

↑ ↑ ↑
c1 c2 c3 . . .

Definition (String-generated Cantor set)

Given an embedding space [0, 1]n and an entirely-periodic string
P = P1P2 . . .Pp of non-negative integers with Pi ≤ n for all
i = 1, 2, . . . , p, the String-Generated Cantor Set (SCS),
denoted Cn(P), is the set of all admissible x ∈ [0, 1]n, where

x admissible ⇐⇒ U(ck) ≤ Pk ∀ k ∈ N
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Fractal Box Integrals



Definition of expectation

Definition (Expectation over an SCS)
The expectation of F : Rn → C on an SCS Cn(P) is defined by:

〈F (x) 〉x∈Cn(P) := lim
j→∞

1

N1 · · ·Nj

∑
U(ci )≤Pi

F
(c1

3
+

c2

32
+ · · ·+ cj

3j

)
〈F (x − y) 〉x,y∈Cn(P) := lim

j→∞

1

N2
1 · · ·N2

j

∑
U(ci )≤Pi
U(di )≤Pi

F

(
c1 − d1

3
+ · · ·+ cj − dj

3j

)

when the respective limits exist.



Functional equations for expectations

Proposition (Functional equations for expectations)

For x , y in Rn and appropriate F the expectations pertaining to
the box integrals B and ∆ satisfy the functional equations:

〈F (x)〉x∈Cn(P) =
1∏p

j=1 Nj

∑
U(ck )≤Pk

〈
F

 x

3p
+

p∑
j=1

cj
3j

〉

〈F (x − y)〉x ,y∈Cn(P) =
1∏p

j=1 N2
j

∑
U(bk )≤Pk
U(ak )≤Pk

〈
F

x − y

3p
+

p∑
j=1

(bj − aj)

3j

〉



Special case - second moments

The functional expectation relations lead directly to:

Theorem (Closed forms for B(2,Cn(P)) and ∆(2,Cn(P)))

For any embedding dimension n and SCS Cn(P) the box integral
B(2,Cn(P)) is rational, given by the closed form:

B(2,Cn(P)) =
n

4
+

1

1− 9−p

p∑
k=1

1

9k

∑Pk
j=0

(n
j

)
2n−j(n − j)∑Pk

j=0

(n
j

)
2n−j

and the corresponding box integral ∆(2,Cn(P)) is also rational,
given by:

∆(2,Cn(P)) = 2B(2,Cn(P))− n

2
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Special case - second moments

The classical box integrals over the unit n-cube are:

Bn(2) =
n

3
and ∆n(2) =

n

6

which matches the output of our closed forms when P = n.



Iterated Function System (IFS)
attractor expectations



IFS Attractors

Let (X , d) be a metric space and let (H(X ), h(d)) be the
associated space of non-empty compact subsets of X equipped
with the Hausdorff metric h(d).

Definition
For each i ∈ {1, 2, . . . ,m} (where m ≥ 2), let fi : X → X be a
contraction mapping with contractivity factor 0 < ci < 1 (so
d (fi (x), fi (y)) ≤ ci · d (x , y)) and associated probability 0 < pi < 1
(where

∑m
i=1 pi = 1). A hyperbolic iterated function system

(IFS) is the collection

{X ; f1, . . . , fm}

.
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IFS Attractors

Theorem
Let {X ; f1, . . . , fm} be a hyperbolic IFS. Then the transformation
F : H(X )→ H(X ) defined by F(S) =

⋃m
n=1 fn(S) for all

S ∈ H(X ) is a contraction mapping on H(X ) with contractivity
factor C = max {c1, . . . , cm}.

Theorem (The Contraction Mapping Theorem)

The mapping F possesses a unique fixed point A ∈ H(X ), which
satisfies:

A = F(A) =
m⋃

n=1

fn(A)

and which is referred to as the attractor of the IFS.

We will take as our ‘deterministic fractals’ those sets that can be
so expressed as an IFS attractor.
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IFS Attractors

f1(x , y) =
(x

2
,

y

2

)
f2(x , y) =

(x + 1

2
,

y +
√

3

2

)
f3(x , y) =

(x + 2

2
,

y

2

)



SCS in IFS framework

Any given SCS can be expressed as the attractor of an IFS in the
following manner:

Proposition

The IFS corresponding to the SCS Cn(P) is:

{[0, 1]n ⊂ Rn; f1, f2, . . . , fi , . . . , fm}

where fi (x) =
(

1
3

)p
x +

(
1
3

)
c1i +

(
1
3

)2
c2i + . . .+

(
1
3

)p
cpi for

i ∈ {1, 2, . . . ,m} ranging over all admissible columns ck , where
m =

∏p
k=1 Nk and Nk =

∑Pk
j=0

(n
j

)
2n−j .



Code Space

Definition
Given an IFS {X ; f1, . . . , fm}, the associated code space Σm is
defined as:

Σm := {σ = σ1σ2 . . . | σi ∈ {1, 2, . . . ,m} ∀i ∈ N}

The address function φ : Σm → X is defined by:

φ(σ) := lim
k→∞

fσ1 ◦ fσ2 ◦ . . . ◦ fσk (x)

for any x ∈ A. The attractor of the IFS can also be represented by:

A = {φ(σ)| σ ∈ Σm}
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Expectations on IFS Attractors

Definition (Fundamental definition of expectation)

Let {X ; f1, . . . , fm} be an IFS with attractor A ∈ H(X ). Let
F : X → C be a complex-valued function over X . The expectation
of F over A, 〈F (x)〉x∈A, is defined as:

〈F (x)〉x∈A := lim
j→∞

1

mj

∑
σ|j|∈Σm

F
(
φ(σ|j |)

)
when the limit exists.



Expectations on IFS Attractors

Corollary

(Fundamental definition of separation (using code-space)) Let
{X ; f1, . . . , fm} be an IFS with attractor A ∈ H(X ). Let
F : X → C be a complex-valued function over X . The separation
expectation of F over A, 〈F (x − y)〉x ,y∈A, is defined as:

〈F (x − y)〉x ,y∈A := lim
j→∞

1

m2j

∑
σ|j|∈Σm

∑
τ|j|∈Σm

F
(
φ(σ|j |)− φ(τ|j |)

)
when the limit exists.



The invariant IFS measure

Definition
Let B be a Borel subset of a metric space (X , d). The residence
measure is defined as:

µ(B) := lim
n→∞

1

n

(
#
{

k : f k(x) ∈ B, 1 ≤ k ≤ n
})

The residence measure is a normalised, invariant measure over the
attractor of any IFS.



The invariant IFS measure

Theorem (Elton’s Theorem - special case)

Let (X , d) be a compact metric space and let {X ; f1, . . . , fm} be a
hyperbolic IFS.

Let {xn}∞n=0 denote a chaos game orbit of the IFS
starting at x0 ∈ X , that is,

xn = fσn ◦ . . . ◦ fσ1(x0)

where the maps are chosen independently according to the
probabilities p1, . . . , pm for n ∈ N. Let µ be the unique invariant
measure for the IFS. Then, with probability 1,

lim
n→∞

1

n + 1

n∑
k=0

F (xk) =

∫
X

F (x)dµ(x)
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Expectations over IFS attractors

Corollary

Let {X ; f1, f2, . . . , fm} be a contractive IFS with attractor
A ∈ H(X ). Given a complex-valued function F : X → C, the
expectation of F over A is given by the integral:

〈F (x)〉x∈A =

∫
X

F (x)dµ(x)



Functional equations

Proposition (Functional equations for expectations)

For points x , y in the attractor A of a non-overlapping IFS, the
expectations for a complex-valued function F satisfy the functional
equations:

〈F (x)〉 =
1

m

m∑
j=1

〈F (fj(x))〉

〈F (x − y)〉 =
1

m2

m∑
j=1

m∑
k=1

〈F (fj(x)− fk(y))〉

and more generally

〈F (x1, x2, . . . , xn)〉 =
1

mn

m∑
j1=1

m∑
j2=1

· · ·
m∑

jn=1

〈F (fj1(x1), fj2(x2), . . . , fjn(xn))〉
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Ongoing mathematics and
computation



Exact evaluation of even moments

I Substitute a given IFS and function F into the functional
equation:

〈F (x − y)〉 =
1

m2

m∑
j=1

m∑
k=1

〈F (fj(x)− fk(y))〉

I Simplify the resulting expression into a (linear) combination of
n simpler expectations.

I Feed these expectations back into the functional equation to
generate a system of n (linear) equations in the n unknown
expectations.

I Solve the system of equations and hence determine the
expectation.
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Barnsley Fern

B(2,A) =
2049440803137681904

580160660775546421
≈ 3.5
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Current research: Poles for box integrals

For classical box integrals over unit hypercubes, we have the
following:

Theorem (Absolutely-convergent analytic series for Bn(s))

For all s ∈ C,

Bn(s) =
n1+s/2

s + n

∞∑
k=0

γn−1,k

(
2

n

)k

where the γm,k are fixed real coefficients defined by the
two-variable recursion:

(1 + 2k/m)γm,k = (k − 1− s/2)γm,k−1 + γm−1,k

for m, k ≥ 1, with initial conditions γ0,k := δ0,k , γm,0 := 1.

Note the single pole at s = −n, the negated dimension of the
embedding space.



Current research: Poles for box integrals

For classical box integrals over unit hypercubes, we have the
following:

Theorem (Absolutely-convergent analytic series for Bn(s))

For all s ∈ C,

Bn(s) =
n1+s/2

s + n

∞∑
k=0

γn−1,k

(
2

n

)k

where the γm,k are fixed real coefficients defined by the
two-variable recursion:

(1 + 2k/m)γm,k = (k − 1− s/2)γm,k−1 + γm−1,k

for m, k ≥ 1, with initial conditions γ0,k := δ0,k , γm,0 := 1.

Note the single pole at s = −n, the negated dimension of the
embedding space.



Current research: Poles for box integrals

Theorem (Fractal Dimension with the Open Set Condition)

Suppose that the open set condition holds for the IFS
F = {Rn; f1, f2, . . . , fm} (with associated contraction factors
{c1, c2, . . . , cm}). That is, the attractor contains a non-empty set
O ⊂ A which is open in the metric space A such that

1. fi (O) ∩ fj(O) = ∅ for all i , j ∈ {1, 2, . . . ,m} with i 6= j

2.
⋃m

i=1 fi (O) ⊂ O

Then the Hausdorff dimension and Minkowski box-counting
dimension of the attractor of the IFS are equal and take the value
δ, where:

m∑
i=1

(ci )
δ = 1.



Current research: Poles for box integrals

Using the functional expectation relations, we can prove:

Proposition (SCS: Pole of B(s,Cn(P)))

For any SCS Cn(P), the box integral B(s,Cn(P)) has a pole at

s = −δ(Cn(P)).

Proposition (IFS: Pole of B(s) over Uniform Affine IFSs)

Let F = {X ; f1, f2, . . . , fm} be a contractive affine IFS satisfying
the open set condition with uniform contraction factors; that
is, c1 = c2 = . . . = cm. Then the box integral B(s,A) over the
attractor A ∈ H(X ) has a pole at

s = −δ(A)
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Using the functional expectation relations, we can prove:

Proposition (SCS: Pole of B(s,Cn(P)))

For any SCS Cn(P), the box integral B(s,Cn(P)) has a pole at

s = −δ(Cn(P)).
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Current research: Poles for box integrals

Proposition (IFS: Bounds on pole of ∆(s) over Similarity IFSs)

Let F = {X ; f1, f2, . . . , fm} be a contractive similarity IFS
satisfying the open set condition; that is,
|fi (x)− fi (y)| = ci |x − y | for all i . Then, if the box integral ∆A(s)
over the attractor A ∈ H(X ) has a pole on the real axis, the pole is
bounded by:

log(m)

log(cmax)
≤ s ≤ log(m)

log(cmin)

where cmax = c = max{c1, . . . , cm} and cmin = min{c1, . . . , cm}.



Current research: Odd-order moments
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Table : Closed-form results for B box integrals of various order s over the
unit square and unit cube. For the unit n-cube all integer values for
1 ≤ n ≤ 5 have closed forms. Ti2 is a generalized tangent (polylog) value
and G is Catalan’s constant.



Current research: Odd-order moments
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Current research: Odd-order moments
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Table : Closed-form results for ∆ box integrals of various order s over the
unit square and unit cube. For the unit n-cube all integer values for
1 ≤ n ≤ 5 have closed forms. Ti2 is a generalized tangent (polylog) value
and G is Catalan’s constant.



Current research: Odd-order moments
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Current research: What are the odd moments?

Insight into the evaluation of odd moments can be gleaned from
computer-assisted mathematics. In particular, we are considering a
modified Richardson Extrapolation Technique combined with the
PSLQ Integer Relation Algorithm to hunt for closed forms (joint
work with Nathan Clisby).



Current research: High-precision numerics
A vector x = (x1, x2 · · · xn) of real numbers has an integer
relation if there exists integers ai , not all zero, such that:

n∑
i=1

aixi = 0.

I Given a vector x = (x1, x2 · · · xn), PSLQ iteratively constructs
a sequence of integer-matrices Bn that reduce the vector xBn.

I The process continues until either:
1. The smallest entry of the latest Bn abruptly decreases to

within drops to within ε of 0. This signals the detection of an
integer relation, which PSLQ will produce as one of the
columns of the last Bn.

2. The available precision is exhausted. In this case, PSLQ will
establish a bound on the size of any possible integer relation.

In order to find an integer relation among n terms, PSLQ requires
at least nd accurate digits in all terms, where d is the number of
digits of the largest integer ai .
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Current research: High-precision numerics
The Richardson Extrapolation Technique combines multiple
lower-accuracy evaluations to eliminate the highest-order error
terms and thereby obtain a higher-accuracy evaluation.

I Start with an approximation formula A1(h) for quantity of
interest x , accurate to O(h1). That is,

x = A1(h) + O(h1) = A1(h) + c1h + c2h2 + . . . .

I Thus, halving the step-size h in the power series,

x = A1
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)
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h

2
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4
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I Combine these equations to eliminate c1h, yielding:

x = A2(h)− 1
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4
c3h3 + . . .= A2(h) + O(h2)

where A2(h) = A1
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Current research: High-precision numerics

Successive iterations over smaller step-sizes yield
x = Ak(h) + O(hk), where

Ak(h) = Ak−1

(
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)
+
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)
.

Adapting this process to IFS attractors, Nathan Clisby has
computed 112 digits of B(1,Sierpiński Triangle):

0.6180082171582247074177418624555167834492481641438960879796572765

28949927817241259628464958573670699106107561807 . . .

We are aiming to improve this method by constructing an analogue
of Bulirsch-Stöer extrapolation modified for IFS attractors, wherein
the sequence of estimates is fitted to a rational function of h and
evaluated at h = 0.
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0.6180082171582247074177418624555167834492481641438960879796572765

28949927817241259628464958573670699106107561807 . . .

We are aiming to improve this method by constructing an analogue
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