Binary and Ternary Curves of Fixed Genus and Gonality with Many Points

Jon Grantham
Number Theory Online Conference

June 2020

Center for Computing Sciences
17100 Science Drive • Bowie, Maryland 20715

Work

This is ongoing joint work with Xander Faber.

manypoints.org

- For given (small) finite field and (small) genus, what is the maximum number of points a smooth, projective curve can have?

IDA

manypoints.org

- For given (small) finite field and (small) genus, what is the maximum number of points a smooth, projective curve can have?
- There is a fairly extensive database at manypoints.org.
- For \mathbb{F}_{2} and \mathbb{F}_{3} it looks like:

g	$N_{2}(g)$	$N_{3}(g)$
0	3	4
1	5	7
2	6	8
3	7	10
4	8	12
5	9	13

Gonality

- The gonality γ of a curve X over a field k is the minimum degree of a k-morphism $X \rightarrow \mathbb{P}^{1}$.

Gonality

- The gonality γ of a curve X over a field k is the minimum degree of a k-morphism $X \rightarrow \mathbb{P}^{1}$.
- Gonality 1 curves are isomorphic to \mathbb{P}^{1}, so coincide with genus 0 curves.
- Gonality 2 curves are hyperelliptic, and include elliptic curves (genus 1 and up).
- Gonality 3 curves are known as trigonal curves.
- Why study the maximum number of points a curve can have with fixed genus and gonality?

IDA

- Why study the maximum number of points a curve can have with fixed genus and gonality?
- Van der Geer (2000) asks, "What is the maximum number of rational points on a curve of genus g and gonality γ defined over \mathbb{F}_{q} ?"
or

IDA

- Why study the maximum number of points a curve can have with fixed genus and gonality?
- Van der Geer (2000) asks, "What is the maximum number of rational points on a curve of genus g and gonality γ defined over \mathbb{F}_{q} ?"
or
- It's fun and interesting.

Let's start a table for binary curves

- I'll be concentrating on \mathbb{F}_{2} until further notice.
- Proposition: If $g=0$, then $\gamma=1$. If $g=1$, then $\gamma=2$.

If $g \geq 2$, then $\gamma \leq g+1$.

g	0	1	2	3	4	5
1	3					
2		5	6	$?$	$?$	$?$
3				$?$	$?$	$?$
4				$?$	$?$	$?$
5					$?$	$?$
6						$?$

Hyperelliptic curves

- Proposition: The number of points on a binary curve of gonality γ is $\leq 3 \gamma$.
- Proposition: For each genus $g \geq 2$, there exists a hyperelliptic curve over \mathbb{F}_{2} with 6 rational points.
- Proof: Look at $y^{2}+\left[1+x^{g}(x+1)\right] y=[x(x+1)]^{g-\delta}$, where $\delta=g(\bmod 2)$.

$\boldsymbol{\gamma}$	0	1	2	3	4	5
1	3					
2		5	6	6	6	6
3				$?$	$?$	$?$
4				$?$	$?$	$?$
5					$?$	$?$
6						$?$

Genus 3, Gonality 3

- Proposition: For a curve with rational points, $\gamma \leq g$.

$\boldsymbol{\gamma}$	0	1	2	3	4	5
1	3					
2		5	6	6	6	6
3				7	$?$	$?$
4				$?$	$?$	$?$
5					$?$	$?$
6						$?$

Genus 3, Gonality 4

- A genus-3 curve with rational points must have gonality ≤ 3.
- $\left(x^{2}+x z\right)^{2}+\left(x^{2}+x z\right)\left(y^{2}+y z\right)+\left(y^{2}+y z\right)^{2}+z^{4}=0$ has gonality 4 and no points.
- (Can prove non-hyperelliptic pointless curves of genus 3 have gonality 4.)

Fun facts about genus 4 non-hyperelliptic curves

- Non-hyperelliptic curves of genus 4 can be embedded as the intersection of a quadric surface and a cubic surface.
- If the quadric surface is $x y+z w=0$ or $x y+z^{2}=0$, the curve is trigonal.
- If the quadric surface is $x y+z^{2}+w z+w^{2}=0$, the curve is not.

Genus 4, Gonality 3

- Consider the curve:

$$
\begin{aligned}
x y+z w & =0 \\
x y^{2}+y^{3}+x^{2} z+y^{2} z+x z^{2}+x^{2} w+y^{2} w+x w^{2} & =0 .
\end{aligned}
$$

- It has 8 points and is trigonal.

Genus 4, Gonality 4

- The surface $x y+z^{2}+w z+w^{2}=0$ has only 5 rational points.
- Consider the curve:

$$
\begin{aligned}
x y+z^{2}+z w+w^{2} & =0 \\
x y^{2}+x^{2} z+y^{2} z+y z^{2}+x^{2} w+z^{2} w & =0
\end{aligned}
$$

- It has 5 points.

Genus 4, Pointless Curves

- If a genus 4 curve has gonality 5 , it must be pointless.
- Consider the curve:

$$
\begin{aligned}
x y+z^{2}+z w+w^{2} & =0 \\
x^{3}+y^{3}+z^{3}+y^{2} w+x z w & =0
\end{aligned}
$$

- Not gonality 4 ; look at \mathbb{F}_{4} and \mathbb{F}_{16} points.

$\underline{\text { Updated Table }}$

IDA ${ }^{13320}$

Genus 5, Gonality 3 and 4

- Trigonal curves of genus 5 are birationally equivalent to plane quintics with a multiplicity- 2 singularity.
- This gives an upper bound of $2^{2}+2+1+1$ (based on the size of \mathbb{P}^{2}).
- We achieve this bound with

$$
x y z^{3}+x^{3} z^{2}+y^{3} z^{2}+x^{4} z+x y^{3} z+y^{4} z+x^{4} y+x^{2} y^{3}=0 .
$$

- The genus-5 curves on manypoints.org with 9 points have degree-4 morphisms and thus gonality 4 .

Genus 5, Gonality 5 and 6

- Non-hyperelliptic, non-trigonal genus-5 curves are intersections of three quadric surfaces.
- Can exhaust over pointless genus-5 curves to rule out gonality 6.
- Can exhaust over all genus-5 curves by looking at possible divisors to show that the maximum number of points on a gonality-5 curve is 3 .

Binary Table

IDA ${ }^{16200}$

Start of Ternary Table

Applying what we learned in constructing the binary table, we start with the following for \mathbb{F}_{3} :

IDA

Things we learned about ternary curves

- It's easy to find hyperelliptic curves of genus $3,4,5$ with 8 points.
- An example from [Howe-Lauter-Top, 2003] gives $N_{3}(3,4)=0$.
- We exhibit a genus- 4 curve with gonality 3 and 12 points, thus $N_{3}(4,3)=12$.
- The relevant surface for gonality-4 curves has 10 points; we exhibit such a curve.
- A curve showing $N_{3}(4,5)=0$ is in [Castryck-Tuitman, 2017].
- A search finds a curve showing that $N_{3}(5,3)=12$.
- The manypoints.org example with $N_{3}(5)=13$ has gonality 4.
- An exhaustive search found that $N_{3}(5,5)=4$.
- An exhaustive search showed there is no genus-5, gonality-6 curve.

Ternary Table

$\boldsymbol{\gamma}$	0	1	2	3	4	5
1	3					
2		7	8	8	8	8
3				10	12	12
4				0	10	13
5					0	4
6						

IDA ${ }^{19220}$

Things to Think About

- Things we are thinking about:
- GF(4), GF(5) and GF(7).
- Does there exist a genus-5, gonality- 6 curve over a finite field?
- General construction to show $N_{q}(g, k)=(q+1) k$ for fixed k and large enough q. (Vermeulen has a trigonal construction for GF(2)).
- gonality.org
- Things we are not thinking about:
- Maximum number of points with a given gonality sequence.
- $q>7$ or $g>5$ (except sporadically).

