Robust methods and model selection

Garth Tarr

September 2015

1. The past: robust statistics

2. The present: model selection

3. The future: protein data, meat science, joint modelling, data visualisation...

The past:

Robust statistics

PhD and postdoc at Sydney University

• Inference in quantile regression models

- Robust scale estimator
- Robust covariance and autocovariance (short and long range dependence)
- Robust precision matrix estimation (with regularisation for sparsity)

P_n : our robust scale estimator

• Given data $\mathbf{X} = (X_1, \dots, X_n)$, consider the *U*-statistic based on the pairwise mean kernel,

$$U_n(\mathbf{X}) = \binom{n}{2}^{-1} \sum_{i < j} \frac{X_i + X_j}{2}.$$

• Let $H(t) = P((X_i + X_j)/2 \le t)$ be the cdf of the kernels with corresponding empirical distribution function,

$$H_n(t) = \binom{n}{2}^{-1} \sum_{i < j} \mathbb{1} \left\{ \frac{X_i + X_j}{2} \le t \right\}, \quad \text{for } t \in \mathbb{R}.$$

For $0 , let <math>H_n^{-1}(p) := \inf\{t : H_n(t) \ge p\}$.

• We define P_n as the interquartile range of the pairwise means:

$$P_n = H_n^{-1}(3/4) - H_n^{-1}(1/4).$$

Why another scale estimator?

Location	Scale	Properties
Mean	Standard deviation	Efficient at normal but not robust
Median	Interquartile Range	Robust but not efficient
Hodges-Lehmann estimator	P_n	Good robustness and efficiency properties

- The Hodges-Lehmann estimator of **location** is the median of the pairwise means.
- P_n is the interquartile range of the pairwise means.

Why pairwise means?

Consider 10 observations drawn from $\mathcal{N}(0,1)$.

Bounded influence function

The influence curve for a functional *T* at distribution *F* is

$$IF(x; T, F) = \lim_{\epsilon \downarrow 0} \frac{T((1 - \epsilon)F + \epsilon \delta_x) - T(F)}{\epsilon}$$

where δ_x has all its mass at x.

Influence curve for P_n

Assuming that F has derivative f > 0 on $[F^{-1}(\epsilon), F^{-1}(1 - \epsilon)]$ for all $\epsilon > 0$,

$$IF(x; \mathbf{P}_n, F) = \left[\frac{0.75 - F(2H_F^{-1}(0.75) - x)}{\int f(2H_F^{-1}(0.75) - x)f(x)dx} - \frac{0.25 - F(2H_F^{-1}(0.25) - x)}{\int f(2H_F^{-1}(0.25) - x)f(x)dx} \right]$$

Bounded influence function

Bounded influence function

Properties

- Bounded influence function
- When the underlying observations are independent, P_n is asymptotically normal with variance given by the expected square of the influence function.
- When the underlying data are independent Gaussian, P_n has an asymptotic efficiency of 86%.
- Breakdown value of 13%.

Tarr, Müller, and Weber (2012)

Properties

- Bounded influence function
- When the underlying observations are independent, P_n is asymptotically normal with varaince given by the expected square of the influence function.
- When the underlying data are independent Gaussian, P_n has an asymptotic efficiency of 86%.
- Breakdown value of 13%.

Tarr, Müller, and Weber (2012)

- Also looked at the distribution of the estimator under short and long range dependence
- LRD turned out to be very complicated
- Took a step back and looked at the interquartile range

Tarr, Weber, and Müller (2015)

Cellwise contamination

A key component of my PhD looked at estimating **precision matrices** for data contaminated in a *cellwise* manner.

Important for:

- high dimensional data
- automated data collection and analysis methods
- e.g. -omics type data

Often **sparsity** is assumed, i.e. the precision matrix will have many zero entries.

Financial example

Aim: to estimate the dependence structure with S&P 500 stocks over the period 01/01/2003 to 01/01/2008 (before the GFC).

- We have n = 1258 obervations (trading days) over p = 452 dimensions (stocks).
- Observe $S_{t,j}$ the closing price of stock j on day t for j = 1, ..., p and t = 1, ..., n.
- Look at the return series $X_{t,j} = \log\left(\frac{S_{t,j}}{S_{t-1,j}}\right)$.
- We want to estimate a sparse precision matrix where the zero entries correspond to (conditional) independence between the stocks.

How: using the **graphical lasso** with a robust covariance matrix as the input.

Tarr, Müller, and Weber (2015)

What's the graphical lasso?

The graphical lasso minimises the penalised negative Gaussian loglikelihood: over non-negative definite matrices Θ :

 $f(\mathbf{\Theta}) = \operatorname{tr}(\hat{\mathbf{\Sigma}}\mathbf{\Theta}) - \log |\mathbf{\Theta}| + \lambda ||\mathbf{\Theta}||_1,$

where $\|\Theta\|_1$ is the L_1 norm, λ is a tuning parameter for the amount of shrinkage and $\hat{\Sigma}$ is a sample covariance matrix.

Friedman, Hastie, and Tibshirani (2008)

Why? Sparsity!

Financial example

require(huge)
data(stockdata)
X = log(stockdata\$data[2:1258,]/stockdata\$data[1:1257,])

```
par(mfrow=c(3,2),mar=c(2,4,1,0.1))
```

for(i in 1:6) ts.plot(X[,i],main=stockdata\$info[i,3],ylab="Return")

Classical approach

 Consumer Discretionary Consumer Staples Energy Financials Health Care Industrials Information Technology Materials Telecommunications Services Utilities

Robust approach

Classical approach (extra contamination)

Robust approach (extra contamination)

Take home messages

Robust methods

- Robustness has always been quite niche, but it deserves more attention
- Analysing real data means dealing with errant observations
- Having reliable methods to deal with these observations is important

Cellwise contamination

- With big data comes big problems
- Traditional robust methods can fail
- Downweighting rows is no longer appropriate

The present:

Model selection

Model selection

• Started working in this area last year during a post doc at ANU.

Some notation

- Say we have a *full model* with an $n \times p$ design matrix **X**.
- Let α be any subset of p_{α} distinct elements from $\{1, \ldots, p\}$.
- We can define a $n \times p_{\alpha}$ submodel with design matrix \mathbf{X}_{α} subset from \mathbf{X} by the elements of α .
- Denote the set of all possible models as $\mathcal{A} = \{\{1\}, \dots, \alpha_f\}$.

A smörgåsbord of tuning parameters...

Information Criterion

• Generalised IC: GIC(α ; λ) = $-2 \times \text{LogLik}(\alpha) + \lambda p_{\alpha}$

With important special cases:

- AIC: $\lambda = 2$
- BIC: $\lambda = \log(n)$
- HQIC: $\lambda = 2\log(\log(n))$

Regularisation routines

- Lasso: minimises $-\text{LogLik}(\alpha) + \lambda \|\beta_{\alpha}\|_{1}$
- Many variants of the Lasso, SCAD,...

A stability based approach

Aim

To provide scientists and researchers with tools that give them more information about the model selection choices that they are making.

Method

- interactive graphical tools
- exhaustive searches (where feasible)
- bootstrapping to assess selection stability

Concept of **model stability** independently introduced by Meinshausen and Bühlmann (2010) and Müller and Welsh (2010) for different models.

Diabetes example

Variable	Description	
age	Age	
sex	Gender	
bmi	Body mass index	
map	Mean arterial pressure (average blood pressure)	
tc	Total cholesterol (mg/dL)	
ldl	Low-density lipoprotein ("bad" cholesterol)	
hdl	High-density lipoprotein ("good" cholesterol)	
tch	Blood serum measurement	
ltg	Blood serum measurement	
glu	Blood serum measurement (glucose?)	
У	A quantitative measure of disease progression one year after baseline	

Source: Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., (2004). "Least angle regression. *The Annals of Statistics* 32 (2): 407-499. doi:10.1214/00905360400000067

Variable inclusion plots

Aim

To visualise **inclusion probabilities** as a function of the penalty multiplier $\lambda \in [0, 2\log(n)]$.

Procedure

- 1. Calculate (weighted) bootstrap samples b = 1, ..., B.
- 2. For each bootstrap sample, at each λ value, find $\hat{\alpha}_{\lambda}^{(b)} \in \mathcal{A}$ as the model with smallest $\text{GIC}(\alpha; \lambda) = -2 \times \text{LogLik}(\alpha) + \lambda p_{\alpha}$.
- 3. The inclusion probability for variable x_j is estimated as $\frac{1}{B} \sum_{b=1}^{B} 1\{j \in \hat{\alpha}_{\lambda}^{(b)}\}.$

References

- Müller and Welsh (2010) for linear regression models
- Murray, Heritier, and Müller (2013) for generalised linear models

Diabetes example – VIP

Model stability plots

Aim

To add value to the loss against size plots by choosing a symbol size proportional to a measure of stability.

Procedure

- 1. Calculate (weighted) bootstrap samples b = 1, ..., B.
- 2. For each bootstrap sample, identify the *best* model at each dimension.
- 3. Add this information to the loss against size plot using model identifiers that are proportional to the frequency with which a model was identified as being *best* at each model size.

References

• Murray, Heritier, and Müller (2013) for generalised linear models

Artificial example – Model stability plot

Adaptive fence

Get it on Github 🗘

```
install.packages("devtools")
require(devtools)
install_github("garthtarr/mplot",quick=TRUE)
require(mplot)
```

Main functions

- \cdot af() for the adaptive fence
- \cdot vis() for VIP and model stability plots
- bglmnet() bootstrapping glmnet
- mplot() for an interactive shiny interface

Diabetes example

Interact with it online at garthtarr.com/apps/mplot/ %

Tarr, Müller, and Welsh (2015)

Take home messages

Concept of "model stability"

- Relatively new
- Should be used more often

Still to do:

- Approximating linear mixed models by linear models (with Alan Welsh, ANU)
- Approximating generalised linear models by linear models (with Samuel Mueller, USYD)
- Implement other models, e.g. Cox type models
- \cdot The role of robust analysis in model selection

The future

Projects underway (or soon to be)

Melanoma prognosis prediction using protein data (with Jean Yang, USYD)

 Predicting the eating quality of beef and lamb (with Meat and Livestock Australia + international collaborators)

• Model selection in **joint models** (with Irene Hudson, UON)

 R packages for interactive data visualisation - bringing the power of D3 to R (edgebundleR, pairsD3)

References

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2008. "Sparse Inverse Covariance Estimation with the Graphical Lasso." *Biostatistics* 9 (3): 432–41. doi:10.1093/biostatistics/kxm045.

Meinshausen, N, and P Bühlmann. 2010. "Stability Selection." *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 72 (4): 417–73. doi:10.1111/j.1467-9868.2010.00740.x.

Murray, K, S Heritier, and S Müller. 2013. "Graphical Tools for Model Selection in Generalized Linear Models." *Statistics in Medicine* 32 (25): 4438–51. doi:10.1002/sim.5855.

Müller, S, and AH Welsh. 2010. "On Model Selection Curves." *International Statistical Review* 78 (2): 240–56. doi:10.1111/j.1751-5823.2010.00108.x.

Tarr, G, S Müller, and NC Weber. 2012. "A Robust Scale Estimator Based on Pairwise Means." *Journal of Nonparametric Statistics* 24 (1): 187–99. doi:10.1080/10485252.2011.621424.

———. 2015. "Robust Estimation of Precision Matrices Under Cellwise Contamination." *Computational Statistics & Data Analysis* to appear. doi:10.1016/j.csda.2015.02.005.

Tarr, G, S Müller, and AH Welsh. 2015. *mplot: Graphical Model Stability and Model Selection Procedures*. https://github.com/garthtarr/mplot.

Tarr, G, NC Weber, and S Müller. 2015. "The Difference of Symmetric Quantiles Under Long Range Dependence." *Statistics & Probability Letters* 98: 144–50. doi:10.1016/j.spl.2014.12.022.