The complete classification of unital graph C^* -algebras

Adam P. W. Sørensen

Joint with Søren Eilers, Gunnar Restorff, and Efren Ruiz

July, 2017

UiO **Conversity of Oslo**

Definition

A graph *E* is a 4-tuple (E^0, E^1, r, s) , where E^0 is a countable set of vertices, E^1 is a countable set of edges, and $r, s \colon E^1 \to E^0$ are the range and source maps.

Definition

The graph C^* -algebra, $C^*(E)$, is the universal C^* -algebra generated by:

- ▶ pairwise orthogonal projections $\{p_u \mid u \in E^0\}$, and,
- partial isometries $\{s_e \mid e \in E^1\}$,

subject to the relations:

• $s_e^* s_f = 0$, if $e \neq f$,

$$\flat \ s_e^* s_e = p_{r(e)},$$

▶
$$s_e s_e^* \le p_{s(e)}$$
, and,
▶ $p_u = \sum_{e \in s^{-1}(u)} s_e s_e^*$, if $0 < |s^{-1}(u)| < \infty$.

Examples of graph C^* -algebras

 $\mathcal{C}^*(\mathbb{N}^2)$ is not a graph \mathcal{C}^* -algebra

Examples of graph C^* -algebras

 $C^*(\mathbb{N}^2)$ is not a graph C^* -algebra

Theorem (Rørdam '95)

If E, F are strongly connected finite graphs, not a single cycle, then $C^*(E) \otimes \mathbb{K} \cong C^*(F) \otimes \mathbb{K} \iff K_0(C^*(E)) \cong K_0(C^*(F)).$

Theorem (Restorff '04)

If E, F are finite graphs such that every vertex supports a loop and E, F satisfy condition (K), then

 $C^*(E) \otimes \mathbb{K} \cong C^*(F) \otimes \mathbb{K} \iff FK_R(C^*(E)) \cong FK_R(C^*(F)).$

Theorem (Rørdam '95)

If E, F are strongly connected finite graphs, not a single cycle, then

 $C^*(E)\otimes \mathbb{K}\cong C^*(F)\otimes \mathbb{K}\iff \mathcal{K}_0(C^*(E))\cong \mathcal{K}_0(C^*(F)).$

Theorem (Restorff '04)

If E, F are finite graphs such that every vertex supports a loop and E, F satisfy condition (K), then

 $C^*(E) \otimes \mathbb{K} \cong C^*(F) \otimes \mathbb{K} \iff FK_R(C^*(E)) \cong FK_R(C^*(F)).$

Lemma

If $C^*(E)$ and $C^*(F)$ have the same K-theory and E and F both satisfy a positivity condition, then the shift spaces X_E and X_F are flow equivalent.

Lemma

If X_E and X_F are flow equivalent, then $C^*(E) \otimes \mathbb{K} \cong C^*(F) \otimes \mathbb{K}$.

Lemma

Given a graph G we can find a graph G' such that

 $\triangleright \ C^*(G) \otimes \mathbb{K} \cong C^*(G') \otimes \mathbb{K}.$

- C*(G) and C*(G') have the same K-theory.
- G' satisfies the positivity condition.

Lemma

If $C^*(E)$ and $C^*(F)$ have the same K-theory and E and F both satisfy a positivity condition, then the shift spaces X_E and X_F are flow equivalent.

Lemma

If X_E and X_F are flow equivalent, then $C^*(E) \otimes \mathbb{K} \cong C^*(F) \otimes \mathbb{K}$.

Lemma

Given a graph G we can find a graph G' such that

 $\triangleright \ C^*(G) \otimes \mathbb{K} \cong C^*(G') \otimes \mathbb{K}.$

- C*(G) and C*(G') have the same K-theory.
- G' satisfies the positivity condition.

Lemma

If $C^*(E)$ and $C^*(F)$ have the same K-theory and E and F both satisfy a positivity condition, then the shift spaces X_E and X_F are flow equivalent.

Lemma

If X_E and X_F are flow equivalent, then $C^*(E) \otimes \mathbb{K} \cong C^*(F) \otimes \mathbb{K}$.

Lemma

Given a graph G we can find a graph G' such that

- $\blacktriangleright C^*(G) \otimes \mathbb{K} \cong C^*(G') \otimes \mathbb{K}.$
- C*(G) and C*(G') have the same K-theory.
- *G'* satisfies the positivity condition.

Theorem (Rørdam)

Let E, F be strongly connected finite graphs, not a single cycle. The following are equivalent:

- 1. $C^*(E) \otimes \mathbb{K} \cong C^*(F) \otimes \mathbb{K}$.
- 2. $K_0(C^*(E)) \cong K_0(C^*(F)).$
- 3. E can be transformed into F using flow moves and the Cuntz splice.

Sinks and sources are a dynamical problem.

- Infinite emitters are a different dynamical problem.
- Graphs that do not satisfy condition (K) have infinitely many ideals.
- Old positivity results need to be extended.
- ▶ We run into new positivity problems.

- Sinks and sources are a dynamical problem.
- Infinite emitters are a different dynamical problem.
- Graphs that do not satisfy condition (K) have infinitely many ideals.
- Old positivity results need to be extended.
- ▶ We run into new positivity problems.

- Sinks and sources are a dynamical problem.
- Infinite emitters are a different dynamical problem.
- Graphs that do not satisfy condition (K) have infinitely many ideals.
- Old positivity results need to be extended.
- ▶ We run into new positivity problems.

- Sinks and sources are a dynamical problem.
- Infinite emitters are a different dynamical problem.
- ▶ Graphs that do not satisfy condition (*K*) have infintely many ideals.
- Old positivity results need to be extended.
- We run into new positivity problems.

- Sinks and sources are a dynamical problem.
- Infinite emitters are a different dynamical problem.
- ▶ Graphs that do not satisfy condition (*K*) have infintely many ideals.
- Old positivity results need to be extended.
- We run into new positivity problems.

Positivity problems

Problematic graphs

Theorem

- $\blacktriangleright C^*(E) \otimes \mathbb{K} \cong C^*(F) \otimes \mathbb{K}.$
- We cannot transform E into F using the flow moves and the Cuntz splice.

Positivity problems

Theorem

- $\blacktriangleright C^*(E) \otimes \mathbb{K} \cong C^*(F) \otimes \mathbb{K}.$
- ▶ We cannot transform E into F using the flow moves and the Cuntz splice.

Theorem

The Pulelehua move preserves stable isomorphism.

Theorem

The Pulelehua move preserves stable isomorphism.

Theorem

Let E, F be graphs with finitely many vertices. The following are equivalent:

- 1. $C^*(E) \otimes \mathbb{K} \cong C^*(F) \otimes \mathbb{K}$.
- 2. E can be transformed into F using the flow moves, the Cuntz splice and the Pulelehua move.
- **3**. $FK^+_{R,\gamma}(C^*(E)) \cong FK^+_{R,\gamma}(C^*(F)).$