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Definition and Notation

Let Xt denote the population size at time t.

{Xt : t ∈ R+
0 } is a stochastic process .

Suppose {Xt : t ∈ R+
0 } is a simple birth process (SBP) with the

birth rate λ. Moreover, X0
a.s.
= x0 .

It is Markovian, that is

Pr(Xtn+1 = xn+1|Xtn = xn, . . . , ,Xt1 = x1) = Pr(Xtn+1 = xn+1|Xtn = xn) ,

for all possible values of n and t1, . . . , tn+1 .

The transition probability is equal to

Pr(Xs+t = j |Xs = i) =

(
j − 1

i − 1

)
e−λti (1− e−λt)j−i .

Ali Eshragh FI, stochastic processes and generating functions
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Likelihood Function

Estimating the unknown parameter λ through maximum
likelihood method.

Take the observations Xt1 , . . . ,Xtn at observation times
0 < t1 ≤ . . . ≤ tn ≤ τ , respectively.

Construct the likelihood function

L(x1, . . . , xn; λ) = Pr(Xt1 = x1, . . . ,Xtn = xn|λ)

=
n∏

i=1

(
xi − 1

xi−1 − 1

)
e−λ(ti−ti−1)xi−1(1− e−λ(ti−ti−1))xi−xi−1 .

Ali Eshragh FI, stochastic processes and generating functions
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Observation Times

When should we take the observations Xt1 , . . . ,Xtn?

Presumably, a good choice is finding observation times t1, . . . , tn
such that the expected volume of information obtained from
these observations to estimate the unknown parameter λ is
maximized.

A good tool to measure the expected volume of information gained
from a set of observations is the Fisher Information.

It can be shown that

FI(Xt1
,...,Xtn )

(λ) = EL

[(
d

dλ
ln(L(Xt1 , . . . ,Xtn ; λ))

)2
]
.

Hence, (t∗1 , . . . , t
∗
n ) ∈ argmax{FI(Xt1

,...,Xtn )
(λ)} .

Ali Eshragh FI, stochastic processes and generating functions
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Fisher Information and Optimal Observation Times

Proposition (Becker and Kersting, 1983)

The Fisher information for a SBP with the parameter λ, the
initial value of x0 and the observation times of (t1, . . . , tn) is as
follows:

FI(Xt1 ,··· ,Xtn )
(λ) = x0

n∑
i=1

(ti − ti−1)2

e−λti−1 − e−λti
.

Optimal Observation Times (Becker and Kersting, 1983)

t∗i ≈
3

λ
log

(
1 +

i

n
(e

λτ
3 − 1)

)
for i = 1, . . . ,n

Ali Eshragh FI, stochastic processes and generating functions
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Definition and Notation

Suppose that at each observation time, we can count the
population, partially.

At each observation time, each individual can be counted
independently with probability p.

Yt is the number of individuals observed at at time t.

(Yt |Xt = x) ∼ Binomial(x,p).

We call the stochastic process {Yt : t ∈ R+
0 } the

partially-observable simple birth process (POSBP) with
parameters (λ, p).

POSBP(λ, 1) ≡ SBP(λ) .

Ali Eshragh FI, stochastic processes and generating functions
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Markovian or non-Markovian?

Theorem (Bean, Elliott, Eshragh and Ross; 2015)

The POSBP {Yt : t ∈ R+
0 } with parameters (λ, p) is not

Markovian.

However,

Pr(Yt1 = yt1 , . . . ,Ytn = ytn |Xt1 = xt1 , . . . ,Xtn = xtn)

=
n∏

i=1

Pr(Yti = yti |Xti = xti ) .

Ali Eshragh FI, stochastic processes and generating functions
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Likelihood Function

The likelihood function:

L(yt1 , . . . , ytn ; λ, p) = Pr(Yt1 = yt1 , . . . ,Ytn = ytn)

=
∑

xt1 ,...,xtn

n∏
i=1

(
xti
yti

)
pyiqxti−yti

(
xti − 1

xti−1 − 1

)
υ
xti−1

i−1,i (1− υi−1,i )xti−xti−1 ,

where q := 1− p and υi−1,i := e−λ(ti−ti−1) .

Ali Eshragh FI, stochastic processes and generating functions
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Truncated Summation

Fisher Information:

FI(Yt1 ,...,Ytn )
(λ) =

∞∑
ytn=0

· · ·
∞∑

yt1=0

(
dL(yt1 ,...,ytn ;λ,p)

dλ )2

L(yt1 , . . . , ytn ; λ, p)
.

By exploiting Chebyshev’s inequality, we have

Pr
(
E [Z ]− 12

√
Var(Z ) ≤ Z ≤ E [Z ] + 12

√
Var(Z )

)
≥ 1− 1

122

= 99.3% .

Ali Eshragh FI, stochastic processes and generating functions



Simple Birth Process
Partially-Observable Simple Birth Process

Fisher Information

Truncating the Infinite Sums
Applied Probability
Experimental Mathematics

Truncated Summation

Fisher Information:

FI(Yt1 ,...,Ytn )
(λ) =

∞∑
ytn=0

· · ·
∞∑

yt1=0

(
dL(yt1 ,...,ytn ;λ,p)

dλ )2

L(yt1 , . . . , ytn ; λ, p)
.

By exploiting Chebyshev’s inequality, we have

Pr
(
E [Z ]− 12

√
Var(Z ) ≤ Z ≤ E [Z ] + 12

√
Var(Z )

)
≥ 1− 1

122

= 99.3% .

Ali Eshragh FI, stochastic processes and generating functions



Simple Birth Process
Partially-Observable Simple Birth Process

Fisher Information

Truncating the Infinite Sums
Applied Probability
Experimental Mathematics

Theoretical Result

Proposition (Bean, Eshragh and Ross; 2015)

For a POSBP with n observations and time horizon τ , the optimal
observation time for the last observation, that is t∗n , is equal to τ .

Proposition (Bean, Eshragh and Ross; 2015)

If t∗1 , . . . , t
∗
n are optimal observation times for a POSBP with parameters

(λ, p) and time-horizon τ , then
t∗1
τ
, . . . ,

t∗n
τ

are optimal observation
times for a POSBP with parameters (λτ , p) and time-horizon 1.

Henceforth, without loss of generality, we assume that
τ = 1 (= t∗n) .

Ali Eshragh FI, stochastic processes and generating functions
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Results for λ = 2, n = 2 and t∗2 = τ = 1

Optimal observation time t∗1 vs. p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

p

t 1*
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The Chain Rule

The likelihood function

L(yt1 , yt2 ; λ, p)= Pr(Yt2 = yt2 |Yt1 = yt1 , λ) Pr(Yt1 = yt1 |λ) .

Accordingly,

log (L(yt1 , yt2 ; λ, p))= log (Pr(Yt2 = yt2 |Yt1 = yt1 , λ))

+ log (Pr(Yt1 = yt1 |λ)) .

Fisher Information:

FI(Yt1 ,Yt2 )
(λ) = FI(Yt2 |Yt1 )

(λ) + FI(Yt1 )
(λ) .

Ali Eshragh FI, stochastic processes and generating functions
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Experimental Mathematics Approach

Construct the generating function for the likelihood function:

φ(u1, . . . , un) =
∞∑

ytn=0

· · ·
∞∑

yt1=0

LYn(y1, . . . , yn; λ, p)
n∏

i=1

u
yti
i

=
P(u1, . . . , un)

Q(u1, . . . , un)

Once the polynomial functions P and Q are found, one can
construct a recursive equation for the likelihood function by
equating
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Results for λ = 2, n = 3 and t∗3 = τ = 1

Optimal observation times t∗1 (blue) and t∗2 (green) vs. p
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Summary

The Fisher Information for the POSBP

is analytically intractable even when there is only one observation;

could be calculated numerically only for λ ≤ 2 and n = 2 in
significant run-time by truncating the infinite sums;

was approximated very quickly for any value of λ and n = 2 by
exploiting Applied Probability concepts;

could be calculated numerically for any values of λ and n in
significant run-time by utilizing Experimental Mathematics
techniques; and surprisingly could reduce the run-time by a factor
of at least 32, 000.
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End

Thank you · · · Questions?
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