Fisher Information, stochastic processes and generating functions

Ali Eshragh

(Joint work with Nigel Bean, Joshua Ross and Bruno Salvy)

School of Mathematical and Physical Sciences \& CARMA
The University of Newcastle, Australia

CARMA Workshop in Honour of Brailey Sims
August, 2015 - Newcastle

Motivation

- Epidemiology

Motivation

- Epidemiology

- A Growing Population

Simple Birth Process

Definition and Notation

- Let X_{t} denote the population size at time t.

Definition and Notation

- Let X_{t} denote the population size at time t.
- $\left\{X_{t}: t \in \mathrm{R}_{0}^{+}\right\}$is a stochastic process .

Definition and Notation

- Let X_{t} denote the population size at time t.
- $\left\{X_{t}: t \in \mathrm{R}_{0}^{+}\right\}$is a stochastic process.
- Suppose $\left\{X_{t}: t \in \mathrm{R}_{0}^{+}\right\}$is a simple birth process (SBP) with the birth rate λ. Moreover, $X_{0} \stackrel{\text { a.s. }}{=} x_{0}$.

Definition and Notation

- Let X_{t} denote the population size at time t.
- $\left\{X_{t}: t \in \mathrm{R}_{0}^{+}\right\}$is a stochastic process .
- Suppose $\left\{X_{t}: t \in \mathrm{R}_{0}^{+}\right\}$is a simple birth process (SBP) with the birth rate λ. Moreover, $X_{0} \stackrel{\text { d.s.s. }}{=} x_{0}$.
- It is Markovian, that is

$$
\operatorname{Pr}\left(X_{t_{n+1}}=x_{n+1} \mid X_{t_{n}}=x_{n}, \ldots, X_{t_{1}}=x_{1}\right)=\operatorname{Pr}\left(X_{t_{n+1}}=x_{n+1} \mid X_{t_{n}}=x_{n}\right),
$$

for all possible values of n and t_{1}, \ldots, t_{n+1}.

Definition and Notation

- Let X_{t} denote the population size at time t.
- $\left\{X_{t}: t \in \mathrm{R}_{0}^{+}\right\}$is a stochastic process .
- Suppose $\left\{X_{t}: t \in \mathrm{R}_{0}^{+}\right\}$is a simple birth process (SBP) with the birth rate λ. Moreover, $X_{0} \stackrel{\text { d.s.s. }}{=} x_{0}$.
- It is Markovian, that is
$\operatorname{Pr}\left(X_{t_{n+1}}=x_{n+1} \mid X_{t_{n}}=x_{n}, \ldots, X_{t_{1}}=x_{1}\right)=\operatorname{Pr}\left(X_{t_{n+1}}=x_{n+1} \mid X_{t_{n}}=x_{n}\right)$,
for all possible values of n and t_{1}, \ldots, t_{n+1}.
- The transition probability is equal to

$$
\operatorname{Pr}\left(X_{s+t}=j \mid X_{s}=i\right)=\binom{j-1}{i-1} e^{-\lambda t i}\left(1-e^{-\lambda t}\right)^{j-i}
$$

Likelihood Function

- Estimating the unknown parameter λ through maximum likelihood method.

Likelihood Function

- Estimating the unknown parameter λ through maximum likelihood method.
- Take the observations $X_{t_{1}}, \ldots, X_{t_{n}}$ at observation times $0<t_{1} \leq \ldots \leq t_{n} \leq \tau$, respectively.

Likelihood Function

- Estimating the unknown parameter λ through maximum likelihood method.
- Take the observations $X_{t_{1}}, \ldots, X_{t_{n}}$ at observation times $0<t_{1} \leq \ldots \leq t_{n} \leq \tau$, respectively.
- Construct the likelihood function

$$
\mathcal{L}\left(x_{1}, \ldots, x_{n} ; \lambda\right)=\operatorname{Pr}\left(X_{t_{1}}=x_{1}, \ldots, X_{t_{n}}=x_{n} \mid \lambda\right)
$$

Likelihood Function

- Estimating the unknown parameter λ through maximum likelihood method.
- Take the observations $X_{t_{1}}, \ldots, X_{t_{n}}$ at observation times $0<t_{1} \leq \ldots \leq t_{n} \leq \tau$, respectively.
- Construct the likelihood function

$$
\begin{aligned}
& \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \lambda\right)=\operatorname{Pr}\left(X_{t_{1}}=x_{1}, \ldots, X_{t_{n}}=x_{n} \mid \lambda\right) \\
& \quad=\prod_{i=1}^{n}\binom{x_{i}-1}{x_{i-1}-1} e^{-\lambda\left(t_{i}-t_{i-1}\right) x_{i-1}}\left(1-e^{-\lambda\left(t_{i}-t_{i-1}\right)}\right)^{x_{i}-x_{i-1}} .
\end{aligned}
$$

Observation Times

- When should we take the observations $X_{t_{1}}, \ldots, X_{t_{n}}$?

Observation Times

- When should we take the observations $X_{t_{1}}, \ldots, X_{t_{n}}$?
- Presumably, a good choice is finding observation times t_{1}, \ldots, t_{n} such that the expected volume of information obtained from these observations to estimate the unknown parameter λ is maximized.

Observation Times

- When should we take the observations $X_{t_{1}}, \ldots, X_{t_{n}}$?
- Presumably, a good choice is finding observation times t_{1}, \ldots, t_{n} such that the expected volume of information obtained from these observations to estimate the unknown parameter λ is maximized.
- A good tool to measure the expected volume of information gained from a set of observations is the Fisher Information.

Observation Times

- When should we take the observations $X_{t_{1}}, \ldots, X_{t_{n}}$?
- Presumably, a good choice is finding observation times t_{1}, \ldots, t_{n} such that the expected volume of information obtained from these observations to estimate the unknown parameter λ is maximized.
- A good tool to measure the expected volume of information gained from a set of observations is the Fisher Information.
- It can be shown that

$$
\mathcal{F} \mathcal{I}_{\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)}(\lambda)=E_{\mathcal{L}}\left[\left(\frac{d}{d \lambda} \ln \left(\mathcal{L}\left(X_{t_{1}}, \ldots, X_{t_{n}} ; \lambda\right)\right)\right)^{2}\right] .
$$

Observation Times

- When should we take the observations $X_{t_{1}}, \ldots, X_{t_{n}}$?
- Presumably, a good choice is finding observation times t_{1}, \ldots, t_{n} such that the expected volume of information obtained from these observations to estimate the unknown parameter λ is maximized.
- A good tool to measure the expected volume of information gained from a set of observations is the Fisher Information.
- It can be shown that

$$
\mathcal{F} \mathcal{I}_{\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)}(\lambda)=E_{\mathcal{L}}\left[\left(\frac{d}{d \lambda} \ln \left(\mathcal{L}\left(X_{t_{1}}, \ldots, X_{t_{n}} ; \lambda\right)\right)\right)^{2}\right] .
$$

- Hence, $\left(t_{1}^{*}, \ldots, t_{n}^{*}\right) \in \operatorname{argmax}\left\{\mathcal{F} \mathcal{I}_{\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)}(\lambda)\right\}$.

Fisher Information and Optimal Observation Times

Proposition (Becker and Kersting, 1983)

The Fisher information for a SBP with the parameter λ, the initial value of x_{0} and the observation times of $\left(t_{1}, \ldots, t_{n}\right)$ is as follows:

$$
\mathcal{F} \mathcal{I}_{\left(X_{t_{1}}, \cdots, x_{t_{n}}\right)}(\lambda)=x_{0} \sum_{i=1}^{n} \frac{\left(t_{i}-t_{i-1}\right)^{2}}{e^{-\lambda t_{i-1}}-e^{-\lambda t_{i}}}
$$

Fisher Information and Optimal Observation Times

Proposition (Becker and Kersting, 1983)

The Fisher information for a SBP with the parameter λ, the initial value of x_{0} and the observation times of $\left(t_{1}, \ldots, t_{n}\right)$ is as follows:

$$
\mathcal{F} \mathcal{I}_{\left(X_{t_{1}}, \cdots, x_{t_{n}}\right)}(\lambda)=x_{0} \sum_{i=1}^{n} \frac{\left(t_{i}-t_{i-1}\right)^{2}}{e^{-\lambda t_{i-1}}-e^{-\lambda t_{i}}}
$$

Optimal Observation Times (Becker and Kersting, 1983)

$$
\mathrm{t}_{\mathbf{i}}^{*} \approx \frac{3}{\lambda} \log \left(1+\frac{\mathbf{i}}{\mathrm{n}}\left(\mathrm{e}^{\frac{\lambda \tau}{3}}-1\right)\right) \quad \text { for } \mathrm{i}=1, \ldots, n
$$

Definition and Notation

- Suppose that at each observation time, we can count the population, partially.

Definition and Notation

- Suppose that at each observation time, we can count the population, partially.
- At each observation time, each individual can be counted independently with probability \mathbf{p}.

Definition and Notation

- Suppose that at each observation time, we can count the population, partially.
- At each observation time, each individual can be counted independently with probability \mathbf{p}.
- $\mathbf{Y}_{\mathbf{t}}$ is the number of individuals observed at at time t.

Definition and Notation

- Suppose that at each observation time, we can count the population, partially.
- At each observation time, each individual can be counted independently with probability \mathbf{p}.
- $\mathbf{Y}_{\mathbf{t}}$ is the number of individuals observed at at time t.
- $\left(Y_{t} \mid X_{t}=x\right) \sim \operatorname{Binomial}(\mathbf{x}, \mathbf{p})$.

Definition and Notation

- Suppose that at each observation time, we can count the population, partially.
- At each observation time, each individual can be counted independently with probability \mathbf{p}.
- $\mathbf{Y}_{\mathbf{t}}$ is the number of individuals observed at at time t.
- $\left(Y_{t} \mid X_{t}=x\right) \sim \operatorname{Binomial}(\mathbf{x}, \mathbf{p})$.
- We call the stochastic process $\left\{Y_{t}: t \in \mathrm{R}_{0}^{+}\right\}$the partially-observable simple birth process (POSBP) with parameters (λ, p).

Definition and Notation

- Suppose that at each observation time, we can count the population, partially.
- At each observation time, each individual can be counted independently with probability \mathbf{p}.
- $\mathbf{Y}_{\mathbf{t}}$ is the number of individuals observed at at time t.
- $\left(Y_{t} \mid X_{t}=x\right) \sim \operatorname{Binomial}(\mathbf{x}, \mathbf{p})$.
- We call the stochastic process $\left\{Y_{t}: t \in \mathrm{R}_{0}^{+}\right\}$the partially-observable simple birth process (POSBP) with parameters (λ, p).
- $\operatorname{POSBP}(\lambda, 1) \equiv \operatorname{SBP}(\lambda)$.

Markovian or non-Markovian?

Theorem (Bean, Elliott, Eshragh and Ross; 2015)

The POSBP $\left\{Y_{t}: t \in \mathrm{R}_{0}^{+}\right\}$with parameters (λ, p) is not Markovian.

Markovian or non-Markovian?

Theorem (Bean, Elliott, Eshragh and Ross; 2015)

The POSBP $\left\{Y_{t}: t \in \mathrm{R}_{0}^{+}\right\}$with parameters (λ, p) is not Markovian.

- However,

$$
\begin{aligned}
\operatorname{Pr}\left(Y_{t_{1}}=\right. & \left.y_{t_{1}}, \ldots, Y_{t_{n}}=y_{t_{n}} \mid X_{t_{1}}=x_{t_{1}}, \ldots, X_{t_{n}}=x_{t_{n}}\right) \\
& =\prod_{i=1}^{n} \operatorname{Pr}\left(Y_{t_{i}}=y_{t_{i}} \mid X_{t_{i}}=x_{t_{i}}\right)
\end{aligned}
$$

Likelihood Function

- The likelihood function:

$$
\mathcal{L}\left(y_{t_{1}}, \ldots, y_{t_{n}} ; \lambda, p\right)=\operatorname{Pr}\left(Y_{t_{1}}=y_{t_{1}}, \ldots, Y_{t_{n}}=y_{t_{n}}\right)
$$

Likelihood Function

- The likelihood function:

$$
\begin{aligned}
& \mathcal{L}\left(y_{t_{1}}, \ldots, y_{t_{n}} ; \lambda, p\right)=\operatorname{Pr}\left(Y_{t_{1}}=y_{t_{1}}, \ldots, Y_{t_{n}}=y_{t_{n}}\right) \\
& =\sum_{x_{t_{1}}, \ldots, x_{t_{n}}} \prod_{i=1}^{n}\binom{x_{t_{i}}}{y_{t_{i}}} p^{y_{i}} q^{x_{t_{i}}-y_{t_{i}}}\binom{x_{t_{i}}-1}{x_{t_{i}-1}-1} v_{i-1, i}^{x_{t_{i}-1}}\left(1-v_{i-1, i}\right)^{x_{t_{i}}-x_{t_{i}-1}}
\end{aligned}
$$

where $q:=1-p$ and $v_{i-1, i}:=e^{-\lambda\left(t_{i}-t_{i-1}\right)}$.

Truncated Summation

- Fisher Information:

$$
\mathcal{F} \mathcal{I}_{\left(Y_{t_{1}}, \ldots, Y_{t_{n}}\right)}(\lambda)=\sum_{y_{t_{n}}=0}^{\infty} \cdots \sum_{y_{t_{1}}=0}^{\infty} \frac{\left(\frac{d \mathcal{L}\left(y_{t_{1}}, \ldots, y_{t_{n}} ; \lambda, p\right)}{d \lambda}\right)^{2}}{\mathcal{L}\left(y_{t_{1}}, \ldots, y_{t_{n}} ; \lambda, p\right)}
$$

Truncated Summation

- Fisher Information:

$$
\mathcal{F} \mathcal{I}_{\left(Y_{t_{1}}, \ldots, Y_{t_{n}}\right)}(\lambda)=\sum_{y_{t_{n}}=0}^{\infty} \cdots \sum_{y_{t_{1}}=0}^{\infty} \frac{\left(\frac{d \mathcal{L}\left(y_{t_{1}}, \ldots, y_{t_{n}} ; \lambda, p\right)}{d \lambda}\right)^{2}}{\mathcal{L}\left(y_{t_{1}}, \ldots, y_{t_{n}} ; \lambda, p\right)}
$$

- By exploiting Chebyshev's inequality, we have

$$
\begin{aligned}
\operatorname{Pr}(E[Z]-12 \sqrt{\operatorname{Var}(Z)} \leq Z \leq E[Z]+12 \sqrt{\operatorname{Var}(Z)}) & \geq 1-\frac{1}{12^{2}} \\
& =99.3 \%
\end{aligned}
$$

Theoretical Result

Proposition (Bean, Eshragh and Ross; 2015)

For a POSBP with n observations and time horizon τ, the optimal observation time for the last observation, that is t_{n}^{*}, is equal to τ.

Theoretical Result

Proposition (Bean, Eshragh and Ross; 2015)

For a POSBP with n observations and time horizon τ, the optimal observation time for the last observation, that is t_{n}^{*}, is equal to τ.

Proposition (Bean, Eshragh and Ross; 2015)

If $t_{1}^{*}, \ldots, t_{n}^{*}$ are optimal observation times for a POSBP with parameters (λ, p) and time-horizon τ, then $\frac{\mathbf{t}_{1}^{*}}{\tau}, \ldots, \frac{\mathrm{t}_{n}^{*}}{\tau}$ are optimal observation times for a POSBP with parameters $(\boldsymbol{\lambda} \tau, p)$ and time-horizon 1.

Theoretical Result

Proposition (Bean, Eshragh and Ross; 2015)

For a POSBP with n observations and time horizon τ, the optimal observation time for the last observation, that is t_{n}^{*}, is equal to τ.

Proposition (Bean, Eshragh and Ross; 2015)

If $t_{1}^{*}, \ldots, t_{n}^{*}$ are optimal observation times for a POSBP with parameters (λ, p) and time-horizon τ, then $\frac{\mathbf{t}_{1}^{*}}{\tau}, \ldots, \frac{\mathrm{t}_{n}^{*}}{\tau}$ are optimal observation times for a POSBP with parameters $(\boldsymbol{\lambda} \tau, p)$ and time-horizon 1.

- Henceforth, without loss of generality, we assume that $\tau=1\left(=\mathrm{t}_{\mathrm{n}}^{*}\right)$.

Simple Birth Process

Truncating the Infinite Sums
Applied Probability
Experimental Mathematics

Results for $\lambda=2, n=2$ and $t_{2}^{*}=\tau=1$

- Optimal observation time t_{1}^{*} vs. p

The Chain Rule

- The likelihood function

$$
\mathcal{L}\left(y_{t_{1}}, y_{t_{2}} ; \lambda, p\right)=\operatorname{Pr}\left(Y_{t_{2}}=y_{t_{2}} \mid Y_{t_{1}}=y_{t_{1}}, \lambda\right) \operatorname{Pr}\left(Y_{t_{1}}=y_{t_{1}} \mid \lambda\right) .
$$

The Chain Rule

- The likelihood function

$$
\mathcal{L}\left(y_{t_{1}}, y_{t_{2}} ; \lambda, p\right)=\operatorname{Pr}\left(Y_{t_{2}}=y_{t_{2}} \mid Y_{t_{1}}=y_{t_{1}}, \lambda\right) \operatorname{Pr}\left(Y_{t_{1}}=y_{t_{1}} \mid \lambda\right)
$$

- Accordingly,

$$
\begin{aligned}
& \log \left(\mathcal{L}\left(y_{t_{1}}, y_{t_{2}} ; \lambda, p\right)\right)= \log (\\
&\left(\operatorname{Pr}\left(Y_{t_{2}}=y_{t_{2}} \mid Y_{t_{1}}=y_{t_{1}}, \lambda\right)\right) \\
&+\log \left(\operatorname{Pr}\left(Y_{t_{1}}=y_{t_{1}} \mid \lambda\right)\right)
\end{aligned}
$$

The Chain Rule

- The likelihood function

$$
\mathcal{L}\left(y_{t_{1}}, y_{t_{2}} ; \lambda, p\right)=\operatorname{Pr}\left(Y_{t_{2}}=y_{t_{2}} \mid Y_{t_{1}}=y_{t_{1}}, \lambda\right) \operatorname{Pr}\left(Y_{t_{1}}=y_{t_{1}} \mid \lambda\right) .
$$

- Accordingly,

$$
\begin{aligned}
& \log \left(\mathcal{L}\left(y_{t_{1}}, y_{t_{2}} ; \lambda, p\right)\right)= \log (\\
&\left(\operatorname{Pr}\left(Y_{t_{2}}=y_{t_{2}} \mid Y_{t_{1}}=y_{t_{1}}, \lambda\right)\right) \\
&+\log \left(\operatorname{Pr}\left(Y_{t_{1}}=y_{t_{1}} \mid \lambda\right)\right)
\end{aligned}
$$

- Fisher Information:

$$
\mathcal{F} \mathcal{I}_{\left(Y_{t_{1}}, Y_{t_{2}}\right)}(\lambda)=\mathcal{F} \mathcal{I}_{\left(Y_{t_{2}} \mid Y_{t_{1}}\right)}(\lambda)+\mathcal{F} \mathcal{I}_{\left(Y_{t_{1}}\right)}(\lambda)
$$

Results for $\lambda=2, n=2$ and $t_{2}^{*}=\tau=1$

- Optimal observation time t_{1}^{*} vs. p

Experimental Mathematics Approach

- Construct the generating function for the likelihood function:

$$
\phi\left(u_{1}, \ldots, u_{n}\right)=\sum_{y_{t_{n}}=0}^{\infty} \cdots \sum_{y_{t_{1}}=0}^{\infty} \mathcal{L}_{Y_{n}}\left(y_{1}, \ldots, y_{n} ; \lambda, p\right) \prod_{i=1}^{n} u_{i}^{y_{t_{i}}}
$$

Experimental Mathematics Approach

- Construct the generating function for the likelihood function:

$$
\begin{aligned}
\phi\left(u_{1}, \ldots, u_{n}\right) & =\sum_{y_{t_{n}}=0}^{\infty} \ldots \sum_{y_{t_{1}}=0}^{\infty} \mathcal{L}_{Y_{n}}\left(y_{1}, \ldots, y_{n} ; \lambda, p\right) \prod_{i=1}^{n} u_{i}^{y_{t_{i}}} \\
& =\frac{P\left(u_{1}, \ldots, u_{n}\right)}{Q\left(u_{1}, \ldots, u_{n}\right)}
\end{aligned}
$$

Experimental Mathematics Approach

- Construct the generating function for the likelihood function:

$$
\begin{aligned}
\phi\left(u_{1}, \ldots, u_{n}\right) & =\sum_{y_{t_{n}}=0}^{\infty} \cdots \sum_{y_{t_{1}}=0}^{\infty} \mathcal{L}_{Y_{n}}\left(y_{1}, \ldots, y_{n} ; \lambda, p\right) \prod_{i=1}^{n} u_{i}^{y_{t_{i}}} \\
& =\frac{P\left(u_{1}, \ldots, u_{n}\right)}{Q\left(u_{1}, \ldots, u_{n}\right)}
\end{aligned}
$$

- Once the polynomial functions P and Q are found, one can construct a recursive equation for the likelihood function by equating

$$
Q\left(u_{1}, \ldots, u_{n}\right) \sum_{y_{n}=0}^{\infty} \cdots \sum_{y_{1}=0}^{\infty} \mathcal{L}_{Y_{n}}\left(y_{1}, \ldots, y_{n} ; \lambda, p\right) \prod_{i=1}^{n} u_{i}^{y_{t_{i}}} \equiv P\left(u_{1}, \ldots, u_{n}\right) .
$$

Truncating the Infinite Sums
Applied Probability
Experimental Mathematics

Results for $\lambda=2, n=3$ and $t_{3}^{*}=\tau=1$

- Optimal observation times t_{1}^{*} (blue) and t_{2}^{*} (green) vs. p

Ali Eshragh \quad FI, stochastic processes and generating functions

Simple Birth Process

Summary

The Fisher Information for the POSBP

Summary

The Fisher Information for the POSBP

- is analytically intractable even when there is only one observation;

Summary

The Fisher Information for the POSBP

- is analytically intractable even when there is only one observation;
- could be calculated numerically only for $\lambda \leq 2$ and $n=2$ in significant run-time by truncating the infinite sums;

Summary

The Fisher Information for the POSBP

- is analytically intractable even when there is only one observation;
- could be calculated numerically only for $\lambda \leq 2$ and $n=2$ in significant run-time by truncating the infinite sums;
- was approximated very quickly for any value of λ and $n=2$ by exploiting Applied Probability concepts;

Summary

The Fisher Information for the POSBP

- is analytically intractable even when there is only one observation;
- could be calculated numerically only for $\lambda \leq 2$ and $n=2$ in significant run-time by truncating the infinite sums;
- was approximated very quickly for any value of λ and $n=2$ by exploiting Applied Probability concepts;
- could be calculated numerically for any values of λ and n in significant run-time by utilizing Experimental Mathematics techniques;

Summary

The Fisher Information for the POSBP

- is analytically intractable even when there is only one observation;
- could be calculated numerically only for $\lambda \leq 2$ and $n=2$ in significant run-time by truncating the infinite sums;
- was approximated very quickly for any value of λ and $n=2$ by exploiting Applied Probability concepts;
- could be calculated numerically for any values of λ and n in significant run-time by utilizing Experimental Mathematics techniques; and surprisingly could reduce the run-time by a factor of at least 32, 000 .

Simple Birth Process

Truncating the Infinite Sums
Applied Probability
Experimental Mathematics

End

Thank you ... Questions?

