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Fourier transforms and bandlimited signals

Fourier transform: f € LY(R)

o0

FHO =9 = [ (e o

—00

Bandlimited signals: Given € > 0, let

PWgq = {f € L2(R); f(€) = 0 for |¢] > Q/2}.



Spectral concentration problem

Let T,Q > 0.

= sup{/ () dt; f € PWq, ||If|l2=1}.



Spectral concentration problem

Let T,Q > 0.

_— / (O de: £ € PWg, |fll2 = 1},
Time- and bandlimiting projections

QTf(t) =1_7 m(t)f(t), Paf(t)= (1[—9/2,9/2]'?)V(t)-

Pa Q1 : PWo — PWjq is self-adjoint, compact.
Eigenvalues \o > A1 > --- > X,--- >0

Eigenfunctions ¢, ¢1, ..., ¢n,... (Slepian functions)



Slepian properties

{9j}329 an o.n.b. for for PWq

Double orthogonality: {¢; = )\;1/2QT¢J.}1920 o.n.b. for L2[- T, T].



Slepian properties

{#j};2o an o.n.b. for for PWq

Double orthogonality: {¢>J = )\ 1/2QT¢J ©o 0.n.b. for L2[—T, T].

Fourier self-similarity: ¢; <C_,§> =+ %QT(ﬁj(f)
|/ €A

Theorem (Landau and Widom 1980)
If c =2QT, there are :
> approximately ¢ eigenvalues ~ 1
> approximately log c eigenvalues in the “plunge region”
> after that the eigenvalues decay quickly:
Ay ~ 2m(c/4)?™L /(n1)?

Numerical difficulties in solving PoQt¢; = v;9;.
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The “lucky accident”

Let
Pey = (1 — t2)y" — 2ty' + 2t?y.

Solutions of
Pep = xp (1)

are known as PSWFs of order zero {w,(,c)} (or prolates).

Eigenvalues x, of P£m) are well-separated — efficient Galerkin

methods for computation of prolates:

o
v = BiPx
k=0



The “lucky accident”

Theorem (Slepian and Pollak, BSTJ (1) 1961)
§°) commutes with P. @1
Corollary

(()C,Z = ¢£71’C/2), i.e., Slepians are prolates!



c=5,n=0,1,2,3
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Bandpass prolates
Let 0 < ¢’ < c< o0, Peev = P — Pj. and

PWc,c/ = {f e PW,; If\(g) =0 for |§‘ < C/} — PW, © PW...



Bandpass prolates
Let 0 < ¢’ < c< o0, Peev = P — Pj. and
PW, o = {f € PW,; f(&) =0 for |¢| < ¢'} = PW, © PW,.
A bandpass prolate is an eigenfunction of Pc o/ Q:

(" sin(a(t — s)) cos(b(t — s))
Pecuf(t) = [ o

. (c+¢) (c—¢)
th = , =
W1 a > >

f(s)ds




Bandpass prolates
Let0<c’<C<OO' Pc,c’:PZC_Pécand
PW, o = {f € PW,; F(€) =0 for €| < '} = PW, & PW,.

A bandpass prolate is an eigenfunction of Pc o/ Q:

Po o Quf(t) = /_1 sin(a(t —bs()t) iong(t —s)) F(s) ds
o (c+d) . (c=C)
with a = 5 b="
Out of luck

Theorem (Morrison: QAM (21) 1963)

There is no second or fourth order self-adjoint linear differential
operator with polynomial coefficients which commutes with L



Method 1: Prolate series

We seek eigenfunctions v of P Q.
Theorem (H., Lakey: JFAA (19) 2013)

If ) is an eigenfunction of P. . Q with eigenvalue 1 then

v=>"" a,,qﬁff) with a = (ag, a1, ..., an,...)" satisfying
pa = (I — R)Aa

where \ = diag (Ao, A1, ... ) and Rj, = <PC’¢£’C)’ ¢J('C)>



Method 1: Prolate series

We seek eigenfunctions v of P Q.
Theorem (H., Lakey: JFAA (19) 2013)

If ) is an eigenfunction of P. . Q with eigenvalue 1 then

¢ _ 22020 an¢$7C) Wlth a—= (a07 317 ey an, - )T Satisfying
= (I — R)Aa
where A = diag (Ao, A1, ...) and Rj, = <PC’¢£’C)’ ¢J('C)>

o= | 0 e de - iy PR ACEACE




Computing bandpass prolates
Byerly identities:

GG +1) = n(n+ 1))/; PaP; = (2 = 1)(P,P; — PjPy)|:.

b
(xXn — X)) / Sndj = (£2 — 1)(dp; — djbn)| it

b b
00 =3 CuPy= [ =3 Culu | PP
j ? Jok ?



Computing bandpass prolates
Byerly identities:

GG+1)—n(n+ 1))/b PoP; = (2 = 1)(PyP; — PjPa)| 0

t=b

g / bndy = (82— 1)( B — S6m)|=°

b b
00 =3 CuPy= [ =3 Culu | PP
] a ik a

b n_ b
[t e oo
(2n -1)
- (2n+1)

b

b
/ Pn—l'Dn—H + (2’7_ 1)Qn—lon’a

where Q,, = — Pn_1).

P
2n+1( ntl
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Method 2: Modulated prolate series

With ¢ = =, consider the functions
ol () = % gP(t)  (b=c—C).

The collection {¢£,f[f/); n>0, o ==}isan o.n.b. for PW, o.

o 4(e,c).
no “n¥'no -

We seek eigenfunctions of the form f =)



Method 2: Modulated prolate series

With ¢ = =, consider the functions
ol () = % gP(t)  (b=c—C).

The collection {qﬁ(c D p > 0, 0 = £} isan o.n.b. for PW, ..
o 4(e,c).

n,oc “n¥'n,o

We seek eigenfunctions of the form f =)
Af = P o Qif = Za P.. C,ngb(cc
= Z Z co Quobs), ol ))plee)
- Zana z Qe )l

- Zana Z Cnama (;S(CC)'



Computing bandpass prolates

Equivalently

Ca% = \a°

with

/¢cc)

(CC)

ma’

(¢) dt



Computing bandpass prolates

Equivalently
Ca% =\’

with
L/¢CC ()0 ¢) dt.
! b b
( ")z/ 6O (1)68) (1) dt = Anbpm
-1
1

e = [ el o o) ae
~1



Computing bandpass prolates

1 .
Com(s) = / G (1)) .

Then J
EC(S) = 2miAC(s) c(0) =1

where

1

T __1\n+<L
Ane = [ uon(@ont)du = TS ED g ),

SO
C(S) — e27risA



Method 3

C(s) = VABe*™ QBT /\
where

Qjk = /11 tP;(t)Py(t) dt.



Method 3

C(s) = VABe2™@BT /A
where

Qi = /11 tP;(t)Pi(t) dt.

Theorem
If n < N, then

|

Tn(Q") = Tal(T2nQ)"]

TN<i(27Tis(T2NQ))"> B TN(e27risQ)‘

n!
n=0

(2rs)N
242 Nt
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Method 4: Bessel series

Pa(2)Pm(2) = > ontom—2k+1

T A kAkAn—k (2n+2m—4k+1
k=0

> Pntm—2k(2)

an+m—k

(2k — 1) (2k)!
where a, = pr = 2R(KI2"




Method 4: Bessel series

m
Am_kakan—k (2n+2m —4k + 1
Pa(2)Pm(z) = > 2" Pt
(2)Pm(2) 2 Ak <2n+2m—2k+1 tm—2k(2)

(2k — 1) (2k)!
where a, = pr = 2R(KI2"

Theorem
With Q as above and Cp, 1 =

Am—k3kAn—k <2n +2m — 4k + 1>

Antm—k 2n+2m—2k+1

e*),, Z\/n—l— )(m + )C,,mk/ e P m—ok(t) dt

1
\/27T(n + = 2 )imtm Z Cn m,k51/2J1/2+n+m—2k(5)




Enjoy your sabbatical!
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