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Lyapunov’s Second Method

Theorem: Given ẋ = f(x) with f(0) = 0. If there exists a continuously di↵er-

entiable V : Rn ! R�0 that is positive definite and radially unbounded and

satisfies

d
dtV (x(t)) = hrV (x), f(x)i = LfV (x) < 0

then the origin is globally asymptotically stable for ẋ = f(x).
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A Lyapunov function, V , can be thought of as a generalized energy with the

origin being a point of minimum energy.
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Jurdjevic-Quinn (Nonlinear Damping)

V. Jurdjevic and J. P. Quinn, “Controllability and Stability”, J. Diff. Eqs., 1978.

Idea: d
dtV (x(t)) = hrV (x), f(x) + g(x)ui = LfV (x) + LgV (x)u

Definition: A control Lyapunov function for ẋ = f(x)+ g(x)u is a continuously

di↵erentiable function V : Rn ! R�0 such that

LgV (x) = 0 ) LfV (x) < 0 for x 6= 0.



Jurdjevic-Quinn (Nonlinear Damping)

V. Jurdjevic and J. P. Quinn, “Controllability and Stability”, J. Diff. Eqs., 1978.

Idea: d
dtV (x(t)) = hrV (x), f(x) + g(x)ui = LfV (x) + LgV (x)u

Jurdjevic-Quinn (Nonlinear Damping) Control: If V is such that LfV  0,

then u = �LgV globally asymptotically stabilizes the origin.

Definition: A control Lyapunov function for ẋ = f(x)+ g(x)u is a continuously

di↵erentiable function V : Rn ! R�0 such that

LgV (x) = 0 ) LfV (x) < 0 for x 6= 0.
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Jurdjevic-Quinn (Nonlinear Damping) Control: If V is such that LfV  0,

then u = �LgV globally asymptotically stabilizes the origin.

Definition: A control Lyapunov function for ẋ = f(x)+ g(x)u is a continuously

di↵erentiable function V : Rn ! R�0 such that

LgV (x) = 0 ) LfV (x) < 0 for x 6= 0.



Universal Controllers

E. D. Sontag, “A Universal Construction of Artstein’s Theorem on Nonlinear Stabilization”, Sys. Ctrl. Lett., 1989.

Definition: A control Lyapunov function for ẋ = f(x)+ g(x)u is a continuously

di↵erentiable function V : Rn ! R�0 such that

LgV (x) = 0 ) LfV (x) < 0 for x 6= 0.
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Question: Given a control Lyapunov function, is it always possible to find a

continuous feedback stabilizer?
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Differential Inclusions - Controllability
System with input: ẋ = f(x, u), x 2 Rn, u 2 U ⇢ Rm

Di↵erential inclusion: ẋ 2 F (x) := co

 
[

u2U
f(x, u)

!

Comparison Functions: continuous ↵ : R�0 ! R�0

• Class-K1: zero at zero, strictly increasing, unbounded.

• Class-L: strictly decreasing, zero in the limit
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KL-stability: there exists � 2 KL so that |�(t, x)|  �(|x|, t), 8x 2 Rn
, t 2 R�0.

Strong KL-stability: All solutions � 2 S(x)
Weak KL-stability: At least one solution � 2 S(x)
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Uniform Global Asymptotic Controllability: There exists � 2 KL so that, for each
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Smooth Lyapunov Function?
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Consider ẋ 2 B, x 2 R2
. The set A :=

�
(x1, x2) 2 R2
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weakly KL-stable.
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↵1,↵2 2 K1 so that

↵1(|x|A)  V (x)  ↵2(|x|A), and

min

w2B
hrV (x), wi  �V (x).
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Covering Condition

F.H. Clarke, Y.S. Ledyaev, R.J. Stern, “Asymptotic stability and smooth Lyapunov functions”, J. Differential Equations, 1998.
R.W. Brockett, “Asymptotic stability and feedback stabilization”, Differential Geometric Control Theory, 1983

Theorem: Suppose F : Rn ◆ Rn

satisfies certain basic conditions (e.g., convex) and

there exists a continuously di↵erentiable weak Lyapunov function; i.e., a continuously

di↵erentiable function V : Rn ! R�0 and functions ↵1,↵2 2 K1 such that, for all

x 2 Rn

↵1(|x|)  V (x)  ↵2(|x|), and

min

w2F (x)
hrV (x), wi  �V (x).

Then, for any � 2 R
>0 there exists � 2 R

>0 such that

B� ⇢ F (B
�

) :=

[

x2B�

F (x).
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Brockett’s (Nonholonomic) Integrator

ẋ1 = u1

ẋ2 = u2

ẋ3 = x1u2 � x2u1



Another Example

Brockett’s Condition: Continuous feedback stabilizer implies for every � 2 R>0 there

exists � 2 R>0 such that

B� ⇢
[

u2U
f(x, u).
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Another Example

Brockett’s Condition: Continuous feedback stabilizer implies for every � 2 R>0 there

exists � 2 R>0 such that

B� ⇢
[

u2U
f(x, u).

Consider ẋ1 = u2u3, ẋ2 = u1u3, ẋ3 = u1u2, u 2 B.

Does not satisfy Brockett’s condition ) no continuous feedback stabiliser.

To deal with the most general cases, we will need to resort to nonsmooth CLFs and

discontinuous feedbacks.

V (x) = |x|2 is a smooth CLF

) inclusion covering condition.
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Artstein’s Circles
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ẋ1 = (x2
1 � x

2
2)u

ẋ2 = 2x1x2u

u > 0 ) counterclockwise

u < 0 ) clockwise (reversed for lower circles)
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Nonsmooth Control Lyapunov Functions

C.M. Kellett and A.R. Teel, “Weak converse Lyapunov theorems and control Lyapunov functions”, SIAM J. Control Opt., 2004.
F. Clarke, “Lyapunov functions and discontinuous stabilizing feedback”, Annual Reviews in Control, 2011.

Lower Dini Derivative:

DV (x;w) := lim inf

⇠!w,"!0+

V (x+ "⇠)� V (x)

"

= lim inf

"!0+

V (x+ "w)� V (x)

"

Definition: For ẋ = f(x, u), x 2 Rn

, u 2 U ⇢ Rm

, a locally Lipschitz

function V : Rn ! R�0 is a nonsmooth CLF if there exist ↵1,↵2 2 K1 so

that, for every x 2 Rn

↵1(|x|)  V (x)  ↵2(|x|) and

min

w2f(x,U)
DV (x;w) < 0.
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Theorem:If ẋ = f(x, u), x 2 Rn
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, is asymptotically control-

lable to the origin then there exists a control Lyapunov function.

Similar definition with proximal subgradients: sup

⇣2@PV (x)
min

u2U
h⇣, f(x,w)i < 0.
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, u 2 U ⇢ Rm

, a locally Lipschitz

function V : Rn ! R�0 is a nonsmooth CLF if there exist ↵1,↵2 2 K1 so

that, for every x 2 Rn

↵1(|x|)  V (x)  ↵2(|x|) and

min

w2f(x,U)
DV (x;w) < 0.
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x
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(a) let s 2 Bn(x, r) be such that V (s)  V (⇠) for all ⇠ 2 Bn(x, r);

(b) let ↵ 2 U be such that hx� s, f(x,↵)i  � c
LV

|x� s|.

3. Take u = ↵(x).

For V : Rn ! R and `1 < `2, level set V(`1, `2) := {x 2 Rn
: `1  V (x)  `2}.
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2. Measure x. For each x 2 V(`1, `2 + "2),

(a) let s 2 Bn(x, r) be such that V (s)  V (⇠) for all ⇠ 2 Bn(x, r);

(b) let ↵ 2 U be such that hx� s, f(x,↵)i  � c
LV

|x� s|.

3. Take u = ↵(x).

For V : Rn ! R and `1 < `2, level set V(`1, `2) := {x 2 Rn
: `1  V (x)  `2}.
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Note: Doing so destabilises the origin.
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Idea: In order to implement constraints, design a feedback

controller to render the constraints (locally) unstable.
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, f(0) = 0. {0} is unstable if and
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↵1(|x|)  V (x)  ↵2(|x|)

d
dtV (x(t)) = hrV (x), f(x)i > 0.
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Idea: In order to implement constraints, design a feedback

controller to render the constraints (locally) unstable.

Theorem: Consider ẋ = f(x), x 2 Rn
, f(0) = 0. {0} is unstable if and

only if there exists V : Rn ! R�0, ↵1,↵2 2 K1 so that, for all x 2 Rn

↵1(|x|)  V (x)  ↵2(|x|)

d
dtV (x(t)) = hrV (x), f(x)i > 0.

Idea: Patch together stabilising / destabilising controllers (e.g., via hysteresis).
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Choose u = �LgV (x).



Complete Lyapunov Functions

Definition: A complete Lyapunov function for ẋ = f(x) is a continuous function

V : Rn ! R which is constant on the chain-recurrent set, including attractors and

repellers, and decreasing along flows elsewhere.

Definition (and existence) of a complete control Lyapunov function?

Theorem: If ⇤ is a compact invariant set containing all ↵ and !-limit sets (plus

some technical assumptions) then there exists a smooth complete Lyapunov function

decreasing outside of ⇤.

Z. Nitecki and M. Shub, “Filtrations, Decompositions, and Explosions”, American J. Math., 1975.
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Topological Perplexity

Topological Perplexity (Baryshnikov): The sum total of the Betti numbers.

A lower bound on the decision space, or, how often do I really have to choose a

direction?



Summary

• Lyapunov-based feedback design

• Necessity of nonsmooth Lyapunov functions (and discontinuous feedback)

• Destabilising constraints

• Patching feedback controllers, Complete Lyapunov Functions, Topological 
Perplexity


