

H. Bonnel

Semivectorial Bilevel Optimization on Riemannian Manifolds

H. Bonnel, L. Todjihoundé, C. Udrişte

Université de la Nouvelle-Calédonie (ERIM) France

SPCOM15, February 8-12, 2015, Adelaide, South Australia

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem

2 Preliminary results

3 A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem

・ロト・西ト・田・・田・ ひゃぐ

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

4 Optimality Conditions

An existence result for the pessimistic problem

▲日 > ▲聞 > ▲臣 > ▲臣 > ―臣 ― ②

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB σ)

Optimality Conditions

An existence result for the pessimistic problem Scalar upper level (leader's objective) $f: M_1 \times M_2 \to \mathbb{R}$ $\min_{x} \min_{y} f(x, y),$ subject to

Vector lower level (follower's objective) $F: M_1 \times M_2 \to \mathbb{R}'$, for each fixed $x \in M_1$, y is a σ -efficient (Pareto) solution for

 $\mathsf{MIN}_{C} F(x,y'), \quad \text{s.t.} \quad y' \in M_2.$

・ロット (雪) (日) (日) (日)

Optimistic case = the followers chose a best solution for the leader among their best responses

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem Scalar upper level (leader's objective) $f: M_1 \times M_2 \to \mathbb{R}$ $\min_{x} \min_{y} f(x, y),$ subject to

Vector lower level (follower's objective) $F: M_1 \times M_2 \to \mathbb{R}^r$,

for each fixed $x \in M_1$, y is a σ -efficient (Pareto) solution for

 $\mathsf{MIN}_{c} F(x,y'), \quad \text{s.t.} \quad y' \in M_2.$

(日) (日) (日) (日) (日) (日) (日)

Optimistic case = the followers chose a best solution for the leader among their best responses

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem Scalar upper level (leader's objective) $f: M_1 \times M_2 \to \mathbb{R}$ $\min_{x} \min_{y} f(x, y),$ subject to

Vector lower level (follower's objective) $F: M_1 \times M_2 \to \mathbb{R}^r$,

for each fixed $x \in M_1$, y is a σ -efficient (Pareto) solution for

 $\underset{v'}{\mathsf{MIN}_C} F(x,y'), \quad \text{s.t.} \quad y' \in M_2.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Optimistic case = the followers chose a best solution for the leader among their best responses

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem Scalar upper level (leader's objective) $f: M_1 \times M_2 \to \mathbb{R}$ $\min_{x} \min_{y} f(x, y),$ subject to

Vector lower level (follower's objective) $F: M_1 \times M_2 \to \mathbb{R}^r$,

for each fixed $x \in M_1$, y is a σ -efficient (Pareto) solution for

 $\underset{\mathcal{W}}{\mathsf{MIN}}_{C} F(x, y'), \quad \text{s.t.} \quad y' \in M_2.$

Optimistic case = the followers chose a best solution for the leader among their best responses

 M_1, M_2 connected Riemannian manifolds verifying Hopf-Rinow theorem; *C* is a closed, convex, pointed cone, int $(C) \neq \emptyset$, and $\sigma \in \{w, p\}$.

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem **Pessimistic** case = the followers may chose a worst solution for the leader among their best responses

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem **Pessimistic** case = the followers may chose a worst solution for the leader among their best responses

Scalar upper level (leader's objective) $f: M_1 \times M_2 \to \mathbb{R}$ min sup f(x, y),

subject to

Nector lower level (follower's objective) $F : M_1 \times M_2 \to \mathbb{R}^r$ for each fixed $x \in M_1$, y is a σ -efficient (Pareto) solution for

 $\underset{v'}{\text{MIN}}_{C} F(x, y'), \quad \text{s.t.} \quad y' \in M_2.$

・ロト・西ト・西ト・西ト・日・ シック

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB σ)

Optimality Conditions

An existence result for the pessimistic problem **Pessimistic** case = the followers may chose a worst solution for the leader among their best responses

Scalar upper level (leader's objective) $f: M_1 \times M_2 \to \mathbb{R}$ $\min_x \sup_y f(x, y),$

subject to

Vector lower level (follower's objective) $F : M_1 \times M_2 \to \mathbb{R}^r$, for each fixed $x \in M_1$, *y* is a σ -efficient (Pareto) solution for

 $\mathsf{MIN}_C F(x, y'), \quad \text{s.t.} \quad y' \in M_2.$

 M_1, M_2 connected Riemannian manifolds verifying Hopf-Rinow theorem; *C* is a closed, convex, pointed cone, int (*C*) $\neq \emptyset$, and $\sigma \in \{w, p\}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Particular cases

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB σ)

Optimality Conditions

An existence result for the pessimistic problem

Classical bilevel optimization (optimistic or pessimistic case)

We obtain the problem

 $\min_{x} \min_{y} f(x, y) \quad (\text{resp.} \ \min_{x} \sup_{y} f(x, y)) \quad \text{subject to}$ $y \in \psi(x),$

where

$$\psi(x) = \operatorname*{argmin}_{y'} \left(F(x, y') \quad \text{s.t.} \quad h(y') = 0 \right),$$

considering $Z = \mathbb{R}$, $M_1 = \mathbb{R}^m$, $M_2 = \{y \in \mathbb{R}^{n+p} | h(y) = 0\}$, where $h : \mathbb{R}^{n+p} \to \mathbb{R}^p$ is smooth and regular.

Particular cases

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem

Optimization over the σ -efficient set

We obtain the problem

 $\min f(y)$ subject to

y is a σ -efficient solution for the vector optimization problem

 $MIN_C F(y')$ subject to $y' \in S_0$,

▲□▶▲□▶▲□▶▲□▶ □ のQ@

considering $M_1 = \{x_0\}, f(\cdot) = f(x_0, \cdot), F(\cdot) = F(x_0, \cdot), M_2 = S_0 \subset \mathbb{R}^n$.

Some references

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem

- HB, J. Morgan: *Semivectorial bilevel optimization problem: Penalty approach,* J. Optim. Theory Appl. 131, 365-382 (2006)
- HB: Optimality condition for the semivectorial bilevel optimization problem, Pac. J. Optim. 2, 447-468 (2006)
- Z. Ankhili and A. Mansouri: *An exact penalty on bilevel* programs with linear vector optimization lower level, Eur. J. Oper. Res. 197, 36-41 (2009)
- G. Eichfelder: *Multiobjective bilevel optimization*, Math. Program., Ser. A (2010) 123:419-449
- Y.Zheng and Z. Wan: A solution method for semivectorial bilevel programming problem via penalty method, J. Appl. Math. Comput., 37, 207-219, (2011)

Some references

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem

- H. Calvete and C. Galé: On linear bilevel problems with multiple objectives at the lower level, Omega 39 (2011) 33-40. Elsevier.
- S. Dempe, N. Gadhi and A. B. Zemkoho: New optimality conditions for the semivectorial bilevel optimization problem, Optimization on line, Nov. 2011, http://www.optimization – online.org/DB_HTML/2011/11/3228.html
- HB, J. Morgan: *Semivectorial Bilevel Convex Optimal Control Problems: Existence Results*, SIAM J. Control & Optimization, Vol. 50, No. 6, 3224-3241, 2012.
- HB, J. Morgan: *Optimality Conditions for Semivectorial Bilevel Convex Optimal Control Problems*, Computational and Analytical Mathematics In Honor of Jonathan Borwein?s 60th Birthday, Publisher : Springer, Editors : David H. Bailey, Heinz H. Bauschke, Peter Borwein, Frank Garvan, Michel Th?era, Jon D. Vanderwerff, Henry Wolkowicz, pp.43-74, ISBN : 978-1-4614-7620-7, 01/2013.

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem In the existing literature all SVB studied are considered in the Euclidean (or Hilbert, Banach) spaces.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem In the existing literature all SVB studied are considered in the Euclidean (or Hilbert, Banach) spaces.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

In my talk I consider the Riemannian setting case.

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem

Why Riemannian ?

- Constrained optimization problems can be seen as unconstrained ones from the Riemannian geometry viewpoint;
- Moreover some nonconvex optimization problems in the Euclidean setting may become convex introducing an appropriate Riemannian metric.
 - In the last years researchers began the study of optimization problems in the Riemannain setting.

・ コット (雪) (小田) (コット 日)

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem

Why Riemannian ?

- Constrained optimization problems can be seen as unconstrained ones from the Riemannian geometry viewpoint;
- Moreover some nonconvex optimization problems in the Euclidean setting may become convex introducing an appropriate Riemannian metric.
- In the last years researchers began the study of optimization problems in the Riemannain setting.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem

Why Riemannian ?

- Constrained optimization problems can be seen as unconstrained ones from the Riemannian geometry viewpoint;
- Moreover some nonconvex optimization problems in the Euclidean setting may become convex introducing an appropriate Riemannian metric.
- In the last years researchers began the study of optimization problems in the Riemannain setting.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem

Why Riemannian ?

- Constrained optimization problems can be seen as unconstrained ones from the Riemannian geometry viewpoint;
- Moreover some nonconvex optimization problems in the Euclidean setting may become convex introducing an appropriate Riemannian metric.
- In the last years researchers began the study of optimization problems in the Riemannain setting.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem

Why Riemannian ?

- Constrained optimization problems can be seen as unconstrained ones from the Riemannian geometry viewpoint;
- Moreover some nonconvex optimization problems in the Euclidean setting may become convex introducing an appropriate Riemannian metric.
- In the last years researchers began the study of optimization problems in the Riemannain setting.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem

Introduction

2 Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

4 Optimality Conditions

An existence result for the pessimistic problem

イロト 不得 トイヨト イヨト

3

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem

Let M be a connected Riemannian manifold. The following statements are equivalent:

M is complete as a metric space.

If M is geodesically complete (i.e. all the geodesics are defined on \mathbb{R}).

イロン 不得 とくほ とくほ とうほ

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem Let M be a connected Riemannian manifold. The following statements are equivalent:

• M is complete as a metric space.

M is geodesically complete (i.e. all the geodesics are defined on \mathbb{R}).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem Let M be a connected Riemannian manifold. The following statements are equivalent:

M is complete as a metric space.

If a geodesically complete (i.e. all the geodesics are defined on ℝ).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem Let M be a connected Riemannian manifold. The following statements are equivalent:

M is complete as a metric space.

If a geodesically complete (i.e. all the geodesics are defined on ℝ).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem Let M be a connected Riemannian manifold. The following statements are equivalent:

M is complete as a metric space.

- If a geodesically complete (i.e. all the geodesics are defined on ℝ).
- Closed and bounded sets on M are compact.

Moreover, each of the statements (1-3) implies that any two points of M can be joined by a minimizing geodesic.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem Let M be a connected RM verifying the Hopf-Rinow theorem.

Let $C \subset \mathbb{R}^r$ be a convex pointed cone^{*a*}, closed with int $(C) \neq \emptyset$.

For any $y, y' \in \mathbb{R}^r$ we denote

• $y \preccurlyeq y' \iff y' - y \in C$

• $y \prec y' \iff y' - y \in int(C)$

• $y \not\supseteq y' \iff y' - y \in C \setminus \{0\}.$

We have

 \preccurlyeq is a partial order relation on \mathbb{R}^r .

 \prec and \preceq are transitive relations.

^{*a*}i.e. $\mathbb{R}_+C + C \subset C, \ C \cap (-C) = \{0\}$

・ロト < 団ト < 巨ト < 巨ト < 巨 < のへの

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem Let M be a connected RM verifying the Hopf-Rinow theorem.

Let $\mathcal{C} \subset \mathbb{R}^r$ be a convex pointed cone^{*a*}, closed with int $(\mathcal{C}) \neq \emptyset$.

For any $y, y' \in \mathbb{R}^r$ we denote

• $y \preccurlyeq y' \iff y' - y \in C$

• $y \prec y' \iff y' - y \in int(C)$

• $y \preceq y' \iff y' - y \in C \setminus \{0\}.$

We have

 \preccurlyeq is a partial order relation on \mathbb{R}^r .

 \prec and \preceq are transitive relations.

^{*a*}i.e. $\mathbb{R}_+C + C \subset C$, $C \cap (-C) = \{0\}$

・・

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem Let M be a connected RM verifying the Hopf-Rinow theorem.

Let $\mathcal{C} \subset \mathbb{R}^r$ be a convex pointed cone^{*a*}, closed with int $(\mathcal{C}) \neq \emptyset$.

For any $y, y' \in \mathbb{R}^r$ we denote

• $y \preccurlyeq y' \iff y' - y \in C$

• $y \prec y' \iff y' - y \in int(C)$

• $y \not\supseteq y' \iff y' - y \in C \setminus \{0\}.$

We have

 $y \prec y' \Longrightarrow y \precneqq y' \Longrightarrow y \preccurlyeq y'.$

 \preccurlyeq is a partial order relation on \mathbb{R}^r .

 \prec and \preceq are transitive relations.

^{*a*}i.e. $\mathbb{R}_+C + C \subset C$, $C \cap (-C) = \{0\}$

<ロ> < 団> < 団> < 豆> < 豆> < 豆</p>

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem Let M be a connected RM verifying the Hopf-Rinow theorem.

Let $C \subset \mathbb{R}^r$ be a convex pointed cone^{*a*}, closed with int $(C) \neq \emptyset$.

For any $y, y' \in \mathbb{R}^r$ we denote

• $y \preccurlyeq y' \iff y' - y \in C$

• $y \prec y' \iff y' - y \in int(C)$

• $y \precneqq y' \iff y' - y \in C \setminus \{0\}.$

We have

 \preccurlyeq is a partial order relation on \mathbb{R}^r .

 \prec and \preceq are transitive relations.

^{*a*}i.e. $\mathbb{R}_+C + C \subset C$, $C \cap (-C) = \{0\}$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem Let M be a connected RM verifying the Hopf-Rinow theorem.

Let $C \subset \mathbb{R}^r$ be a convex pointed cone^{*a*}, closed with int $(C) \neq \emptyset$.

For any $y, y' \in \mathbb{R}^r$ we denote

• $y \preccurlyeq y' \iff y' - y \in C$

• $y \prec y' \iff y' - y \in int(C)$

- $y \stackrel{\scriptstyle \prec}{_{\neq}} y' \iff y' y \in C \setminus \{0\}.$
- We have

$$y \prec y' \Longrightarrow y \precsim y' \Longrightarrow y \preccurlyeq y'.$$

 \preccurlyeq is a partial order relation on \mathbb{R}^r .

 \prec and \preceq are transitive relations.

^{*a*}i.e. $\mathbb{R}_+C + C \subset C, \ C \cap (-C) = \{0\}$

・ロト・西ト・山下・山下・ 日・ うへぐ

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB σ)

Optimality Conditions

An existence result for the pessimistic problem Consider a vector function $G = (G_1, \ldots, G_r) : M \to \mathbb{R}^r$, and the multiobjective optimization problem

(MOP) $MIN_CG(x)$ s.t. $x \in M$.

For (MOP) the point $a \in M$ is called:

- *Pareto solution* if there is no $x \in M$ such that $G(x) \nsubseteq G(a)$, ;
- weakly Pareto solution if there is no $x \in M$ such that $G(x) \prec G(a)$;
- properly Pareto solution if *a* is a Pareto solution, and there exists a pointed convex cone *K* such that $C \setminus \{0\} \subset int(K)$ and *a* is a Pareto solution for the problem $MIN_{K}G(x)$ s.t. $x \in M$, in other words $G(M) \cap (G(a) K) = \{G(a)\}.$

(日) (日) (日) (日) (日) (日) (日)

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem Consider a vector function $G = (G_1, \ldots, G_r) : M \to \mathbb{R}^r$, and the multiobjective optimization problem

(MOP) $MIN_CG(x)$ s.t. $x \in M$.

For (MOP) the point $a \in M$ is called:

- *Pareto solution* if there is no $x \in M$ such that $G(x) \neq G(a)$, ;
- weakly Pareto solution if there is no $x \in M$ such that $G(x) \prec G(a)$;
- properly Pareto solution if *a* is a Pareto solution, and there exists a pointed convex cone *K* such that $C \setminus \{0\} \subset int(K)$ and *a* is a Pareto solution for the problem $MIN_KG(x)$ s.t. $x \in M$, in other words $G(M) \cap (G(a) K) = \{G(a)\}.$

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem Consider a vector function $G = (G_1, \ldots, G_r) : M \to \mathbb{R}^r$, and the multiobjective optimization problem

(MOP) $MIN_CG(x)$ s.t. $x \in M$.

For (MOP) the point $a \in M$ is called:

- *Pareto solution* if there is no $x \in M$ such that $G(x) \not\subseteq G(a)$, ;
- weakly Pareto solution if there is no $x \in M$ such that $G(x) \prec G(a)$;
- properly Pareto solution if *a* is a Pareto solution, and there exists a pointed convex cone *K* such that $C \setminus \{0\} \subset int(K)$ and *a* is a Pareto solution for the problem $MIN_{K}G(x)$ s.t. $x \in M$, in other words $G(M) \cap (G(a) K) = \{G(a)\}.$

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem Consider a vector function $G = (G_1, \ldots, G_r) : M \to \mathbb{R}^r$, and the multiobjective optimization problem

(MOP) $MIN_CG(x)$ s.t. $x \in M$.

For (MOP) the point $a \in M$ is called:

- *Pareto solution* if there is no $x \in M$ such that $G(x) \preceq G(a)$, ;
- weakly Pareto solution if there is no $x \in M$ such that $G(x) \prec G(a)$;
- properly Pareto solution if *a* is a Pareto solution, and there exists a pointed convex cone *K* such that $C \setminus \{0\} \subset int(K)$ and *a* is a Pareto solution for the problem $MIN_KG(x)$ s.t. $x \in M$, in other words $G(M) \cap (G(a) K) = \{G(a)\}.$

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem In the particular case $C = \mathbb{R}_+^r$ (the Pareto cone), the previous definitions can be stated as follows.

- Pareto solution if there is no $x \in M$ such that, for all $i \in \{1, ..., r\}$, $G_i(x) \leq G_i(a)$, and $G(x) \neq G(a)$;
- weakly Pareto solution if there is no $x \in M$ such that, for all $i \in \{1, ..., r\}$, $G_i(x) < G_i(a)$;
- properly Pareto solution (provided that $G(M) + \mathbb{R}'_+$ is convex) if *a* is a Pareto solution, and there is a real number $\mu > 0$ such that for each $i \in \{1, ..., r\}$ and every $x \in M$ with $G_i(x) < G_i(a)$ at least one $j \in \{1, ..., r\}$ exists with $G_j(x) > G_j(a)$ and

 $\frac{G_i(a)-G_i(x)}{G_j(x)-G_j(a)} \leq \mu.$

(日) (日) (日) (日) (日) (日) (日)

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem In the particular case $C = \mathbb{R}_+^r$ (the Pareto cone), the previous definitions can be stated as follows.

• *Pareto solution* if there is no $x \in M$ such that, for all $i \in \{1, ..., r\}$, $G_i(x) \leq G_i(a)$, and $G(x) \neq G(a)$;

• weakly Pareto solution if there is no $x \in M$ such that, for all $i \in \{1, ..., r\}$, $G_i(x) < G_i(a)$;

• properly Pareto solution (provided that $G(M) + \mathbb{R}_+^r$ is convex) if *a* is a Pareto solution, and there is a real number $\mu > 0$ such that for each $i \in \{1, ..., r\}$ and every $x \in M$ with $G_i(x) < G_i(a)$ at least one $j \in \{1, ..., r\}$ exists with $G_j(x) > G_j(a)$ and

 $\frac{G_i(a)-G_i(x)}{G_j(x)-G_j(a)} \leq \mu.$

(日) (日) (日) (日) (日) (日) (日)

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem In the particular case $C = \mathbb{R}_+^r$ (the Pareto cone), the previous definitions can be stated as follows.

• *Pareto solution* if there is no $x \in M$ such that, for all $i \in \{1, ..., r\}$, $G_i(x) \leq G_i(a)$, and $G(x) \neq G(a)$;

• weakly Pareto solution if there is no $x \in M$ such that, for all $i \in \{1, ..., r\}$, $G_i(x) < G_i(a)$;

• properly Pareto solution (provided that $G(M) + \mathbb{R}_+^r$ is convex) if *a* is a Pareto solution, and there is a real number $\mu > 0$ such that for each $i \in \{1, ..., r\}$ and every $x \in M$ with $G_i(x) < G_i(a)$ at least one $j \in \{1, ..., r\}$ exists with $G_j(x) > G_j(a)$ and

 $\frac{G_i(a)-G_i(x)}{G_j(x)-G_j(a)} \leq \mu.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem In the particular case $C = \mathbb{R}_+^r$ (the Pareto cone), the previous definitions can be stated as follows.

- *Pareto solution* if there is no $x \in M$ such that, for all $i \in \{1, ..., r\}$, $G_i(x) \leq G_i(a)$, and $G(x) \neq G(a)$;
- weakly Pareto solution if there is no $x \in M$ such that, for all $i \in \{1, ..., r\}$, $G_i(x) < G_i(a)$;
- properly Pareto solution (provided that $G(M) + \mathbb{R}_+^r$ is convex) if *a* is a Pareto solution, and there is a real number $\mu > 0$ such that for each $i \in \{1, ..., r\}$ and every $x \in M$ with $G_i(x) < G_i(a)$ at least one $j \in \{1, ..., r\}$ exists with $G_j(x) > G_j(a)$ and

$$\frac{G_i(a)-G_i(x)}{G_j(x)-G_j(a)} \leq \mu.$$

・ロト・四ト・モー・ ヨー うへぐ

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem Let the symbol $\sigma \in \{w, p\}$ stands for :

weak if $\sigma = w$,

or

proper if $\sigma = p$.

We denote by

 $\sigma \operatorname{-ARGMIN}_{c} G(x)$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

the set of all σ -Pareto solutions.

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem **Definition** A real function $h: M \to \mathbb{R}$ is called *convex* if for any two distinct points *a* and *b* in *M*, and for any minimizing geodesic segment $\gamma : [0, 1] \to M$ with $\gamma(0) = a, \gamma(1) = b$, the function $h \circ \gamma$ is convex

in the usual way, i.e. for all $t \in]0, 1[$

 $h(\gamma(t)) \leq (1-t)h(a) + th(b).$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

If the last inequality is strict, we say that *h* is *strictly convex*.

Semivectorial bilevel optimization

Definition

∀*t* ∈]0, 1[

∀*t* ∈]0, 1[

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem The vector valued function $G = (G_1, \ldots, G_r) : M \to \mathbb{R}^r$ is called *C*-convex (resp. *w*-strictly *C*-convex or *p*-strictly *C*-convex) if for any two distinct points *a* and *b* in *M*, and for any geodesic segment gamma : $[0, 1] \to M$ with $\gamma(0) = a, \gamma(1) = b$, we have respectively

 $\forall t \in]0,1[\qquad G(\gamma(t)) \preccurlyeq (1-t)G(a) + tG(b),$

 $G(\gamma(t)) \prec (1-t)G(a)+tG(b),$

 $G(\gamma(t)) \precneqq (1-t)G(a) + tG(b).$

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem

Remark

In the case $C = \mathbb{R}^r_+$ we have

- **G** is \mathbb{R}^{r}_{+} -convex \iff **G**_{*i*} is convex for all $i = 1, \ldots, r$;
- *G* is w-strictly \mathbb{R}^r_+ -convex $\iff G_i$ is strictly convex for all i = 1, ..., r;
- G is ℝ^r₊-convex and there exists i ∈ {1,...,r} such that G_i is strictly convex ⇒ G is p-strictly ℝ^r₊-convex.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem The dual cone of C (or positive polar cone) is the set

 $C^* := \{\lambda \in \mathbb{R}^r | \langle \lambda, y \rangle \ge 0 \quad \forall y \in C\},$

and its quasi-interior is given by

 $C^*_{\sharp} := \{\lambda \in \mathbb{R}^r | \langle \lambda, y \rangle > 0 \quad \forall y \in C \setminus \{0\}\}.$

Notice that

 $(\mathbb{R}'_+)^* = \mathbb{R}'_+, \quad (\mathbb{R}'_+)^*_{\sharp} = \operatorname{int} (\mathbb{R}'_+) = \{\lambda \in \mathbb{R}' | \lambda_i > 0 \quad i = 1, \ldots, r\}.$

Let us denote

$$\Lambda_{\sigma} = \begin{cases} \{\lambda \in C^* | \|\lambda\|_1 = 1\} & \text{if } \sigma = w \\ \\ C^*_{\sharp} & \text{if } \sigma = p, \\ \\ & \sigma \in \mathbb{R}, \quad \sigma \in \mathbb{R$$

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem

Proposition

A. The dual cone C^* is a closed set in \mathbb{R}^r .

B. The set C_{\sharp}^{*} (the quasi-interior of C^{*}) is a nonempty open set,^a and it is in fact the topological interior of C^{*} .

C. The set Λ_w is compact.

^aThis fact it is not true in general, i.e. when *C* is a cone in a topological vector space, but in our setting we take advantage of the finite dimension of \mathbb{R}^r .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem

Theorem (Scalarization)

For each $\sigma \in \{\mathbf{w}, \mathbf{p}\}$, we have

$$\bigcup_{\lambda \in \Lambda_{\sigma}} \arg\min_{x \in M} \langle \lambda, G(x) \rangle \subset \sigma \operatorname{-ARGMIN}_{C} G(x).$$

Moreover, if G is C-convex on M, then the previous inclusion becomes an equality, i.e.

 $\sigma\operatorname{-ARGMIN}_{x\in M} G(x) = \bigcup_{\lambda\in\Lambda_{\sigma}} \operatorname{argmin}_{x\in M} \langle \lambda, G(x) \rangle.$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem

Introduction

Preliminary results

3 A useful equivalent form for the (SVB $_{\sigma}$)

4 Optimality Conditions

An existence result for the pessimistic problem

▲□▶▲□▶▲□▶▲□▶ □ のへ(

Hypotheses

- Semivectorial bilevel optimization
 - H. Bonnel
- Introduction
- Preliminary results
- A useful equivalent form for the (SVB $_{\sigma}$)
- Optimality Conditions
- An existence result for the pessimistic problem

- Leader decision space : (M_1, g_1) RM verifying HR
- Follower(s) decision space : (M₂, g₂) RM verifying HR
- Leader scalar objective function : $f: M_1 \times M_2 \rightarrow \mathbb{R}$
- Follower(s) multiobjective function : $F = (F_1, \dots, F_r) : M_1 \times M_2 \to \mathbb{R}^r$
- For each x ∈ M₁, ψ(x) stands for the weakly or properly Pareto solution set of the follower multiobjective optimization problem, i.e.

$$\psi(\mathbf{x}) := \sigma \operatorname{-}\operatorname{ARGMIN}_{\mathbf{y} \in M_2} \mathcal{F}(\mathbf{x}, \mathbf{y})$$

Thus $\psi : M_1 \Rightarrow M_2$ is a set valued function.

Hypotheses

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem $(HC)_{\sigma}$ For each $x \in M_1$, the function $F(x, \cdot)$ is σ -strictly C-convex on M_2 , $\sigma \in \{w, p\}$.

(HCC)_{σ} For all $x \in M_1$ and $\lambda \in \Lambda_{\sigma}$, the function $y \mapsto \langle \lambda, F(x, y) \rangle$ has bounded sublevel sets, i.e, for all reals α , the set

 $\{ \mathbf{y} \in \mathbf{M}_2 | \langle \lambda, \mathbf{F}(\mathbf{x}, \mathbf{y}) \rangle \leq \alpha \}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

is bounded.

The problems

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem • The optimistic semivectorial bilevel problem

(OSB)

 $\min_{x\in M_1}\min_{y\in\psi(x)}f(x,y).$

The follower cooperates with the leader, i.e., for each $x \in M_1$, the follower chooses amongst all its σ -Pareto solutions (his best responses) one which is the best for the leader (assuming that such a solution exists).

The pessimistic semivectorial bilevel problem

 $(PSB) \qquad \min_{x \in M_1} \sup_{y \in \psi(x)} f(x, y)$

There is no cooperation between the leader and the follower, and the leader expects the worst scenario, i.e., for each $x \in M_1$, the follower may choose amongst all its σ -Pareto solutions (his best responses) one which is unfavorable for the leader (in this case we prefer to use "sup" instead of "max").

The problems

Semivectorial bilevel optimization

H Bonnel

A useful equivalent form for the (SVB σ)

An existence

The optimistic semivectorial bilevel problem

(OSB) $\min_{x \in M_1} \min_{y \in \psi(x)} f(x, y).$

The follower cooperates with the leader, i.e., for each $x \in M_1$, the follower chooses amongst all its σ -Pareto solutions (his best responses) one which is the best for the leader (assuming that such a solution exists).

The pessimistic semivectorial bilevel problem

 $\min_{x\in M_1}\sup_{y\in\psi(x)}f(x,y).$ (PSB)

There is no cooperation between the leader and the follower. and the leader expects the worst scenario, i.e., for each $x \in M_1$, the follower may choose amongst all its σ -Pareto solutions (his best responses) one which is unfavorable for the leader (in this case we prefer to use "sup" instead of "max"). ◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem For any $x \in M_1$ and any $\lambda \in \Lambda_{\sigma}$, the real valued function

 $M_2 \ni y \mapsto \langle \lambda, F(x, y) \rangle$

is strictly convex.

Proposition

Proposition

For each $x \in M_1$ and $\lambda \in \Lambda_{\sigma}$, the minimization problem

 $\min_{\boldsymbol{\gamma}\in M_2}\langle\lambda,\boldsymbol{F}(\boldsymbol{x},\boldsymbol{y})\rangle$

admits a unique solution which will be denoted hereafter $y(x, \lambda)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem For any $x \in M_1$ and any $\lambda \in \Lambda_{\sigma}$, the real valued function

 $M_2 \ni y \mapsto \langle \lambda, F(x, y) \rangle$

is strictly convex.

Proposition

Proposition

For each $x \in M_1$ and $\lambda \in \Lambda_{\sigma}$, the minimization problem

 $\min_{y \in M_2} \langle \lambda, F(x, y) \rangle$

admits a unique solution which will be denoted hereafter $y(x, \lambda)$.

イロト イポト イヨト イヨト

= 900

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem

Corollary

For each fixed $x \in M_1$, the map $\lambda \mapsto y(x, \lambda)$ is a surjection from Λ_{σ} to $\psi(x)$, hence

$$\psi(\mathbf{x}) = \bigcup_{\lambda \in \Lambda_{\sigma}} \{ \mathbf{y}(\mathbf{x}, \lambda) \}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Semivectorial bilevel optimization

H. Bonnel

Theorem

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem Problem (OSB) is equivalent to the following problem^a

 $\min_{x \in M_1} \min_{\lambda \in \Lambda_{\sigma}} f(x, y(x, \lambda))$

Problem (PSB) is equivalent to the following problem

 $\min_{x \in M_1} \sup_{\lambda \in \Lambda_{\sigma}} f(x, y(x, \lambda))$

▲□▶▲□▶▲□▶▲□▶ □ のQで

 $^{a}y(x,\lambda)$ is the unique solution to the problem $\min_{y\in M_{2}}\langle\lambda,F(x,y)
angle$

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem

Introduction

Preliminary results

3 A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem

イロト 不得 トイヨト イヨト

3

Optimality conditions for $\min_{y \in M_2} \langle \lambda, F(x, y) \rangle$

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB σ)

Optimality Conditions

An existence result for the pessimistic problem From now on we suppose that $f(\cdot, \cdot)$ and $F(\cdot, \cdot)$ are smooth fonctions.

grad_{*i*} stands for the gradient operator on (M_i, g_i) , i = 1, 2. F^a (resp. λ_a), $a = 1, \dots, r$, are the components functions of the map $F : M_1 \times M_2 \longrightarrow \mathbb{R}^r$ (resp. the canonical coordinates of the vector $\lambda \in \mathbb{R}^r$).

Proposition (Necessary and sufficient conditions for $y(x, \lambda)$)

Let $\lambda \in \Lambda_{\sigma}$ and $x \in M_1$ be given. Let $y \in M_2$. Then

 $y = y(x, \lambda) \iff \lambda_a \operatorname{grad}_2 F^a(x, y) = 0.$

▲□▶▲□▶▲□▶▲□▶ □ のQで

More about the map $(x, \lambda) \mapsto y(x, \lambda)$

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem Consider the map $G : \mathbb{R}^r \times M_1 \times M_2 \longrightarrow TM_2$ defined by

$$G(\lambda, x, y) = \lambda_a \operatorname{grad}_2 F^a(x, y).$$

For each $(\lambda, x) \in \Lambda_{\sigma} \times M_1$, the solution $y = y(x, \lambda)$ to the problem $\min_{y \in M_2} \langle \lambda, F(x, y) \rangle$ satisfies the equation

$$G(\lambda, \mathbf{x}, \mathbf{y}) = \mathbf{0}.$$

Denote by $\delta_2 G(\lambda, x, y) : T_y M_2 \longrightarrow T_y M_2$ the partial differential of *G* w.r.t. to *y* at the point (λ, x, y) .

▲□▶▲□▶▲□▶▲□▶ □ のQで

More about the map $(x, \lambda) \mapsto y(x, \lambda)$

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem

Let $(\lambda_0, x_0) \in \Lambda_{\sigma} \times M_1$, and let $y_0 = y(x_0, \lambda_0)$ be the unique solution of the problem $\min_{y \in M_2} \langle \lambda_0, F(x_0, y) \rangle$.

Suppose that $\delta_2 G(\lambda_0, x_0, y_0)$ is an isomorphism^a. Then, in a neighborhood of (λ_0, x_0) the function $y(\cdot, \cdot)$ is smooth and

$$\frac{\partial}{\partial \lambda} y(\lambda, x) = -(\delta_2 G(\lambda, x, y))^{-1} \circ \frac{\partial G}{\partial \lambda}(\lambda, x, y)$$

and

Proposition

$$\delta_1 \mathbf{y}(\lambda, \mathbf{x}) = -(\delta_2 \mathbf{G}(\lambda, \mathbf{x}, \mathbf{y}))^{-1} \circ \delta_1 \mathbf{G}(\lambda, \mathbf{x}, \mathbf{y}),$$

where δ_1 denotes the partial differential operator w.r.t. $x \in M_1$.

^aThis hypothesis holds for example if we assume that *G* is a conformal map, or for example if there exists a real number c > 0 such that $g_2(\delta_2 G(\lambda_0, x_0, y_0)(v), v) \ge cg_2(v, v)$, $\forall v \in T_y M_2$.

Optimality conditions for the optimistic problem

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem

Theorem (Necessary optimality conditions for OSB_{ρ})

Suppose that loc-arg min_{$\lambda \in \Lambda_p$} $f(x, y(x, \lambda)) \neq \emptyset$ for each $x \in M_1$. Let $(x^*, \lambda^*) \in M_1 \times \Lambda_p$ be a (local) solution of the problem

 $\min_{x\in M_1}\min_{\lambda\in\Lambda_p}f\Big(x,y(x,\lambda)\Big).$

Let $y^* = y(x^*, \lambda^*)$. Then

 $\operatorname{grad}_1 f(x^*, y^*) + \operatorname{grad}_2 f(x^*, y^*) \circ \delta_1 y(x^*, \lambda^*) = 0$

$$\operatorname{grad}_2 f(x^*, y^*) \circ \frac{\partial y}{\partial \lambda}(x^*, \lambda^*) = 0.$$

Moreover, the bilinear form $\text{Hess}(\varphi)(x^*, \lambda^*)$ is positive semidefinite, where $(x, \lambda) \mapsto \varphi(x, \lambda) := f(x, y(x, \lambda))$.

Optimality conditions for the optimistic problem

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB σ)

Optimality Conditions

An existence result for the pessimistic problem

Theorem (Necessary optimality conditions for OSB_w)

Let $(x^*, \lambda^*) \in M_1 \times \Lambda_w$ be a (local) solution of the problem

 $\min_{x\in M_1}\min_{\lambda\in\Lambda_w}f(x,y(x,\lambda)).$

Let $y^* = y(x^*, \lambda^*)$. Then

 $\operatorname{grad}_1 f(x^*, y^*) + \operatorname{grad}_2 f(x^*, y^*) \circ \delta_1 y(x^*, \lambda^*) = 0$

$$\operatorname{grad}_{2}f(x^{*},y^{*})\circ \frac{\partial y}{\partial \lambda}(x^{*},\lambda^{*})+N_{\Lambda_{w}}^{\mathcal{C}}(\lambda^{*}) \quad \ni \quad \mathbf{0},$$

where $N_{\Lambda_w}^C(\lambda^*)$ is the Clarke normal cone to the set Λ_w at the point λ^* .

Optimality conditions for the optimistic problem

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem

For $C = \mathbb{R}_+^r$ the previous theorem becomes

Theorem

Let $(x^*, \lambda^*) \in M_1 \times \Lambda_w$ be a (local) solution of the problem

 $\min_{x\in M_1}\min_{\lambda\in\Lambda_w}f(x,y(x,\lambda)).$

Let $y^* = y(x^*, \lambda^*)$. Then there exists a real ν such that

 $\operatorname{grad}_1 f(x^*, y^*) + \operatorname{grad}_2 f(x^*, y^*) \circ \delta_1 y(x^*, \lambda^*) = 0$

$$grad_{2}f(x^{*}, y^{*}) \circ \frac{\partial y}{\partial \lambda_{i}}(x^{*}, \lambda^{*}) = \nu \quad \forall i \in I_{+}(\lambda^{*})$$
$$grad_{2}f(x^{*}, y^{*}) \circ \frac{\partial y}{\partial \lambda_{k}}(x^{*}, \lambda^{*}) \geq \nu \quad \forall k \in I_{0}(\lambda^{*}).$$

where $I_{+}(\lambda^{*}) = \{i | \lambda_{i}^{*} > 0\}$ and $I_{0}(\lambda^{*}) = \{k | \lambda_{k}^{*} = 0\}.$

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB σ)

Optimality Conditions

An existence result for the pessimistic problem

Introduction

Preliminary results

3 A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Existence result for PSB_w

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB $_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem For the more difficult case of the pessimistic problem we will deal only with weakly-Pareto solutions.

Theorem

Suppose moreover that the Riemannian manifold (M_1, g_1) is compact. Then the pessimistic problem

 $\min_{x \in M_1} \sup_{\lambda \in \Lambda_m} f(x, y(x, \lambda))$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

has at least one global solution.

THANK YOU!

Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB σ)

Optimality Conditions

An existence result for the pessimistic problem

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへぐ