
Computational
NSO

(NonSmooth Optimization)

a tutorial focusing on bundle methods

Claudia Sagastizábal

(visiting researcher)

mailto:sagastiz@impa.br, http://www.impa.br/~sagastiz

SPCOM Tutorial, Adelaide, Feb 8th, 2015

CONTENTS

– Computational NSO: what does it mean?

– Why special NSO methods?

– How is the oracle information used?

– Subgradient Methods

– Cutting-plane methods

– Bundle Methods

– Comparing the methods

– Going Beyond: opening the black box

– Inexact models for f

– Controlling the impact of noise

– Putting in place an on-demand accuracy scheme

– Stochastic Programming Applications in Energy

Computational NSO: what does it mean?

For the unconstrained problem

minf(x) ,

where f is convex but not differentiable at some points

Computational NSO: what does it mean?

For the unconstrained problem

minf(x) ,

where f is convex but not differentiable at some points,

we shall define algorithms based on information provided by an
oracle or “black box”

x

f(x)

g(x) ∈ ∂f(x)

Computational NSO: what does it mean?

For the unconstrained problem

minf(x) ,

where f is convex but not differentiable at some points,

we shall define algorithms based on information provided by an
oracle or “black box”

x

f(x)

g(x) ∈ ∂f(x)

Relation with this morning tutorial?

Computational NSO: what does it mean?

For the unconstrained problem

minf(x) ,

where f is convex but not differentiable at some points,

we shall define algorithms based on information provided by an
oracle or “black box”

x

f(x)

g(x) ∈ ∂f(x)

What do we mean by an algorithm?

An example source http://comofas.com/

What do we mean by an algorithm?

An example source http://comofas.com/

What do we mean by an algorithm?

An example source http://comofas.com/

What do we mean by an algorithm?

An example source http://comofas.com/

What do we mean by an algorithm?

An example source http://comofas.com/

What do we mean by an algorithm?

An example source http://comofas.com/

What do we mean by an algorithm?

An example source http://comofas.com/

What do we mean by an algorithm?

An example source http://comofas.com/

What do we mean by an algorithm?

What do we mean by an algorithm?

repeat until . . . ??

What do we mean by an algorithm?

An algorithm

is a sequence of steps

that are repeated

until satisfaction

What do we mean by an algorithm?

An algorithm

is a sequence of steps

that are repeated

until satisfaction

of a stopping test

Back to Computational NSO

For the unconstrained problem

minf(x) ,

where f is convex but not differentiable at some points,

we look for algorithms based on information provided by an oracle
or “black box”

x

f(x)

g(x) ∈ ∂f(x)

endowed with reliable stopping tests

A quick overview of Convex Analysis

An example of a convex nonsmooth function

A quick overview of Convex Analysis

An example of a convex nonsmooth function

A quick overview of Convex Analysis

An example of a convex nonsmooth function

∂f(x) = {∇f(x)}

= {slopes of linearizations supporting f, tangent at x}

A quick overview of Convex Analysis

An example of a convex nonsmooth function

A quick overview of Convex Analysis

An example of a convex nonsmooth function

A quick overview of Convex Analysis

An example of a convex nonsmooth function

A quick overview of Convex Analysis

An example of a convex nonsmooth function

A quick overview of Convex Analysis

An example of a convex nonsmooth function

∂f(x) = {g ∈ IRn : f(y)≥ f(x)+g>(y−x) for all y}

= {slopes of linearizations supporting f, tangent at x}

A quick overview of Convex Analysis

An example of a convex nonsmooth function

∂f(x) = {g ∈ IRn : f(y)≥ f(x)+g>(y−x) for all y}

= {slopes of linearizations supporting f, tangent at x}

Why special NSO methods?

Smooth optimization methods do not work

0

abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Why special NSO methods?

Smooth optimization methods do not work

0

abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Why special NSO methods?

Smooth optimization methods do not work

0

abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Why special NSO methods?

Smooth optimization methods do not work

0

abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Why special NSO methods?

Smooth optimization methods do not work

0

abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Why special NSO methods?

Smooth optimization methods do not work

0

abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Why special NSO methods?

Smooth optimization methods do not work

0

abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Why special NSO methods?

Smooth optimization methods do not work

0

abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Why special NSO methods?

Smooth optimization methods do not work

0

abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Why special NSO methods?

Smooth optimization methods do not work

0

abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Why special NSO methods?

Smooth optimization methods do not work

0

abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Finite difference approximations fail (no automatic differentiation)

Why special NSO methods?

Smooth optimization methods do not work

0

abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Finite difference approximations fail

Linesearches get trapped in kinks and fail

Why special NSO methods?

Smooth optimization methods do not work

0

abs
f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Linesearches get trapped in kinks and fail

Why special NSO methods?

Smooth optimization methods do not work

0

abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Finite difference approximations fail

Linesearches get trapped in kinks and fail

−g(xk) may not provide descent

Why special NSO methods?

Smooth optimization methods do not work

0

abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Finite difference approximations fail

Linesearches get trapped in kinks and fail

−g(xk) may not provide descent ‘
0 0

x2

x1

x2

x1

s

grad

How is the oracle information used?

We look for algorithms based on information provided by an oracle

x

f(x)

g(x) ∈ ∂f(x)

endowed with reliable stopping tests

How is the oracle information used?

We look for algorithms based on information provided by an oracle

x

f(x)

g(x) ∈ ∂f(x)

endowed with reliable stopping testsxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

How is the oracle information used?

We look for algorithms based on information provided by an oracle

x

f(x)

g(x) ∈ ∂f(x)

endowed with reliable stopping testsxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Subgradient Methods

How is the oracle information used?

We look for algorithms based on information provided by an oracle

x

f(x)

g(x) ∈ ∂f(x)

endowed with reliable stopping testsxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Subgradient Methods
0 Choose x1 and set k= 1.
1 Call the oracle at xk.
2 Compute xk+1 = xk− tkg(xk) for a suitable stepsize tk > 0.
3 Make k= k+1 and loop to 1.

How is the oracle information used?

We look for algorithms based on information provided by an oracle

x

f(x)

g(x) ∈ ∂f(x)

endowed with reliable stopping testsxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Subgradient Methods
0 Choose x1 and set k= 1.
1 Call the oracle at xk.
2 Compute xk+1 = xk− tkg(xk) for a suitable stepsize tk > 0.
3 Make k= k+1 and loop to 1.

Is this a good “recipe”?

Subgradient Methods
0 Choose x1 and set k= 1.
1 Call the oracle at xk.
2 Compute xk+1 = xk− tkg(xk) for a suitable stepsize tk > 0.
3 Make k= k+1 and loop to 1.

SG methods are

the algorithmic version

of this road sign

Subgradient Methods
0 Choose x1 and set k= 1.
1 Call the oracle at xk.
2 Compute xk+1 = xk− tkg(xk) for a suitable stepsize tk > 0.
3 Make k= k+1 and loop to 1.

SG methods are

the algorithmic version

of this road sign

. . . something is missing!!!

Subgradient Methods
0 Choose x1 and set k= 1.
1 Call the oracle at xk.
2 Compute xk+1 = xk− tkg(xk) for a suitable stepsize tk > 0.
3 Make k= k+1 and loop to 1.

SG methods are

the algorithmic version

of this road sign

not
a go

od
rec

ipe

Subgradient Methods
0 Choose x1 and set k= 1.
1 Call the oracle at xk.
2 Compute xk+1 = xk− tkg(xk) for a suitable stepsize tk > 0.
3 Make k= k+1 and loop to 1.

SG methods are

the algorithmic version

of this road sign

not
a go

od
rec

ipe

Non-monotone!

Subgradient Methods: why a “not-good” recipe
Non-monotone functional values, but converges

because distance to solution set decreases for tk sufficiently small

Lacks a stopping test

Subgradient Methods: why a “not-good” recipe
Non-monotone functional values, but converges

because distance to solution set decreases for tk sufficiently small

Lacks a stopping test

. . . does not use all available information

Subgradient Methods: why a “not-good” recipe
Non-monotone functional values, but converges

because distance to solution set decreases for tk sufficiently small

Lacks a stopping test

. . . does not use all available information

x

f(x)

g(x) ∈ ∂f(x)

Subgradient Methods: why a “not-good” recipe
Non-monotone functional values, but converges

because distance to solution set decreases for tk sufficiently small

Lacks a stopping test

. . . does not use all available information

x

f(x)

g(x) ∈ ∂f(x)

SG methods are like caipirinha without cachaça

How is the oracle information used?

We look for algorithms based on information provided by an oracle

x

f(x)

g(x) ∈ ∂f(x)

endowed with reliable stopping tests

How is the oracle information used?

We look for algorithms based on information provided by an oracle

x

f(x)

g(x) ∈ ∂f(x)

endowed with reliable stopping tests

Black box information defines linearizations

How is the oracle information used?

We look for algorithms based on information provided by an oracle

x

f(x)

g(x) ∈ ∂f(x)

endowed with reliable stopping tests

Black box information defines linearizations

that put together create a model M of the function f.

The model is used to define iterates and to put in place a reliable
stopping test

How is the oracle information used?

We look for algorithms based on information provided by an oracle

x

f(x)

g(x) ∈ ∂f(x)

endowed with reliable stopping tests

Black box information defines linearizations

that put together create a model M of the function f.

xi
fi = f(xi)

gi = g(xi)
=⇒M(x) = maxi {fi+gi>(x−xi) }

How is the oracle information used?

We look for algorithms based on information provided by an oracle

x

f(x)

g(x) ∈ ∂f(x)

endowed with reliable stopping tests

Black box information defines linearizations

that put together create a model M of the function f.

xi
fi = f(xi)

gi = g(xi)
=⇒M(x) = maxi {fi+gi>(x−xi) }

How is the oracle information used?

We look for algorithms based on information provided by an oracle

x

f(x)

g(x) ∈ ∂f(x)

endowed with reliable stopping tests

Black box information defines linearizations

that put together create a model M of the function f.

xi
fi = f(xi)

gi = g(xi)
=⇒M(x) = maxi {fi+gi>(x−xi) }

(just an example, many other models are possible)

Cutting-plane methods

To minimize f (unavailable in an explicit manner), minimize its

model M(x) = maxi
{
fi+gi>(x−xi)

}
Improve the model at each iteration

Cutting-plane methods

To minimize f (unavailable in an explicit manner), minimize its

model M(x) = maxi
{
fi+gi>(x−xi)

}
Improve the model at each iteration:

Mk+1(x) = maxi≤k+1
{
fi+gi>(x−xi)

}
= max

(
Mk(x), f

k+1+gk+1>(x−xk+1)
)

where xk+1 minimizes Mk

Cutting-plane methods

To minimize f (unavailable in an explicit manner), minimize its

model M(x) = maxi
{
fi+gi>(x−xi)

}
Improve the model at each iteration:

Mk+1(x) = maxi≤k+1
{
fi+gi>(x−xi)

}
= max

(
Mk(x), f

k+1+gk+1>(x−xk+1)
)

where xk+1 minimizes Mk

Instead of x∗ ∈ argminf(x) at one shot

xk+1 ∈ argminMk(x) iteratively

Cutting-plane methods

To minimize f (unavailable in an explicit manner), minimize its

model M(x) = maxi
{
fi+gi>(x−xi)

}
Improve the model at each iteration:

Mk+1(x) = maxi≤k+1
{
fi+gi>(x−xi)

}
= max

(
Mk(x), f

k+1+gk+1>(x−xk+1)
)

where xk+1 minimizes Mk

Instead of x∗ ∈ argminf(x) at one shot,

xk+1 ∈ argminMk(x) iteratively

Cutting-plane methods

Artificial bounding at least for the first iterations

Cutting-plane methods

)(xf

1
x

X

Cutting-plane methods

)(xf

1
x

X

2
x

Cutting-plane methods

)(xf

1
x

X

2
x

3
x

Cutting-plane methods

)(xf

1
x

X

2
x

3
x

4
x

Cutting-plane methods

)(xf

1
x

X

2
x

3
x

4
x

5
x

Cutting-plane methods

{Mk(x
k+1)} increases

Cutting-plane methods

{Mk(x
k+1)} increases but not necessarily the functional values:

f(x5)> f(x4)

Cutting-plane methods

{Mk(x
k+1)} increases but not necessarily the functional values:

f(x5)> f(x4). Stopping test measures δk := f(xk)−Mk−1(x
k)

}
δ2

Cutting-plane Methods
0 Choose x1 and set k= 1.
1 Call the oracle at xk.If f(xk)−Mk−1(x

k)≤ tol STOP
2 Compute xk+1 ∈ argminXMk(x)

3 Mk+1(·) = max
(

Mk(·), fk+gk>(·−xk)
)

, k= k+1, loop to 1.

Cutting-plane Methods
0 Choose x1 and set k= 1.
1 Call the oracle at xk.If f(xk)−Mk−1(x

k)≤ tol STOP
2 Compute xk+1 ∈ argminXMk(x)

3 Mk+1(·) = max
(

Mk(·), fk+gk>(·−xk)
)

, k= k+1, loop to 1.

CP methods are

an improved algorithmic version

of the Aussie sign

a bett
er

rec
ipe

Cutting-plane Methods
0 Choose x1 and set k= 1.
1 Call the oracle at xk.If f(xk)−Mk−1(x

k)≤ tol STOP
2 Compute xk+1 ∈ argminXMk(x)

3 Mk+1(·) = max
(

Mk(·), fk+gk>(·−xk)
)

, k= k+1, loop to 1.

CP methods are

an improved algorithmic version

of the Aussie sign

a bett
er

rec
ipe

converges, but can stall and

Cutting-plane Methods
0 Choose x1 and set k= 1.
1 Call the oracle at xk.If f(xk)−Mk−1(x

k)≤ tol STOP
2 Compute xk+1 ∈ argminXMk(x)

3 Mk+1(·) = max
(

Mk(·), fk+gk>(·−xk)
)

, k= k+1, loop to 1.

CP methods are

an improved algorithmic version

of the Aussie sign

a bett
er

rec
ipe

CP methods are like caipirinha with a few drops of cachaça

Cutting-plane Methods
0 Choose x1 and set k= 1.
1 Call the oracle at xk.If f(xk)−Mk−1(x

k)≤ tol STOP
2 Compute xk+1 ∈ argminXMk(x)

3 Mk+1(·) = max
(

Mk(·), fk+gk>(·−xk)
)

, k= k+1, loop to 1.

CP methods are

an improved algorithmic version

of the Aussie sign

a bett
er

rec
ipe

CP methods are like caipirinha with a few drops of cachaça
can be improved!

Cutting-plane Methods: why not the best recipe

Non-monotone functional values, but converges

because liminf
(
f(xk)−Mk−1(x

k)
)→ 0

Has a stopping test, but LP size grows indefinitely

eventually numerical errors prevail.

xk+1 ∈ argminXMk(x) with
Mk(x) = maxi≤k{fi+gi>(x−xi)}

and X polyhedral

Cutting-plane Methods: why not the best recipe

Non-monotone functional values, but converges

because liminf
(
f(xk)−Mk−1(x

k)
)→ 0

Has a stopping test, but LP size grows indefinitely

eventually numerical errors prevail.

xk+1 ∈ argminXMk(x) with
Mk(x) = maxi≤k{fi+gi>(x−xi)}

and X polyhedral

is equivalent to solving a linear programming problem
min r

s.t. r ∈ IR ,x ∈ X
r≥ fi+gi>(x−xi) for i≤ kgrowswithiterations

Cutting-plane Methods: why not the best recipe

Non-monotone functional values, but converges

because liminf
(
f(xk)−Mk−1(x

k)
)→ 0

Has a stopping test, but LP size grows indefinitely

eventually numerical errors prevail.

xk+1 ∈ argminXMk(x) with
Mk(x) = maxi≤k{fi+gi>(x−xi)}

and X polyhedral

is equivalent to solving a linear programming problem
min r

s.t. r ∈ IR ,x ∈ X
r≥ fi+gi>(x−xi) for i≤ k grows with iterations

Ingredients for the best recipe
• CP brings in the concept of a model, which gives a stopping test (δk)

• CP still non-monotone

Monotonicity defeats instability and oscillations

Ingredients for the best recipe
• CP brings in the concept of a model, which gives a stopping test (δk)

• CP still non-monotone

Monotonicity defeats instability and oscillations: the sequence of function
values at green-spot iterates converges

Ingredients for the best recipe
• CP brings in the concept of a model, which gives a stopping test (δk)

• CP still non-monotone

Monotonicity defeats instability and oscillations: the sequence of function
values at green-spot iterates converges

• Bundle Methods select green-spot iterates using a descent rule

Ingredients for the best recipe
• CP brings in the concept of a model, which gives a stopping test (δk)

• CP still non-monotone

Monotonicity defeats instability and oscillations: the sequence of function
values at green-spot iterates converges
• Bundle Methods select green-spot iterates using a descent rule

f(x̂k+1)≤ f(x̂k)−mδk where δk is a positive quantity< f(x̂k)

limit points of the serious-step subsequence {x̂k} minimize f

Bundle Methods

)(xf

1x

Bundle Methods

)(xf

1x

)(2
1 zφM1(·)+ 1

2t1
| ·−x̂1|2

Bundle Methods

)(xf

1x

)(3
2 zφ

2z

M2(·)+ 1
2t2

| ·−x̂2|2

x̂1 x2

Bundle Methods

)(xf

1x 2z3xx̂1 x̂3 x2

Bundle Methods

)(xf

1
x 2

z
3

x
4

x

4 Iterations!

x̂1 x̂4 x̂3 x2

Bundle Methods
0 Choose x1, set k= 1, and let x̂1 = x1.
1 Compute xk+1 ∈ argminMk(x)+

1
2tk

|x− x̂k|2

2 If δk :=f(x̂k)−Mk(x
k+1)≤ tol STOP

3 Call the oracle at xk+1.

If f(xk+1)≤ f(x̂k)−mδk, set x̂k+1 = xk+1 • (Serious Step)
Otherwise, maintain x̂k+1 = x̂k (Null Step)

4 Define Mk+1, tk+1, make k= k+1, and loop to 1.

Bundle Methods

Unlike CP Mk+1(·) = max
(

Mk(·), fk+gk>(·−xk)
)

,
now the choice of the new model is more flexible:
xk+1 ∈ argminMk(x)+

1
2tk

|x− x̂k|2 with Mk(x) = maxi≤k{fi+gi>(x−xi)} is
equivalent to a QP: minr∈IR ,x∈IRn r+ 1

2tk
|x− x̂k|2

s.t. r≥ fi+gi>(x−xi) for i≤ k

A posteriori, the solution remains the same if . . .

Bundle Methods

Unlike CP Mk+1(·) = max
(

Mk(·), fk+gk>(·−xk)
)

,
now the choice of the new model is more flexible:
xk+1 ∈ argminMk(x)+

1
2tk

|x− x̂k|2 with Mk(x) = maxi≤k{fi+gi>(x−xi)} is
equivalent to a QP: minr∈IR ,x∈IRn r+ 1

2tk
|x− x̂k|2

s.t. r≥ fi+gi>(x−xi) for i≤ k

A posteriori, the solution remains the same if all, or . . .

Bundle Methods

Unlike CP Mk+1(·) = max
(

Mk(·), fk+gk>(·−xk)
)

,
now the choice of the new model is more flexible:
xk+1 ∈ argminMk(x)+

1
2tk

|x− x̂k|2 with Mk(x) = maxi≤k{fi+gi>(x−xi)} is
equivalent to a QP: minr∈IR ,x∈IRn r+ 1

2tk
|x− x̂k|2

s.t. r≥ fi+gi>(x−xi) for active i’s

A posteriori, the solution remains the same if all, or active, or . . .

Bundle Methods

Unlike CP Mk+1(·) = max
(

Mk(·), fk+gk>(·−xk)
)

,
now the choice of the new model is more flexible:
xk+1 ∈ argminMk(x)+

1
2tk

|x− x̂k|2 with Mk(x) = maxi≤k{fi+gi>(x−xi)} is
equivalent to a QP: minr∈IR ,x∈IRn r+ 1

2tk
|x− x̂k|2

s.t. r≥
∑

i ᾱ
i(fi+gi>(x−xi))

A posteriori, the solution remains the same if all, or active, or the
optimal convex combination

Bundle Methods

Unlike CP Mk+1(·) = max
(

Mk(·), fk+gk>(·−xk)
)

,
now the choice of the new model is more flexible:
xk+1 ∈ argminMk(x)+

1
2tk

|x− x̂k|2 with Mk(x) = maxi≤k{fi+gi>(x−xi)} is
equivalent to a QP: minr∈IR ,x∈IRn r+ 1

2tk
|x− x̂k|2

s.t. r≥
∑
i ᾱ
i(fi+gi>(x−xi))

A posteriori, the solution remains the same if all, or active, or the
optimal convex combination

BM Mk+1(·) = max
(Mk(·)

maxactive

aggregate

, fk+gk>(·−xk)
)

Bundle Methods

Unlike CP Mk+1(·) = max
(

Mk(·), fk+gk>(·−xk)
)

,
now the choice of the new model is more flexible:
xk+1 ∈ argminMk(x)+

1
2tk

|x− x̂k|2 with Mk(x) = maxi≤k{fi+gi>(x−xi)} is
equivalent to a QP: minr∈IR ,x∈IRn r+ 1

2tk
|x− x̂k|2

s.t. r≥
∑
i ᾱ
i(fi+gi>(x−xi))

Same solution if all, or active, or the optimal convex combination

BM Mk+1(·) = max
(Mk(·)

maxactive

aggregate

Bundle Compression: QP with 2 constraints

, fk+gk>(·−xk)
)

Bundle Methods

When k→∞, the algorithm generates two subsequences.

Convergence analysis addresses the mutually exclusive situations

• either the SS subsequence is infinite (limit point minimizes f)

• or there is a last SS, followed by infinitely many null steps (last
SS minimizes f)

Bundle Methods

When k→∞, the algorithm generates two subsequences.

Convergence analysis addresses the mutually exclusive situations

• either the SS subsequence is infinite (limit point minimizes f)

• or there is a last SS, followed by infinitely many null steps
(last SS minimizes f and null→ last SS)

Comparing the methods: bundle and SG

Typical performance on a battery of Unit Commitment problems

Comparing the methods: bundle and CP

On a battery of probabilistically constrained problems

x CP is fast to reach a few digits of accuracy, then stalls

Comparing the methods: bundle and CP

On a battery of probabilistically constrained problems

x CP is fast to reach a few digits of accuracy, then stalls
+ Bundle is consistently 3 times faster

Comparing the methods

SG ok if low precision -for instance in combinatorial optimization

CP ok if not many iterations -usually not the case

Bundle ok if f complex and high precision is required

Comparing the methods

SG ok if low precision -for instance in combinatorial optimization

CP ok if not many iterations -usually not the case

Bundle ok if f complex and high precision is required
a go

od
rec

ipe

Can we do any better??

ss

Can we do any better??

ss

Can we do any better?? YES, WE CAN

Bundle Methods with on-demand accuracy
the new generation

(or the perfect caipirinha)

First, the bad news

For a convex nonsmooth function, solving

minf(x)

with a black box method

x

f(x)

g(x) ∈ ∂f(x)

is doomed to slow convergence speed: complexity is O(1√
k
) k iterations

First, the bad news

For a convex nonsmooth function, solving

minf(x)

with a black box method

x

f(x)

g(x) ∈ ∂f(x)

is doomed to slow convergence speed: complexity is O(1√
k
) k iterations

Better performance possible by exploiting structure

First, the bad news

For a convex nonsmooth function, solving

minf(x)

with a black box method

x

f(x)

g(x) ∈ ∂f(x)

is doomed to slow convergence speed: complexity is O(1√
k
) k iterations

Better performance possible by exploiting structure
For instance, for strongly convex f complexity drops to O(1k)

First, the bad news

For a convex nonsmooth function, solving

minf(x)

with a black box method

x

f(x)

g(x) ∈ ∂f(x)

is doomed to slow convergence speed: complexity is O(1√
k
) k iterations

Note: complexity results assume black box always called as above

How does structure appear?

– Explicitly

as a sum

as a composition

– Implicitly

U-Lagrangian

VU-decomposition

partly smooth functions

How does structure appear?

– Explicitly

as a sum

as a composition

– Implicitly

U-Lagrangian

VU-decomposition

partly smooth functions

How does structure appear?

– Explicitly

as a sum

as a composition

 6= black boxes

– Implicitly

U-Lagrangian

VU-decomposition

partly smooth functions

How does structure appear?

– Explicitly

as a sum

as a composition

 6= black boxes

– Implicitly

U-Lagrangian

VU-decomposition

partly smooth functions

 digging tools

Explicit Structure:

Opening the Black Box

A convex partly nonsmooth function

For x ∈ IRn, given matrices A� 0, B� 0,

f(x) =
√
x>Ax+x>Bx

has a unique minimizer at 0.
On N (A) the function is not differentiable, and the first term
vanishes: f|N (A) looks smooth.

R(A) N (A)

This function has several interesting structures
If no structure at all

f(x) =
√
x>Ax+x>Bx

This defines a sum black box:

This function has several interesting structures
If no structure at all

f(x) =
√
x>Ax+x>Bx

This defines the black box :

x

f(x)

g(x) ∈ ∂f(x)

This function has several interesting structures
Sum structure

f(x) = f1(x)+ f2(x) with

 f1(x) =
√
x>Ax

f2(x) = x
>Bx

This defines a sum black box:

This function has several interesting structures
Sum structure

f(x) = f1(x)+ f2(x) with

 f1(x) =
√
x>Ax

f2(x) = x
>Bx

This defines a sum black box:

x

f1(x), f2(x)

gj(x) ∈ ∂fj(x)j=1,2

This function has several interesting structures
Composite structure

f(x) = (h◦c)(x) with

 c(x) = (x,x>Bx) ∈ IRn+1

h(C) =
√
C>1:nAC1:n+Cn+1

for C smooth and h positively homogeneous

This defines a composite black box: aeriou

This function has several interesting structures
Composite structure

f(x) = (h◦c)(x) with

 c(x) = (x,x>Bx) ∈ IRn+1

h(C) =
√
C>1:nAC1:n+Cn+1

for C smooth and h positively homogeneous

This defines a composite black box:

x

C := c(x) and h(C)

Jacobian Dc(x) and

G(C) ∈ ∂h(C)

This function has several interesting structures
Inexact information

Suppose not all of A/B is known/accessible,

so that only estimates are available for f

This function has several interesting structures
Inexact information

Suppose not all of A/B is known/accessible,

so that only estimates are available for f

This defines a noisy black box:

x

fx ≈ f(x)

gx ≈ g(x) ∈ ∂f(x)

Structured models for f

No structure
M(x) = maxi

{
fi+gi>(x−xi)

}
= maxi

{
(fi1+ f

i
2)+(gi1+g

i
2)
>(x−xi)

}

Sum structure
M(x) = maxi

{
fi1+g

i
1
>(x−xi)

}
+maxi

{
fi2+g

i
2
>(x−xi)

}

Structured models for f

No structure
M(x) = maxi

{
fi+gi>(x−xi)

}
= maxi

{
(fi1+ f

i
2)+(gi1+g

i
2)
>(x−xi)

}

Sum structure
M(x) = maxi

{
fi1+g

i
1
>(x−xi)

}
+maxi

{
fi2+g

i
2
>(x−xi)

}

Larger

QP

Structured models for f

Composite structure M(x) = maxi
{
Gi>

(
c(x̂)+Dc(x̂)(x− x̂)

)}
≈h(c(x̂)+Dc(x̂)(x− x̂))

Structured models for f

Composite structure M(x) = maxi
{
Gi>

(
c(x̂)+Dc(x̂)(x− x̂)

)}
≈h(c(x̂)+Dc(x̂)(x− x̂))

Good

near x̂

Inexact models for f

Inexact information M(x) = maxi
{
fi+gi>(x−xi)

}

Inexact models for f

Inexact information M(x) = maxi
{
fi+gi>(x−xi)

}

M may

cut gr(f)

excessive noise is attenuated via stepsize tk

Bundle Methods with Inexact Information

)(xf

1x

Bundle Methods with Inexact Information

)(xf

1x
)(2

1 zφM1(·)+ 1
2t1

| ·−x̂1|2

Bundle Methods with Inexact Information

)(xf

1x 2z

)(3
2 zφ

fε gε

M2(·)+ 1
2t2

| ·−x̂2|2

x̂1 x2

Bundle Methods with Inexact Information

)(xf

1x 2z
3xx̂1 x̂3 x2

Controlling the impact of noise

xk+1 = argmin
x

M(x)+
1

2tk
|x− x̂|2

now linearizations may be inexact:

εj

xj

γj

fj = fxj

gj = gxj
=⇒M(x) = maxj≤i

{
fj+gj>(x−xj)

}

and the model may be “wrong”
If too wrong: noise needs to be attenuated

Controlling the impact of noise

xk+1 = argmin
x

M(x)+
1

2tk
|x− x̂|2

now linearizations may be inexact:

εj

xj

γj

fj = fxj

gj = gxj
=⇒M(x) = maxj≤i

{
fj+gj>(x−xj)

}

and the model may be “wrong”
Noise attenuated by increasing t, hence lowering QP value

Detecting excessive noise by checking δk

Detecting excessive noise: δk < 0

Detecting excessive noise by checking δk

Detecting excessive noise by checking δk

Controlling the impact of noise:

oracles with on-demand accuracy
xk+1 = argmin

x
M(x)+

1

2tk
|x− x̂|2

now linearizations may be inexact:

xj
fj = fxj

gj = gxj
=⇒M(x) = maxj≤i

{
fj+gj>(x−xj)

}

andthemodelmaybe‘‘wrong ′′

If we have the ability of computing fx/gx
with more or less accuracy

compute (asympt.) exactly SS

and do not waste time in Null

On-demand accuracy scheme

Explicit structure, induced by some decomposition method

by Lagrangian relaxation

by Benders decomposition

= oracles

Principle: if a problem is difficult to solve directly,
solve instead a sequence of easier subproblems.

The master program has often

a nonsmooth objective function

On-demand accuracy scheme

Explicit structure, induced by some decomposition method

by Lagrangian relaxation

by Benders decomposition
= oracles

Principle: if a problem is difficult to solve directly,
solve instead a sequence of easier subproblems.

Separate subproblems
allow for fast oracle calculations:
f/g defined as the sum of N terms

Lagrangian Relaxation Example

Real-life optimization problems

(primal)



max
∑
j∈J

−Cj(pj)

pj ∈Pj , j ∈ J∑
j∈J
gj(pj) = 0 ← x

Lagrangian Relaxation Example

Real-life optimization problems

(primal)



min
∑
j∈J

Cj(pj)

pj ∈Pj , j ∈ J∑
j∈J
gj(pj) = 0 ← x

often exhibit separable structure after dualization

Lagrangian Relaxation Example

Real-life optimization problems

(primal)



max
∑
j∈J

−Cj(pj)

pj ∈Pj , j ∈ J∑
j∈J
gj(pj) = 0 ← x

often exhibit separable structure after dualization

Lagrangian Relaxation Example

Real-life optimization problems

(primal)



max
∑
j∈J

−Cj(pj)

pj ∈Pj , j ∈ J∑
j∈J
gj(pj) = 0 ← x

often exhibit separable structure after dualization

(dual) min
x

∑
j∈J

 max −Cj(pj)+
〈
x,gj(pj)

〉
pj ∈Pj

Lagrangian Relaxation Example

Real-life optimization problems

(primal)



max
∑
j∈J

−Cj(pj)

pj ∈Pj , j ∈ J∑
j∈J
gj(pj) = 0 ← x

often exhibit separable structure after dualization

(dual) min
x

∑
j∈J

max −Cj(pj)−
〈
x,gj(pj)

〉
pj ∈Pj

fj(x)

fj(x) :=

 max −Cj(pj)+
〈
x,gj(pj)

〉
pj ∈Pj

Energy management problems

Typically, evaluating fj(x) :=

 max −Cj(pj)+
〈
x,gj(pj)

〉
pj ∈Pj

corresponds to local subproblems, related to one power plant, requiring
sometimes heavy calculations

Energy management problems

Typically, evaluating fj(x) :=

 max −Cj(pj)+
〈
x,gj(pj)

〉
pj ∈Pj

corresponds to local subproblems, related to one power plant, requiring
sometimes heavy calculations

One subgradient for free: gj(pj(x)) once a solution pj(x) is available

Often, most of the CPU time is spent in the oracle
calculations. For mid-term power generation planning:

x

f(x) gradient

du
al

un
it

su
bp

ro
bl

em
s(

pr
im

al
)

minf(x)

x ∈ IRn
and a sub-

Scenario tree with 50,000 nodes

Nuclear subproblems are LPs with 100,000 variables

and 300,000 constraints, consuming 99% total running time

80

15

50

60

Often, most of the CPU time is spent in the oracle
calculations. For mid-term power generation planning:

x

f(x) gradient

du
al

un
it

su
bp

ro
bl

em
s(

pr
im

al
)

minf(x)

x ∈ IRn
and a sub-

Can we skip/solve approximately

nuclear subproblems,

consuming LESS running time without losing accuracy?

80

15

50

60

C
an

w
e

ad
ap

tt
he

or
ac

le
re

sp
on

se
to

th
e

so
lv

er
ne

ed
s?

x

du
al

un
it

su
bp

ro
bl

em
s(

pr
im

al
)

minf(x)

x ∈ IRn

80XX 50

15XX 5

50

60

now the oracle return INEXACT values

x

1s
t-

st
ag

e
pr

ob
le

m

minc>x+Q(x)

x ∈X

2n
d-

st
ag

es
ub

pr
ob

le
m

sQ1(x)XX

XX
QN(x)

C
an

w
e

ad
ap

tt
he

or
ac

le
re

sp
on

se
to

th
e

so
lv

er
ne

ed
s?

x

du
al

un
it

su
bp

ro
bl

em
s(

pr
im

al
)

minf(x)

x ∈ IRn

80XX 50

15XX 5

50

60

fx/gx

now the oracle returns INEXACT values

x

1s
t-

st
ag

e
pr

ob
le

m

minc>x+Q(x)

x ∈X

2n
d-

st
ag

es
ub

pr
ob

le
m

sQ1(x)XX

XX
QN(x)

Qx/gx

Can we adapt the oracle response to the solver needs? YES!
with a NSO method capable of handling
oracles with On-demand Accuracy

Can we adapt the oracle response to the solver needs? YES!
with a NSO method capable of handling
oracles with On-demand Accuracy created over noisy

black-boxes

x
fx ≈ f(x)

gx ≈ g(x) ∈ ∂f(x)

when we have the ability of computing fx/gx with more or
less accuracy

Oracle with on-demand accuracy

For fj(x) :=

 max −Cj(pj)+
〈
x,gj(pj)

〉
pj ∈Pj

we design a noisy black box that gets additional input:

an error bound ε and a descent target γ such that

fx = f(x)−η(x)

gx ∈ ∂η(x)f(x)

 for all x, with η(x)≥ 0

η(x)≤ ε if x gave enough descent: fx ≤ γ

Oracle with on-demand accuracy

For fj(x) :=

 max −Cj(pj)+
〈
x,gj(pj)

〉
pj ∈Pj

we design a noisy black box that gets additional input:

an error bound ε and a descent target γ such that

fx = f(x)−η(x)

gx ∈ ∂η(x)f(x)

 for all x, with η(x)≥ 0 unknown

η(x)≤ ε if x gave enough descent: fx ≤ γ

Classical Bundle Method
0 Choose x1, set k= 1 x̂1 = x1.
1 Compute xk+1 ∈ argminMk(x)+

1
2tk

|x− x̂k|2

2 If δk =f(x̂k)−Mk(x
k+1)≤ tol STOP

3 Call the oracle at xk+1.

If f(xk+1)≤ f(x̂k)−mδk, set x̂k+1 = xk+1 • (Serious Step)
Otherwise, maintain x̂k+1 = x̂k (Null Step)

4 Define Mk+1, tk+1, make k= k+1, and loop to 1.

Partly Exact Bundle Method
0 Choose x1, ε1 , set k= 1 x̂1 = x1.

1 Compute xk+1 ∈ argminMk(x)+
1
2tk

|x− x̂k|2

2 If δk =fx̂k −Mk(x
k+1) “is too negative"

tk+1 = 10tk,

go to 1
Otherwise, if δk ≤ tol STOP

3 Call the oracle at xk+1 with γ= fx̂k −mδk, decreasing εk

If fxk+1 ≤ fx̂k −mδk, set x̂k+1 = xk+1 • (Serious Step)
Otherwise, maintain x̂k+1 = x̂k (Null Step)

4 Define Mk+1, tk+1, make k= k+1, and loop to 1.

Partly Exact Bundle Method
0 Choose x1, ε1 , set k= 1 x̂1 = x1.
1 Compute xk+1 ∈ argminMk(x)+

1
2tk

|x− x̂k|2

2 If δk =fx̂k −Mk(x
k+1) “is too negative"

tk+1 = 10tk,

go to 1
Otherwise, if δk ≤ tol STOP

3 Call the oracle at xk+1 with γ= fx̂k −mδk, decreasing εk

If fxk+1 ≤ fx̂k −mδk, set x̂k+1 = xk+1 • (Serious Step)
Otherwise, maintain x̂k+1 = x̂k (Null Step)

4 Define Mk+1, tk+1, make k= k+1, and loop to 1.
as εk→ 0, fx̂k → f(x̂k), the method finds exact solutions!

1
ε

2
ε

0
321

≥≥≥ Lεεε

)(xf

Oracle with on-demand accuracy: versatility

fx = f(x)−η(x)

gx ∈ ∂η(x)f(x)

 for all x, with η(x)≥ 0

η(x)≤ ε if x gave enough descent: fx ≤ γ

We control both ε and γ, which can vary with x:

newline – εx = 0 and γx =+∞ is an exact oracle.
newline – εx→ 0 along the iterative process and γx =+∞ is an
asymptotically exact oracle
newline – εx = 0 with finite γx gives a partly inexact oracle
newline – εx > 0 unknown, but bounded, with γx =+∞ is an
inexact oracle

Theoretical Results

Convex proximal bundle methods in depth: a unified analysis for inexact
oracles

W. de Oliveira, C. Sagastizábal, C. Lemaréchal

MathProg 148, pp 241-277, 2014

General and versatile convergence theory for inexact oracles, including

• asymptotically exact ones (driving ε to 0).

• inexact oracles (convergence within accuracy bound)

• lower an dupper oracles

• previous exact bundle variants

• new ones

Application in Energy I

Mid-term planning for power generation

Scenario tree with 50,000 nodes

Nuclear LPs with 100,000 variables and 300,000 constraints

Application in Energy I

Mid-term planning for power generation

Incremental Bundle

fx and gx

Skips Nuclear LPs (alternating) ≡ noisy black box

25% less CPU time than exact bundle, same accuracy

Application in Energy II

2-stage stochastic linear programs

L-shaped decomposition into N scenarios

Application in Energy II

2-stage stochastic linear programs

Inexact Bundle

Qx and gx

Skips 80% LPs solution ≡ noisy black box

4 times faster than L-shaped, same accuracy

Applications in Energy III

V2(t)

Vr(t)

VN(t)

st
oc

ha
st

ic
de

te
rm

in
is

tic

V1(t)
Reservoir 1

Reservoir 2

Reservoir r

Reservoir N

turbines

pumps

and

Maximize revenue of hydro producers keeping reservoir levels between
min-zones with 90% confidence (numerical integration in dimension
192!)

Comparison with previous values obtained by Wim van Ackooij, from
R&D at EDF on several instances from Val d’Isère (Alpes), using a
method by A. Prékopa.

Huge reduction in CPU times: drops from almost 3h to 3 minutes

Closing remarks
• Thanks to Welington de Oliveira and Marc Schmidt for some of the

images.

• Credits to some co-authors: Welington de Oliveira, Claude
Lemaréchal, Wim van Ackooij

• Warning: This tutorial does not intend to encourage drinking
caipirinha.

Closing remarks
• Thanks to Welington de Oliveira and Marc Schmidt for some of the

images.

• Credits to some co-authors: Welington de Oliveira, Claude
Lemaréchal, Wim van Ackooij

• Warning: This tutorial does not intend to encourage drinking
caipirinha.

It is rather meant to facilitate the use of modern (on-demand
accuracy) bundle methods.

Any doubts or questions, just e-mail me

To learn more
(exact) Bundle books
J.F. BONNANS, J.C. GILBERT, C. LEMARÉCHAL, AND C. SAGASTIZÁBAL, Numerical Optimization: Theoretical and
Practical Aspects, Springer, 2nd ed., 2006.
J.B. HIRIART-URRUTY AND C. LEMARÉCHAL, Convex Analysis and Minimization Algorithms II, no. 306 in Grund. der
math. Wissenschaften, Springer, 2nd ed., 1996.
Inexact Bundle theory
M. HINTERMÜLLER, A proximal bundle method based on approximate subgradients, COAp, 20 (2001), pp. 245–266.
K.C. KIWIEL, A proximal bundle method with approximate subgradient linearizations, SiOpt, 16 (2006), pp. 1007–1023.
W. DE OLIVEIRA, C. SAGASTIZÁBAL, AND C. LEMARÉCHAL, Convex proximal bundle methods in depth: a unified
analysis for inexact oracles, MathProg, 148 (2014), pp. 241–277.
Inexact Bundle variants with applications
G. EMIEL AND C. SAGASTIZÁBAL, Incremental-like bundle methods with application to energy planning, COAp, 46
(2010), pp. 305–332.
W. DE OLIVEIRA, C. SAGASTIZÁBAL, AND S. SCHEIMBERG, Inexact bundle methods for two-stage stochastic
programming, SiOpt, 21 (2011), pp. 517–544.
W. VAN ACKOOIJ AND C. SAGASTIZÁBAL, Constrained bundle methods for upper inexact oracles with application to
joint chance constrained energy problems, SiOpt, 24 (2014), pp. 733–765.
W. DE OLIVEIRA AND C. SAGASTIZÁBAL, Level bundle methods for oracles with on-demand accuracy, OMS 29 (2014),
pp. 1180 –1209
W. DE OLIVEIRA AND C. SAGASTIZÁBAL, Bundle methods in the xxi century: A birds’-eye view, Pesquisa Operacional,
34 (2014), pp. 647 – 670.
W. DE OLIVEIRA AND M. SOLODOV, A doubly stabilized bundle method for nonsmooth convex optimization, accepted in
MathProg, 2015.
and my web-page: http://www.impa.br/~sagastiz

Save the date!

