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Back to Computational NSO

For the unconstrained problem

minf(x) ,

where f is convex but not differentiable at some points,

we look for algorithms based on information provided by an oracle
or “black box”
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because distance to solution set decreases for tk sufficiently small
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. . . does not use all available information

x

f(x)

g(x) ∈ ∂f(x)

SG methods are like caipirinha without cachaça
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Black box information defines linearizations

that put together create a model M of the function f.

xi
fi = f(xi)

gi = g(xi)
=⇒M(x) = maxi {fi+gi>(x−xi) }

(just an example, many other models are possible)
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Cutting-plane methods

Artificial bounding at least for the first iterations
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{Mk(x
k+1)} increases but not necessarily the functional values:

f(x5)> f(x4). Stopping test measures δk := f(xk)−Mk−1(x
k)

}
δ2
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0 Choose x1 and set k= 1.
1 Call the oracle at xk.If f(xk)−Mk−1(x

k)≤ tol STOP
2 Compute xk+1 ∈ argminXMk(x)

3 Mk+1(·) = max
(

Mk(·), fk+gk>(·−xk)
)

, k= k+1, loop to 1.

CP methods are

an improved algorithmic version

of the Aussie sign

a bett
er

rec
ipe

CP methods are like caipirinha with a few drops of cachaça
can be improved!
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Ingredients for the best recipe
• CP brings in the concept of a model, which gives a stopping test (δk)

• CP still non-monotone

Monotonicity defeats instability and oscillations: the sequence of function
values at green-spot iterates converges
• Bundle Methods select green-spot iterates using a descent rule

f(x̂k+1)≤ f(x̂k)−mδk where δk is a positive quantity< f(x̂k)

limit points of the serious-step subsequence {x̂k} minimize f
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Bundle Methods
0 Choose x1, set k= 1, and let x̂1 = x1.
1 Compute xk+1 ∈ argminMk(x)+

1
2tk

|x− x̂k|2

2 If δk :=f(x̂k)−Mk(x
k+1)≤ tol STOP

3 Call the oracle at xk+1.

If f(xk+1)≤ f(x̂k)−mδk, set x̂k+1 = xk+1 • (Serious Step)
Otherwise, maintain x̂k+1 = x̂k (Null Step)

4 Define Mk+1, tk+1, make k= k+1, and loop to 1.
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optimal convex combination
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Bundle Methods

Unlike CP Mk+1(·) = max
(

Mk(·), fk+gk>(·−xk)
)

,
now the choice of the new model is more flexible:
xk+1 ∈ argminMk(x)+

1
2tk

|x− x̂k|2 with Mk(x) = maxi≤k{fi+gi>(x−xi)} is
equivalent to a QP: minr∈IR ,x∈IRn r+ 1

2tk
|x− x̂k|2

s.t. r≥
∑
i ᾱ
i(fi+gi>(x−xi))

Same solution if all, or active, or the optimal convex combination

BM Mk+1(·) = max
( Mk(·)

maxactive

aggregate

Bundle Compression: QP with 2 constraints

, fk+gk>(·−xk)
)



Bundle Methods

When k→∞, the algorithm generates two subsequences.

Convergence analysis addresses the mutually exclusive situations

• either the SS subsequence is infinite (limit point minimizes f)

• or there is a last SS, followed by infinitely many null steps (last
SS minimizes f)



Bundle Methods

When k→∞, the algorithm generates two subsequences.

Convergence analysis addresses the mutually exclusive situations

• either the SS subsequence is infinite (limit point minimizes f)

• or there is a last SS, followed by infinitely many null steps
(last SS minimizes f and null→ last SS)



Comparing the methods: bundle and SG

Typical performance on a battery of Unit Commitment problems



Comparing the methods: bundle and CP

On a battery of probabilistically constrained problems

x CP is fast to reach a few digits of accuracy, then stalls



Comparing the methods: bundle and CP

On a battery of probabilistically constrained problems

x CP is fast to reach a few digits of accuracy, then stalls
+ Bundle is consistently 3 times faster



Comparing the methods

SG ok if low precision -for instance in combinatorial optimization

CP ok if not many iterations -usually not the case

Bundle ok if f complex and high precision is required



Comparing the methods

SG ok if low precision -for instance in combinatorial optimization

CP ok if not many iterations -usually not the case

Bundle ok if f complex and high precision is required
a go
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Can we do any better??
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Can we do any better?? YES, WE CAN



Bundle Methods with on-demand accuracy
the new generation

(or the perfect caipirinha)



First, the bad news

For a convex nonsmooth function, solving

minf(x)

with a black box method

x

f(x)

g(x) ∈ ∂f(x)

is doomed to slow convergence speed: complexity is O( 1√
k
) k iterations
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minf(x)

with a black box method

x

f(x)

g(x) ∈ ∂f(x)

is doomed to slow convergence speed: complexity is O( 1√
k
) k iterations

Better performance possible by exploiting structure
For instance, for strongly convex f complexity drops to O( 1k)



First, the bad news

For a convex nonsmooth function, solving

minf(x)

with a black box method

x

f(x)

g(x) ∈ ∂f(x)

is doomed to slow convergence speed: complexity is O( 1√
k
) k iterations

Note: complexity results assume black box always called as above



How does structure appear?

– Explicitly

as a sum

as a composition

– Implicitly

U-Lagrangian

VU-decomposition

partly smooth functions
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How does structure appear?

– Explicitly

as a sum

as a composition

 6= black boxes

– Implicitly

U-Lagrangian

VU-decomposition

partly smooth functions

 digging tools



Explicit Structure:

Opening the Black Box



A convex partly nonsmooth function

For x ∈ IRn, given matrices A� 0, B� 0,

f(x) =
√
x>Ax+x>Bx

has a unique minimizer at 0.
On N (A) the function is not differentiable, and the first term
vanishes: f|N (A) looks smooth.

R(A) N (A)



This function has several interesting structures
If no structure at all

f(x) =
√
x>Ax+x>Bx

This defines a sum black box:
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This defines the black box :

x

f(x)

g(x) ∈ ∂f(x)



This function has several interesting structures
Sum structure

f(x) = f1(x)+ f2(x) with

 f1(x) =
√
x>Ax

f2(x) = x
>Bx

This defines a sum black box:



This function has several interesting structures
Sum structure

f(x) = f1(x)+ f2(x) with

 f1(x) =
√
x>Ax

f2(x) = x
>Bx

This defines a sum black box:

x

f1(x), f2(x)

gj(x) ∈ ∂fj(x)j=1,2



This function has several interesting structures
Composite structure

f(x) = (h◦c)(x) with

 c(x) = (x,x>Bx) ∈ IRn+1

h(C) =
√
C>1:nAC1:n+Cn+1

for C smooth and h positively homogeneous

This defines a composite black box: aeriou



This function has several interesting structures
Composite structure

f(x) = (h◦c)(x) with

 c(x) = (x,x>Bx) ∈ IRn+1

h(C) =
√
C>1:nAC1:n+Cn+1

for C smooth and h positively homogeneous

This defines a composite black box:

x

C := c(x) and h(C)

Jacobian Dc(x) and

G(C) ∈ ∂h(C)



This function has several interesting structures
Inexact information

Suppose not all of A/B is known/accessible,

so that only estimates are available for f



This function has several interesting structures
Inexact information

Suppose not all of A/B is known/accessible,

so that only estimates are available for f

This defines a noisy black box:

x

fx ≈ f(x)

gx ≈ g(x) ∈ ∂f(x)



Structured models for f

No structure
M(x) = maxi

{
fi+gi>(x−xi)

}
= maxi

{
(fi1+ f
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i
2)
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Sum structure
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{
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M(x) = maxi

{
fi+gi>(x−xi)

}
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{
(fi1+ f
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}

Sum structure
M(x) = maxi

{
fi1+g

i
1
>(x−xi)

}
+maxi

{
fi2+g

i
2
>(x−xi)

}

Larger

QP



Structured models for f

Composite structure M(x) = maxi
{
Gi>

(
c(x̂)+Dc(x̂)(x− x̂)

)}
≈h(c(x̂)+Dc(x̂)(x− x̂))



Structured models for f

Composite structure M(x) = maxi
{
Gi>

(
c(x̂)+Dc(x̂)(x− x̂)

)}
≈h(c(x̂)+Dc(x̂)(x− x̂))

Good

near x̂



Inexact models for f

Inexact information M(x) = maxi
{
fi+gi>(x−xi)

}



Inexact models for f

Inexact information M(x) = maxi
{
fi+gi>(x−xi)

}

M may

cut gr(f)

excessive noise is attenuated via stepsize tk



Bundle Methods with Inexact Information
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Bundle Methods with Inexact Information
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Bundle Methods with Inexact Information

)(xf

1x 2z
3xx̂1 x̂3 x2



Controlling the impact of noise

xk+1 = argmin
x

M(x)+
1

2tk
|x− x̂|2

now linearizations may be inexact:

εj

xj

γj

fj = fxj

gj = gxj
=⇒M(x) = maxj≤i

{
fj+gj>(x−xj)

}

and the model may be “wrong”
If too wrong: noise needs to be attenuated



Controlling the impact of noise

xk+1 = argmin
x

M(x)+
1

2tk
|x− x̂|2

now linearizations may be inexact:

εj

xj

γj

fj = fxj

gj = gxj
=⇒M(x) = maxj≤i

{
fj+gj>(x−xj)

}

and the model may be “wrong”
Noise attenuated by increasing t, hence lowering QP value



Detecting excessive noise by checking δk



Detecting excessive noise: δk < 0
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Detecting excessive noise by checking δk



Controlling the impact of noise:

oracles with on-demand accuracy
xk+1 = argmin

x
M(x)+

1

2tk
|x− x̂|2

now linearizations may be inexact:

xj
fj = fxj

gj = gxj
=⇒M(x) = maxj≤i

{
fj+gj>(x−xj)

}

andthemodelmaybe‘‘wrong ′′

If we have the ability of computing fx/gx
with more or less accuracy

compute (asympt.) exactly SS

and do not waste time in Null



On-demand accuracy scheme

Explicit structure, induced by some decomposition method

by Lagrangian relaxation

by Benders decomposition

= oracles

Principle: if a problem is difficult to solve directly,
solve instead a sequence of easier subproblems.

The master program has often

a nonsmooth objective function



On-demand accuracy scheme

Explicit structure, induced by some decomposition method

by Lagrangian relaxation

by Benders decomposition
= oracles

Principle: if a problem is difficult to solve directly,
solve instead a sequence of easier subproblems.

Separate subproblems
allow for fast oracle calculations:
f/g defined as the sum of N terms



Lagrangian Relaxation Example

Real-life optimization problems

(primal)



max
∑
j∈J

−Cj(pj)

pj ∈Pj , j ∈ J∑
j∈J
gj(pj) = 0 ← x
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Lagrangian Relaxation Example

Real-life optimization problems

(primal)



max
∑
j∈J

−Cj(pj)

pj ∈Pj , j ∈ J∑
j∈J
gj(pj) = 0 ← x

often exhibit separable structure after dualization

(dual) min
x

∑
j∈J

max −Cj(pj)−
〈
x,gj(pj)

〉
pj ∈Pj

fj(x)

fj(x) :=

 max −Cj(pj)+
〈
x,gj(pj)

〉
pj ∈Pj



Energy management problems

Typically, evaluating fj(x) :=

 max −Cj(pj)+
〈
x,gj(pj)

〉
pj ∈Pj

corresponds to local subproblems, related to one power plant, requiring
sometimes heavy calculations



Energy management problems

Typically, evaluating fj(x) :=

 max −Cj(pj)+
〈
x,gj(pj)

〉
pj ∈Pj

corresponds to local subproblems, related to one power plant, requiring
sometimes heavy calculations

One subgradient for free: gj(pj(x)) once a solution pj(x) is available



Often, most of the CPU time is spent in the oracle
calculations. For mid-term power generation planning:

x
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du
al

un
it

su
bp

ro
bl

em
s(

pr
im

al
)

minf(x)

x ∈ IRn
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Scenario tree with 50,000 nodes

Nuclear subproblems are LPs with 100,000 variables

and 300,000 constraints, consuming 99% total running time
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Often, most of the CPU time is spent in the oracle
calculations. For mid-term power generation planning:

x

f(x) gradient

du
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al
)

minf(x)

x ∈ IRn
and a sub-

Can we skip/solve approximately

nuclear subproblems,

consuming LESS running time without losing accuracy?
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Can we adapt the oracle response to the solver needs? YES!
with a NSO method capable of handling
oracles with On-demand Accuracy



Can we adapt the oracle response to the solver needs? YES!
with a NSO method capable of handling
oracles with On-demand Accuracy created over noisy

black-boxes

x
fx ≈ f(x)

gx ≈ g(x) ∈ ∂f(x)

when we have the ability of computing fx/gx with more or
less accuracy



Oracle with on-demand accuracy

For fj(x) :=

 max −Cj(pj)+
〈
x,gj(pj)

〉
pj ∈Pj

we design a noisy black box that gets additional input:

an error bound ε and a descent target γ such that

fx = f(x)−η(x)

gx ∈ ∂η(x)f(x)

 for all x, with η(x)≥ 0

η(x)≤ ε if x gave enough descent: fx ≤ γ



Oracle with on-demand accuracy

For fj(x) :=

 max −Cj(pj)+
〈
x,gj(pj)

〉
pj ∈Pj

we design a noisy black box that gets additional input:

an error bound ε and a descent target γ such that

fx = f(x)−η(x)

gx ∈ ∂η(x)f(x)

 for all x, with η(x)≥ 0 unknown

η(x)≤ ε if x gave enough descent: fx ≤ γ



Classical Bundle Method
0 Choose x1, set k= 1 x̂1 = x1.
1 Compute xk+1 ∈ argminMk(x)+

1
2tk

|x− x̂k|2

2 If δk =f(x̂k)−Mk(x
k+1)≤ tol STOP

3 Call the oracle at xk+1.

If f(xk+1)≤ f(x̂k)−mδk, set x̂k+1 = xk+1 • (Serious Step)
Otherwise, maintain x̂k+1 = x̂k (Null Step)

4 Define Mk+1, tk+1, make k= k+1, and loop to 1.



Partly Exact Bundle Method
0 Choose x1, ε1 , set k= 1 x̂1 = x1.

1 Compute xk+1 ∈ argminMk(x)+
1
2tk

|x− x̂k|2

2 If δk =fx̂k −Mk(x
k+1) “is too negative"

tk+1 = 10tk,

go to 1
Otherwise, if δk ≤ tol STOP

3 Call the oracle at xk+1 with γ= fx̂k −mδk, decreasing εk

If fxk+1 ≤ fx̂k −mδk, set x̂k+1 = xk+1 • (Serious Step)
Otherwise, maintain x̂k+1 = x̂k (Null Step)

4 Define Mk+1, tk+1, make k= k+1, and loop to 1.



Partly Exact Bundle Method
0 Choose x1, ε1 , set k= 1 x̂1 = x1.
1 Compute xk+1 ∈ argminMk(x)+

1
2tk

|x− x̂k|2

2 If δk =fx̂k −Mk(x
k+1) “is too negative"

tk+1 = 10tk,

go to 1
Otherwise, if δk ≤ tol STOP

3 Call the oracle at xk+1 with γ= fx̂k −mδk, decreasing εk

If fxk+1 ≤ fx̂k −mδk, set x̂k+1 = xk+1 • (Serious Step)
Otherwise, maintain x̂k+1 = x̂k (Null Step)

4 Define Mk+1, tk+1, make k= k+1, and loop to 1.
as εk→ 0, fx̂k → f(x̂k), the method finds exact solutions!
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Oracle with on-demand accuracy: versatility

fx = f(x)−η(x)

gx ∈ ∂η(x)f(x)

 for all x, with η(x)≥ 0

η(x)≤ ε if x gave enough descent: fx ≤ γ

We control both ε and γ, which can vary with x:

newline – εx = 0 and γx =+∞ is an exact oracle.
newline – εx→ 0 along the iterative process and γx =+∞ is an
asymptotically exact oracle
newline – εx = 0 with finite γx gives a partly inexact oracle
newline – εx > 0 unknown, but bounded, with γx =+∞ is an
inexact oracle



Theoretical Results

Convex proximal bundle methods in depth: a unified analysis for inexact
oracles

W. de Oliveira, C. Sagastizábal, C. Lemaréchal

MathProg 148, pp 241-277, 2014

General and versatile convergence theory for inexact oracles, including

• asymptotically exact ones (driving ε to 0).

• inexact oracles (convergence within accuracy bound)

• lower an dupper oracles

• previous exact bundle variants

• new ones



Application in Energy I

Mid-term planning for power generation

Scenario tree with 50,000 nodes

Nuclear LPs with 100,000 variables and 300,000 constraints



Application in Energy I

Mid-term planning for power generation

Incremental Bundle

fx and gx

Skips Nuclear LPs (alternating) ≡ noisy black box

25% less CPU time than exact bundle, same accuracy



Application in Energy II

2-stage stochastic linear programs

L-shaped decomposition into N scenarios



Application in Energy II

2-stage stochastic linear programs

Inexact Bundle

Qx and gx

Skips 80% LPs solution ≡ noisy black box

4 times faster than L-shaped, same accuracy



Applications in Energy III

V2(t)

Vr(t)

VN(t)

st
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tic

V1(t)
Reservoir 1

Reservoir 2

Reservoir r

Reservoir N

turbines

pumps

and

Maximize revenue of hydro producers keeping reservoir levels between
min-zones with 90% confidence (numerical integration in dimension
192!)

Comparison with previous values obtained by Wim van Ackooij, from
R&D at EDF on several instances from Val d’Isère (Alpes), using a
method by A. Prékopa.

Huge reduction in CPU times: drops from almost 3h to 3 minutes



Closing remarks
• Thanks to Welington de Oliveira and Marc Schmidt for some of the

images.

• Credits to some co-authors: Welington de Oliveira, Claude
Lemaréchal, Wim van Ackooij

• Warning: This tutorial does not intend to encourage drinking
caipirinha.



Closing remarks
• Thanks to Welington de Oliveira and Marc Schmidt for some of the

images.

• Credits to some co-authors: Welington de Oliveira, Claude
Lemaréchal, Wim van Ackooij

• Warning: This tutorial does not intend to encourage drinking
caipirinha.

It is rather meant to facilitate the use of modern (on-demand
accuracy) bundle methods.

Any doubts or questions, just e-mail me



To learn more
(exact) Bundle books
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Inexact Bundle variants with applications
G. EMIEL AND C. SAGASTIZÁBAL, Incremental-like bundle methods with application to energy planning, COAp, 46
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pp. 1180 –1209
W. DE OLIVEIRA AND C. SAGASTIZÁBAL, Bundle methods in the xxi century: A birds’-eye view, Pesquisa Operacional,
34 (2014), pp. 647 – 670.
W. DE OLIVEIRA AND M. SOLODOV, A doubly stabilized bundle method for nonsmooth convex optimization, accepted in
MathProg, 2015.
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Save the date!


