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� The theory of Chebyshev (uniform) approximation for univariate

functions is very elegant.

� The optimality conditions are based on the notion of alternance

(maximal deviation points with alternating deviation sign).

� It is not very straightforward, however, how to extend the notion of

alternance to the case of multivariate function.

� In this study, we derive optimality conditions (Chebyshev

approximation) for multivariate functions.
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Let us first formulate the objective function. Suppose that a continuous

function f(x) is to be approximated by a functions

L(A,x) = a0 +
n
∑

i=1

aigi(x), (1)

where gi(x) are the basis functions and the multipliers ai, i = 0, . . . , n
are the corresponding coefficients. Then the approximation problem can

be formulated as follows:

minimise Ψ(A), subject to A = (a0, a1, . . . , an)
T ∈ R

n+1, (2)

where

Ψ(A) = sup
x∈Q

max{f(x)−a0−
n
∑

i=1

aigi(x), a0+
n
∑

i=1

aigi(x)−f(x)},

x ∈ R
l, Q is a hyperbox, such that ci ≤ xi ≤ di, i = 1, . . . , l.
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Note that Ψ(A), A ∈ R
n+1 is a supremum of affine functions and

therefore Ψ(A) is a convex function. Then the following condition is a

necessary and sufficient optimality condition for the optimisation

problem (2) at A∗:

0n+1 ∈ ∂Ψ(A∗), (3)

where ∂Ψ(A∗) is a subdifferential of Ψ(A) at A∗.
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Basing on the calculus rules, a necessary and sufficient optimality

condition (3) for (2) at A∗ can be written as follows:

0n+1 ∈ co



























sign(Ψ(A∗))















1
g1(xj)
g2(xj)

...

gn(xj)









































, (4)

where xj ∈ E are maximal absolute deviation points (due to

Caratheodori’s theorem, 0n+1 can be constructed a convex combination

of no more than n+ 2 points).
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The optimality condition (4) can be rewritten as follows: there exists a

scalar γ, such that 0 ≤ γ ≤ 1 and two sets of nonnegative coefficients

αi+, and αi−, i+, i− = 1, . . . , n+ 2,
n+2
∑

i+=1

αi+ =
n+2
∑

i=1

αi− = 1,

such that

0n+1 = γ

n+2
∑

i=1

αi+











1
g1(xi+)

...

gn(xi+)











− (1− γ)

n+2
∑

i=1

αi−











1
g1(xi−)

...

gn(xi−)











, (5)

where xi+ are maximal absolute deviation points with positive deviation

and xi− are maximal absolute deviation points with negative deviation (it

is possible to construct such convex combination, using at most n+ 2
maximal absolute deviation points, due to Caratheodori’s theorem).
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Therefore, a necessary and sufficient optimality condition for a Chebyshev

approximation (2) can be formulated in the following theorem.

Theorem 1 The convex hulls of the vectors (1, g1(x), . . . , gn(x))
T ,

built over positive and negative maximal deviation points intersect.

An equivalent theorem is as follows (since the first coordinate is the same

for all the vectors).

Theorem 2 The convex hulls of the vectors (g1(x), . . . , gn(x))
T , built

over positive and negative maximal deviation points intersect.
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In the case of linear functions (multidimensional case) n = l and the

functions gi = xi, i = 1, . . . , l. Then (5) holds and theorem 2 can be

formulates as follows.

Theorem 3 The convex hull of the maximal deviation points with positive

deviation and convex hull of the maximal deviation points with negative

deviation have common points.

Note that in general l ≤ n
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Definition 1 An exponent vector

e = (e1, . . . , el) ∈ R
l, ei ∈ N, i = 1, . . . , n

for x ∈ R
l defines a monomial xe = xe1

1
xe2
2
. . . x

el
l .

Definition 2 A product cxe, where c 6= 0 is called the term, then a

multivariate polynomial is a sum of a finite number of terms.

Definition 3 The degree of a monomial xe is the sum of the components

of e:

deg(xe) =
l

∑

i=1

ei.

Definition 4 The degree of a polynomial is the largest degree of the

composing it monomials.
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Theorem 4 A polynomial of degree m is optimal if and only if there exists

a pair of sets of non-negative coefficients

αi+, αi−,

n+2
∑

i+=1

αi =
n+2
∑

i−=1

αi = 1,

such that for any monomial Mj the following equality holds

n+2
∑

i+=1

αi+Mj(x
i+) =

n+2
∑

i−=1

αi−Mj(x
i−), j = 1, . . . , n, (6)

where x
i+ and x

i− are maximal deviation points with positive and

negative deviation signs respectively (we need at most n+ 2 points, due

to Carathodori’s theorem).

Proof: The proof is obvious, since this is a reformulation of theorem 2 for

the case of polynomials.

△
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Lemma 0.1 Consider two sets of non-negative coefficients

� αi ≥, i = 1, . . . , n such that
∑n

i=1
αi = 1;

� βi ≥, i = 1, . . . , n such that
∑n

i=1
βi = 1.

If
n
∑

i=1

αiaixi =

n
∑

i=1

βibiyi (7)

n
∑

i=1

αiai =
n
∑

i=1

βibi (8)

then for any scalar δ the following equality holds

n
∑

i=1

αiai(xi − δ) =
n
∑

i=1

βibi(yi − δ). (9)
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n
∑

i=1

αiai(xi − δ) =
n
∑

i=1

αiaixi − δ

n
∑

i=1

αiai

=
n
∑

i=1

βibi − δ

n
∑

i=1

βibiyi

=

n
∑

i=1

βibi(yi − δ).

△
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The following algorithm can be used to verify necessary optimality

conditions.

� Step 1 Identify maximal deviation points that correspond to positive

and negative deviations:

P = {xi+, i = 1, . . . , N+}; N = {xi−, i = 1, . . . , N−};

N = N+ +N−.
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� Step 2 For each dimension k : k = 1, . . . , l identify

δk = min{ min
i=1,...,N+

xi+k , min
j=1,...,N−

x
j−
k },

where xi+k and xi−k are the k−th coordinates of xi+ and x
i−

respectively; and

σk = max{ max
i=1,...,N+

xi+k , max
j=1,...,N−

x
j−
k },

where xi+k and xi−k are the k−th coordinates of xi+ and x
i−

respectively.
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� Step 3 Apply the following coordinate transformation (to transform the

coordinates of the maximal deviation points to nonnegative numbers):

x̃i+k = xi+k − δk;

x̃i−k = xi−k − δk;

and
˜̃xi+k = xi+k − σk;

˜̃xi−k = xi−k − σk.
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� Step 4 Reduction

� Step 4.1 Exclude all the points whose coordinates in the highest

degree monomial coincide with δ and check if the intersection of

the convex hulls of the remaining points from N and P are

nonempty.

� Step 4.2 Exclude all the points whose coordinates in the highest

degree monomial coincide with σ and check if the intersection of

the convex hulls of the remaining points from N and P are

nonempty.
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� Step 5 If both pairs have common points then the original polynomials

may be optimal, otherwise it is not optimal.

Note that theorem 2 can also be used to verify optimality (necessary and

sufficient condition). In this case one needs to check if two convex sets are

intersecting in R
n+1, while the above algorithm requires to check if two

convex sets are intersecting in R
l+1.

Therefore, there are two main advantages of this algorithm.

1. It demonstrates how the concept of alternance can be generalised to

the case of multivariate functions.

2. It is based on the verification whether two convex sets are intersecting

or not, but since l ≤ n it is much easier to verify it after applying the

algorithm.

However!!!!!!!!!!! This condition is only necessary, but not sufficient.

There are counterexamples.
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There exists at least one maximal deviation point (positive deviation sing)

and one maximal deviation point (negative deviation sign).

In this case, the system contains only one equation

N+

∑

i=1+

αi+ =
N−

∑

i−=1

αi−.
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Projections: fix all the coordinates, except one. The alternance condition

should satisfy.

Counterexample: Two negative maximal deviation points A = (x1, y1)
and B = (x2, y2); and one positive maximal deviation point

C = (x3, y3), such that

x1 < x3 < x2 and y1 < y3 < y2

and C = (x3, y3) does not belong to the segment AB. In this case, the

alternance conditions are satisfied for both dimensions. However, the

necessary and sufficient optimality conditions are not satisfied (since C

does not belong AB).
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Assume that our maximal deviation points are located in such a way that

necessary and sufficient optimality conditions for degree m− 1 are

satisfied.

Therefore, there exists a non-negative solution (at least one of the

components is non-zero) to the system

Am−1Λ = 0.

Any solution can be presented as Λ = BΓ (if non-empty, represents a

cone: intersection of a linear space and positive orthant). We can split Am

as
[

Am−1

Ad
m

]

.
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We need to find non-negative vectors Γ1 and Γ2 (at least one coordinate

is positive for one of these vectors), such that

XiBΓ1 = BΓ2, i = 1, . . . , n,

where Xi = diag(x1i , . . . , x
N
i ), i = 1, . . . , l. Finally, we need to find a

non-negative vector Γ (at least one coordinate is positive), such that

[XB,−B̃]Γ = 0,

where

X =







X1

...

Xl






, B̃ =







B
...

B






, Γ =

[

Γ1

Γ2

]

.
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In his paper (1963) J. Rice studies a number of properties of multivariate

best approximations. Also, he gives his necessary and sufficient optimality

conditions.

Theorem 5 (Rice) L(A∗,x) is a best approximation to f(x) if and only if

the set of extremal points of L(A∗,x)− f(x) (maximal deviation points)

contains a critical point set.

Definition 5 A subset of extremal points is called a critical point set if its

positive and negative parts P and N are not isolable, but if any point is

deleted then P and N are isolable.

Definition 6 The point sets P and N are said to be isolable if there is an

A, such that

L(A,x) > 0 x ∈ P, L(A,x) < 0 x ∈ N.
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� Note that L(A,x) is linear with respect to A. Then the set of points,

where L(A,x) = 0 is a linear function (hyperplane). If two convex

sets (convex hulls of positive and negative points) are not intersecting,

then there is a separating hyperplane, such that these two convex sets

lie on opposite sides of this hyperplane.

� Note that in our necessary and sufficient optimality conditions we only

consider finite subsets of P and N, namely, we only consider the set

of at most n+ 2 points from the corresponding sundifferential that are

used to form zero on their convex hull. Generally, there are several

ways to form zero, but if we choose the one with the minimal number

of maximal deviation points, then, indeed, the removal of any of the

extremal points will lead to a situation where zero can not be formed

anymore and the corresponding subsets of positive and negative

points are isolable (their convex hulls do not intersect).
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Therefore, our necessary and sufficient optimality conditions are

equivalent to Rice’s conditions.

The main advantages of our formulations are as follows.

� First of all, our condition is much simpler, easier to understand and

connect with the classical theory of univariate chebyshev

approximation.

� Second, it is much easier to verify our optimality conditions, which is

especially important for the construction of of a Remez-like algorithm,

where necessary and sufficient optimality conditions need to be

verified at each iteration.
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� In the case of univariate linear approximation there exist three

maximal deviation points (alternating deviation signs). This means that

there are two points with the same deviation sign and one (between

them) with the opposite deviation sign. Therefore, the convex hull of

the two points (same deviation sign) contain the maximal deviation

point (opposite sign). This means that the convex hulls of positive and

negative maximal deviation points intersect.

� If we apply our algorithm (optimality verification for higher degree

polynomials) to univariate polynomial approximation, then at each step

we have to reduce the degree by one (from m to m− 1). This would

be achieved (in the algorithm) by canceling the first maximal deviation

point and indeed the remaining maximal deviation points correspond

to necessary and sufficient optimality conditions in the case of

polynomials of degree m− 1.
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For the future we are planning to proceed in the following directions.

1. Extend these results to the case of variable polynomial degrees for

each dimension.

2. Develop similar optimality conditions for multivariate trigonometric

polynomials and polynomial spline Chebyshev approximations.

3. Develop an approximation algorithm to construct best multivariate

approximations (similar to the famous Remez algorithm, developed for

univariate polynomials and extended to polynomial splines)
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