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1 Introduction

Assumption 1.1:
S 6= ∅, C convex cone in a real linear space Y, F : S ⇉ Y

set-valued map with F(x) 6= ∅ ∀ x ∈ S.

Set optimization problem:

min
x∈S

F(x).

Early contributions:
J. Borwein (1977), W. Oettli (1980)



Johannes Jahn

1 Introduction

Example 1.2 (perturbed optimization problem):
min
x∈S

ϕ(x) y min
x∈S

F(x) with F(x) := [f(x), g(x)] ∀ x ∈ S
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Example 1.3 (socio-economic problem):

Aircraft noise at Frankfurt airport (by N. Neukel, 2011).



Johannes Jahn

1 Introduction

equivalent continuous sound level

Noise annoyance east of Frankfurt (by N. Neukel, 2011).
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1 Introduction

Definition 1.4:
(x̄, ȳ) with x̄ ∈ S and ȳ ∈ F(x̄) is called a minimizer of

min
x∈S

F(x) iff for F(S) :=
⋃

x∈S

F(x)

({ȳ} − C) ∩ F(S) ⊂ {ȳ} + C,

i.e. ȳ ∈ min F(S).
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Definition 1.4:
(x̄, ȳ) with x̄ ∈ S and ȳ ∈ F(x̄) is called a minimizer of

min
x∈S

F(x) iff for F(S) :=
⋃

x∈S

F(x)

({ȳ} − C) ∩ F(S) ⊂ {ȳ} + C,

i.e. ȳ ∈ min F(S).

Serious disadvantage of this definition:
In general, only one element does not imply that the whole
set F(x̄) is in a certain sense minimal with respect to all sets
F(x) with x ∈ S.
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1 Introduction

In general, the concept of a minimizer is not helpful
in practice:

The best player in a national league does not
necessarily belong to the best team!

The best student of an age group does not necessarily
belong to the best class!

But more than 90% of the papers on set optimization work
with minimizers or variants of this notion.
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2 Order relations of sets 2.1 Known order relations

Two pioneering approaches:

by D. Kuroiwa (1998) in set optimization
(see also Z.G. Nishnianidze in fixed point theory (1984)
and R.C. Young in algebra (1931))

by A. Chiriaev/G.W. Walster (1998) in interval arithmetic
(implemented in the FORTRAN compiler f95 of SUN
Microsystems)
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2.1 Known order relations of sets

Definition 2.1:
Let A, B ⊂ Y be nonempty sets. Then the set less or KNY
order relation 4s is defined by

A 4s B :⇐⇒
(
∀ a ∈ A ∃ b ∈ B : a ≤ b

)
and

(
∀ b ∈ B ∃ a ∈ A : a ≤ b

)
.
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A much stronger order relation is the “certainly less”
relation.
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2.1 Known order relations of sets

A much stronger order relation is the “certainly less”
relation.

Definition 2.2:
Let A, B ⊂ Y be nonempty sets. Then the certainly less
order relation 4c is defined by

A 4c B :⇐⇒ (A = B) or (A 6= B, ∀ a ∈ A ∀ b ∈ B : a ≤ b).
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A weaker concept is the “possibly less” relation.
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2.1 Known order relations of sets

A weaker concept is the “possibly less” relation.

Definition 2.3:
Let A, B ⊂ Y be nonempty sets. Then the possibly less order
relation 4p is defined by

A 4p B :⇐⇒ ∃ a ∈ A ∃ b ∈ B : a ≤ b.
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Example 2.4:
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2.1 Known order relations of sets

Example 2.4:
For order intervals A = [a1, a2] and B = [b1, b2] we have
(a) A 4s B ⇐⇒ a1 ≤ b1 and a2 ≤ b2

(b) A 4c B ⇐⇒ a2 ≤ b1

(c) A 4p B ⇐⇒ a1 ≤ b2.
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2.1 Known order relations of sets

Example 2.4:
For order intervals A = [a1, a2] and B = [b1, b2] we have
(a) A 4s B ⇐⇒ a1 ≤ b1 and a2 ≤ b2

(b) A 4c B ⇐⇒ a2 ≤ b1

(c) A 4p B ⇐⇒ a1 ≤ b2.

R

A 4s B
A

B

R

A 4c B
A

B

R

A 4p B
A

B
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b

b

b
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2.2 New order relations of sets

b

B

b

B − C

max B
b

A

a

A + C

b

C

0Y
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2.2 New order relations of sets

b

B

b

B − C

max B
b

A

a

A + C

b

C

0Y

We have A 4s B but a 6≤ b and b 6≤ a for a ∈ max A and
b ∈ max B.
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Definition 2.5:

b
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2.2 New order relations of sets

Definition 2.5:
Let A, B ⊂ Y be nonempty sets with at least one minimal
and one maximal element. Then the minmax less order
relation 4m is defined by

A 4m B :⇐⇒ min A 4s min B and max A 4s max B.

b
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2.2 New order relations of sets

Definition 2.5:
Let A, B ⊂ Y be nonempty sets with at least one minimal
and one maximal element. Then the minmax less order
relation 4m is defined by

A 4m B :⇐⇒ min A 4s min B and max A 4s max B.

B max B

max B − C
min B − C

min B
Amin A

max A

min A + C

max A + C

b

C

0Y
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Definition 2.6:
Let A, B ⊂ Y be nonempty sets with at least one minimal
and one maximal element. Then the minmax certainly less
order relation 4mc is defined by

A 4mc B :⇐⇒ (A = B) or
(A 6= B, min A 4c min B and max A 4c max B).

b
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2.2 New order relations of sets

Definition 2.6:
Let A, B ⊂ Y be nonempty sets with at least one minimal
and one maximal element. Then the minmax certainly less
order relation 4mc is defined by

A 4mc B :⇐⇒ (A = B) or
(A 6= B, min A 4c min B and max A 4c max B).

B max B

min B
A

min A

max A

b

C

0Y
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2.2 New order relations of sets

Definition 2.7:
Let A, B ⊂ Y be nonempty sets with at least one minimal
and one maximal element. Then the minmax certainly
nondominated order relation 4mn is defined by

A 4mn B :⇐⇒ (A = B) or (A 6= B, max A 4s min B).
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Proposition 2.8 (Properties of 4m and 4mc):
(a) 4m and 4mc are pre-orders (i.e. reflexive and transitive)
and compatible with the multiplication with nonnegative real
numbers.
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2.2 New order relations of sets

Proposition 2.8 (Properties of 4m and 4mc):
(a) 4m and 4mc are pre-orders (i.e. reflexive and transitive)
and compatible with the multiplication with nonnegative real
numbers.

(b) (A 4m B and B 4m A)

⇐⇒ (min A + C = min B + C, min A − C = min B − C,

max A + C = max B + C, max A − C = max B − C).
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2.2 New order relations of sets

Proposition 2.8 (Properties of 4m and 4mc):
(a) 4m and 4mc are pre-orders (i.e. reflexive and transitive)
and compatible with the multiplication with nonnegative real
numbers.

(b) (A 4m B and B 4m A)

⇐⇒ (min A + C = min B + C, min A − C = min B − C,

max A + C = max B + C, max A − C = max B − C).

(c) If C is pointed, then:
(A 4mc B and B 4mc A)
⇐⇒ (min A = min B and max A = max B).
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2.2 New order relations of sets

Proposition 2.9 (Properties of 4mn):
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2.2 New order relations of sets

Proposition 2.9 (Properties of 4mn):
If C is pointed, then 4mn is reflexive, transitive,
antisymmetric and compatible with the multiplication with
nonnegative real numbers.
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2.2 New order relations of sets

Definition 2.10:
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2.2 New order relations of sets

Definition 2.10:
A nonempty set A ⊂ Y is said to have the quasi domination
property iff A ⊂ min A + C and A ⊂ max A − C.
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Definition 2.10:
A nonempty set A ⊂ Y is said to have the quasi domination
property iff A ⊂ min A + C and A ⊂ max A − C.

Proposition 2.11 (Comparing known and new order
relations):
Let A, B ⊂ Y, A 6= B, be nonempty sets with at least one
minimal and one maximal element. If A, B have the quasi
domination property, then:
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2.2 New order relations of sets

Definition 2.10:
A nonempty set A ⊂ Y is said to have the quasi domination
property iff A ⊂ min A + C and A ⊂ max A − C.

Proposition 2.11 (Comparing known and new order
relations):
Let A, B ⊂ Y, A 6= B, be nonempty sets with at least one
minimal and one maximal element. If A, B have the quasi
domination property, then:

A 4c B

=⇒

A 4mc B=⇒

=⇒

A 4mn B

=⇒
A 4m B =⇒ A 4s B.
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3 Existence result

In the following let 4 be any pre-order (reflexive and
transitive).

Definition 3.1:
x̄ ∈ S is called a minimal solution of the set optimization
problem min

x∈S
F(x) w.r.t. the pre-order 4 iff

F(x) 4 F(x̄) for some x ∈ S =⇒ F(x̄) 4 F(x).
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3 Existence result

Definition 3.2:
Let S be a subset of a topological space X. F is said to be
semicontinuous w.r.t. the pre-order 4 at x̄ ∈ S iff F(x̄) ∈ V,
where V = {T ⊂ Y | T 64 V} for some V ⊂ Y, then there is a
neighborhood U of x̄ in X so that

F(x) ∈ V for all x ∈ U.
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3 Existence result

Definition 3.2:
Let S be a subset of a topological space X. F is said to be
semicontinuous w.r.t. the pre-order 4 at x̄ ∈ S iff F(x̄) ∈ V,
where V = {T ⊂ Y | T 64 V} for some V ⊂ Y, then there is a
neighborhood U of x̄ in X so that

F(x) ∈ V for all x ∈ U.

F is said to be semicontinuous w.r.t. the pre-order 4 on S, iff
F is semicontinuous w.r.t. the pre-order 4 at every x̄ ∈ S.
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Theorem 3.3 (existence result):
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3 Existence results

Theorem 3.3 (existence result):
Let S be a subset of a topological space X. If S is compact
and F is semicontinuous w.r.t. the pre-order 4 on S, then the
set optimization problem min

x∈S
F(x) has a minimal solution

w.r.t. the pre-order 4.
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4 Vectorization

Vectorization means the replacement of a set optimization
problem by a suitable vector optimization problem.
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4 Vectorization

Lemma 4.1 (key lemma):
Y locally convex, ∅ 6= A, B ⊂ Y, C ⊂ Y convex cone, A + C

closed and convex. Then:

B ⊂ A + C ⇐⇒ ∀ ℓ ∈ C∗\{0Y∗} : inf
a∈A

ℓ(a) ≤ inf
b∈B

ℓ(b)

b
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4 Vectorization

Lemma 4.1 (key lemma):
Y locally convex, ∅ 6= A, B ⊂ Y, C ⊂ Y convex cone, A + C

closed and convex. Then:

B ⊂ A + C ⇐⇒ ∀ ℓ ∈ C∗\{0Y∗} : inf
a∈A

ℓ(a) ≤ inf
b∈B

ℓ(b)

⇐⇒ sup
ℓ∈C∗\{0Y∗}

(

inf
a∈A

ℓ(a) − inf
b∈B

ℓ(b)
)

︸ ︷︷ ︸

=:ϕ(A,B)

≤ 0.

b
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Lemma 4.1 (key lemma):
Y locally convex, ∅ 6= A, B ⊂ Y, C ⊂ Y convex cone, A + C

closed and convex. Then:

B ⊂ A + C ⇐⇒ ∀ ℓ ∈ C∗\{0Y∗} : inf
a∈A

ℓ(a) ≤ inf
b∈B

ℓ(b)

A

A + C

B

b

C

0Y
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4 Vectorization

Lemma 4.1 (key lemma):
Y locally convex, ∅ 6= A, B ⊂ Y, C ⊂ Y convex cone, A + C

closed and convex. Then:

B ⊂ A + C ⇐⇒ ∀ ℓ ∈ C∗\{0Y∗} : inf
a∈A

ℓ(a) ≤ inf
b∈B

ℓ(b)

A

A + C

B

b

C

0Y

level sets of ℓ ∈ C∗\{0Y∗}



Johannes Jahn

4 Vectorization

Remark 4.2:
Under the assumptions of Lemma 4.1 we have

B ⊂ A − C ⇐⇒ ∀ ℓ ∈ C∗\{0Y∗} : sup
a∈A

ℓ(a) ≥ sup
b∈B

ℓ(b).

b
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4 Vectorization

Remark 4.2:
Under the assumptions of Lemma 4.1 we have

B ⊂ A − C ⇐⇒ ∀ ℓ ∈ C∗\{0Y∗} : sup
a∈A

ℓ(a) ≥ sup
b∈B

ℓ(b).

level sets of ℓ ∈ C∗\{0Y∗}

A

A − C

Bb

C

0Y
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4 Vectorization

Remark 4.2:
Under the assumptions of Lemma 4.1 we have

B ⊂ A − C ⇐⇒ ∀ ℓ ∈ C∗\{0Y∗} : sup
a∈A

ℓ(a) ≥ sup
b∈B

ℓ(b).

b

Remark 4.3:
C∗ in Lemma 4.1 can be reduced to its base (if it exists) or
to other appropriate subsets.
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4 Vectorization

Theorem 4.4:
Let the assumptions of Lemma 4.1 be satisfied and let
A + C and B − C be closed and convex. Then

A 4s B ⇐⇒ ∀ ℓ ∈ C∗\{0Y∗} : inf
a∈A

ℓ(a) ≤ inf
b∈B

ℓ(b)

and sup
a∈A

ℓ(a) ≤ sup
b∈B

ℓ(b)
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4 Vectorization

Theorem 4.4:
Let the assumptions of Lemma 4.1 be satisfied and let
A + C and B − C be closed and convex. Then

A 4s B ⇐⇒ ∀ ℓ ∈ C∗\{0Y∗} : inf
a∈A

ℓ(a) ≤ inf
b∈B

ℓ(b)

and sup
a∈A

ℓ(a) ≤ sup
b∈B

ℓ(b)

⇐⇒ max

(

sup
ℓ∈C∗\{0Y∗}

(

inf
a∈A

ℓ(a) − inf
b∈B

ℓ(b)
)

,

sup
ℓ∈C∗\{0Y∗}

(

sup
a∈A

ℓ(a) − sup
b∈B

ℓ(b)
)
)

≤ 0.
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4 Vectorization

Corollary 4.5:
Let the assumptions of Lemma 4.1 be satisfied, let the sets
min A, min B, max A and max B be nonempty and let the sets
A + C, A − C, B + C and B − C are closed and convex. If
C + min A = A + C, −C + max A = A − C, C + min B = B + C

and −C + max B = B − C, then
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4 Vectorization

Corollary 4.5:
Let the assumptions of Lemma 4.1 be satisfied, let the sets
min A, min B, max A and max B be nonempty and let the sets
A + C, A − C, B + C and B − C are closed and convex. If
C + min A = A + C, −C + max A = A − C, C + min B = B + C

and −C + max B = B − C, then

A 4m B ⇐⇒ ∀ ℓ ∈ C∗\{0Y∗} : inf
a∈A

ℓ(a) ≤ inf
b∈B

ℓ(b),

sup
a∈min A

ℓ(a) ≤ sup
b∈minB

ℓ(b),

inf
a∈max A

ℓ(a) ≤ inf
b∈max B

ℓ(b)

and sup
a∈A

ℓ(a) ≤ sup
b∈B

ℓ(b).
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4 Vectorization

Definition 4.6
A system of nonempty subsets of Y,
Rn(C∗\{0Y∗}) space of functions on C∗\{0Y∗} with values in
R

n
.

The map v : A → R2(C∗\{0Y∗}) is pointwise defined by

v(A)(ℓ) :=






inf
a∈A

ℓ(a)

sup
a∈A

ℓ(a)




 for all A ∈ A and all ℓ ∈ C∗\{0Y∗}
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4 Vectorization

and the map w : A → R4(C∗\{0Y∗}) is pointwise defined by

w(A)(ℓ) :=













inf
a∈A

ℓ(a)

sup
a∈min A

ℓ(a)

inf
a∈max A

ℓ(a)

sup
a∈A

ℓ(a)













for all A ∈ A and all ℓ ∈ C∗\{0Y∗}

(min A and max A are assumed to be nonempty for all A ∈ A).
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Theorem 4.7 (first vectorization theorem):
Let the sets F(x) + C and F(x) − C be closed and convex for
every x ∈ S. Then

x̄ minimal solution of min
x∈S

F(x) with respect to 4s

⇐⇒ x̄ minimal solution of min
x∈S

v(F(x)) with respect to 4

(4 denotes the componentwise and pointwise ordering of
vector functions).
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4 Vectorization

Theorem 4.8 (second vectorization theorem):
Let the sets F(x) + C and F(x) − C be closed and convex and
min F(x) and max F(x) be nonempty for every x ∈ S. If
C + min F(x) = F(x) + C and −C + max F(x) = F(x) − C for
every x ∈ S, then

x̄ minimal solution of min
x∈S

F(x) with respect to 4m

⇐⇒ x̄ minimal solution of min
x∈S

w(F(x)) with respect to 4.
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4 Vectorization

Example 4.9:
Consider S := [−1, 1], Y := R

2, C := R
2
+ and F : S ⇉ Y with

F(x) := {(y1, y2) ∈ R
2 | (y1 − 2x2)2 + (y2 − 2x2)2 ≤ (x2 + 1)2}

∀ x ∈ S
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4 Vectorization

y1432

y2

4

3

2

F(0)

F(−1
2) = F(1

2)

F(−1) = F(1)

Illustration of the sets F(x) for some x ∈ S.
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4 Vectorization

The vector function v at F(x) for some x ∈ S is pointwise
given by

v(F(x))(ℓ) =




x2(2(ℓ1 + ℓ2) − 1) − 1

x2(2(ℓ1 + ℓ2) + 1) + 1



 ∀ ℓ ∈ R
2
+ with ||ℓ|| = 1.



Johannes Jahn

4 Vectorization

The vector function v at F(x) for some x ∈ S is pointwise
given by

v(F(x))(ℓ) =




x2(2(ℓ1 + ℓ2) − 1) − 1

x2(2(ℓ1 + ℓ2) + 1) + 1



 ∀ ℓ ∈ R
2
+ with ||ℓ|| = 1.

We conclude for all x ∈ S and all ℓ ∈ R
2
+ with ||ℓ|| = 1

v(F(0))(ℓ) ≤ v(F(x))(ℓ).
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The vector function v at F(x) for some x ∈ S is pointwise
given by

v(F(x))(ℓ) =




x2(2(ℓ1 + ℓ2) − 1) − 1

x2(2(ℓ1 + ℓ2) + 1) + 1



 ∀ ℓ ∈ R
2
+ with ||ℓ|| = 1.

We conclude for all x ∈ S and all ℓ ∈ R
2
+ with ||ℓ|| = 1

v(F(0))(ℓ) ≤ v(F(x))(ℓ).

Hence, x̄ := 0 is a strongly minimal solution of the vector
optimization problem min

x∈S
v(F(x)).
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The vector function v at F(x) for some x ∈ S is pointwise
given by

v(F(x))(ℓ) =




x2(2(ℓ1 + ℓ2) − 1) − 1

x2(2(ℓ1 + ℓ2) + 1) + 1



 ∀ ℓ ∈ R
2
+ with ||ℓ|| = 1.

We conclude for all x ∈ S and all ℓ ∈ R
2
+ with ||ℓ|| = 1

v(F(0))(ℓ) ≤ v(F(x))(ℓ).

Hence, x̄ := 0 is a strongly minimal solution of the vector
optimization problem min

x∈S
v(F(x)).

Then x̄ := 0 is a minimal solution of the set optimization
problem min

x∈S
F(x) with respect to 4s.
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4 Vectorization

Definition 4.10:
x̄ ∈ S is called a strongly minimal solution of the set
optimization problem min

x∈S
F(x) with respect to the set less

order relation 4s iff

F(x̄) 4s F(x) for all x ∈ S.
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Theorem 4.11:
Let the sets F(x) + C and F(x) − C be closed and convex for
every x ∈ S, and let the scalar optimization problems
min
x∈S

y∈F(x)

ℓ(y) and min
x∈S

max
y∈F(x)

ℓ(y) be solvable.
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Theorem 4.11:
Let the sets F(x) + C and F(x) − C be closed and convex for
every x ∈ S, and let the scalar optimization problems
min
x∈S

y∈F(x)

ℓ(y) and min
x∈S

max
y∈F(x)

ℓ(y) be solvable.

x̄ ∈ S is a strongly minimal solution of the set optimization
problem min

x∈S
F(x) with respect to the set less order relation

4s if and only if for every ℓ ∈ C∗\{0Y∗} the element x̄ ∈ S is a
minimal solution of the two scalar optimization problems

min
x∈S

y∈F(x)

ℓ(y) and min
x∈S

max
y∈F(x)

ℓ(y).
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open question: optimality conditions
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