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Phase Plotting

The Basics

o Phase plotting is a way of
visualizing complex
functions f : C — C.

o Where f(rie®t) = rye®, we
plot the domain space,
coloring points according to
argument of image 6,

o Top right: z — z. Bottom
right: z — z3.
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Some Examples

Figure: Left to right: sinh(z),z - €%, {(2).
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Phase Plotting The Basic Idea
Some Examples
Modulus Axis

History

Recapturing the Modulus

@ We can also plot in 3d to
recapture the modulus
information.

o Let f(re'%) = re®
o Again we plot over the
domain space, coloring

points according to
argument of image 6>

o We also give them vertical
height corresponding to

- Figure: Phase plots with modulus
their modulus r.

included. Left: z — z, Right:
z — z2.
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History

o Phase plotting is a relatively

new tool.
o Recent attention ElosWogr

o Elias Wegert's "Visual Visual Complex
Complex Functions” Functions
published in 2013 [2] e e e e e e

o “Complex Beauties” ’ August
annual calendar (of which ST s L s
Jonathan Borwein was Whihiuser  wmuan

quite fond) [3]
o Wegert's Matlab code is Figur.e: Lfft:_EIias V.\/egertA:s *Visual Complex
Functions.” Right: Right: “Moment function of a

available for download on 4-step Pplanar random walk” by Jonathan M.
his site. Borwein and Armin Straub from 2016 Complex
Beauties calendar.

6/31



Differential Geometry The Basics
What Has Been Done

Differential Geometry

o Conformal Mappings are mappings which preserve the angles
at which lines meet (and signs thereof)
@ Direct Motions are mappings such that the distance between
points is equal to the distance between their images.
o Parallel axiom: for a line L and point p there exists exactly
one line through p which doesn't intersect L.
o Geometries which do not obey the parallel axiom:
o Spherical Geometry (no lines through p)
o Hyperbolic Geometry (more than one line through p)
o Both have constant curvature (intrinsic property)
o The type of geometry determines how many types of direct
motions there are.

o This is because conformal maps can be expressed as
compositions of reflections across lines.
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Differential Geometry The Basics
What Has Been Done

What Has Been Done

Phase plotting on the Riemann sphere has already been employed
by Wegert.

Figure: Left: The construction of the Riemann Sphere with stereographic
projection. Right: phase plotting for a Mdbius transformation (direct
motion) on the Riemann Sphere.
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Pseudosphere
Poincaré Disc

Hyperbolic Geometry Beltrami Half-Sphere

New in this Work

o We extend the notion of phase plotting to surfaces useful in
visualizing hyperbolic geometry:
o Pseudosphere
o Poincaré Disc
o Beltrami Half-Sphere
o Klein Disc

o For the task, we had to redefine the hsv coloring rules for
different representations of hyperbolic space.
o We did so using Maple.

o We exploited Maple's texture plotter in order to cover 3d
objects with colors.

o This generates much nicer shapes than simply coloring
individual points in space.
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Pseudosphere
Poincaré Disc
Beltrami Half-Sphere

Pseudosphere

Figure: The conformal map from the pseudosphere to the hyperbolic
upper half plane.
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Pseudosphere

Hyperbolic Geometry

Poincaré Disc
Beltrami Half-Sphere

Pseudosphere

@ The map is between the
pseudosphere and a small area of
the upper half plane

o If we colored according to the
planar phase plotting rules,
problems:

o Fewer colors for visualization

o Coloring would be tied to
Euclidean geometry rather than
Hyperbolic geometry, warping
perspective.

o Unable to tell if points mapped
out of visible region.

@ Solution: defined a new coloring
scheme unique to hyperbolic space.

Figure: Colors change along
tractrices rather than

Euclidean subspaces. .



Pseudosphere
Poincaré Disc
Beltrami Half-Sphere

Hyperbolic Geometry

Figure: Computing a direct motion (h-rotation) in hyperbolic space. Here
M = I, o l;, where L; and L, correspond to circles in C centered at 0
and 27 with radius 27r. The Mé&bius transformation is 4 * 72 /(2 m — z).
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Pseudosphere
Poincaré Disc
Beltrami Half-Sphere

Hyperbolic Geometry

Pseudosphere: h-rotation

o The regions sent
out of view are
the regions we
expected to be
sent out of view.

@ The rainbow
spectrum is now
rotated, as
hyperbolic space
has been rotated.

o Notice how
non-tractrix lines
are now visible!
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Pseudosphere
Poincaré Disc

Hyperbolic Geometry Beltrami Half-Sphere

L2

Figure: Direct motion: a /imit rotation. M = [I;, o I;, where L; and L5
correspond to circles in C centered at %77 and 27 with radii %F,ﬂ'
respectively. The Mobius transformation is 72 /(—z + 27).
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Pseudosphere
Poincaré Disc
Beltrami Half-Sphere

Hyperbolic Geometry

Pseudosphere: limit rotation

@ The center of the
rotation is at the
right rear

o Much of
foreground is
green; these points
have all been
pulled towards the
right rear.

@ Only some points
starting inside the
circle for Ly are
mapped to the left
rear.
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Pseudosphere
Poincaré Disc

Hyperbolic Geometry Beltrami Half-Sphere

L2

m

Figure: Direct motion: an h-translation. M = [;, o l;, where L; and L,

correspond to circles in C centered at 7 with radii %77, %77 respectively.
The Mobius transformation is %z — %77.
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Pseudosphere
Poincaré Disc
Beltrami Half-Sphere

Hyperbolic Geometry

Pseudosphere: limit rotation

o We see tractrices
sent to tractrices

@ Some points are
translated out of
view.

@ Space appears to
contract, but has
not actually done
so. If we made our
translation by
reflecting across
tractrix lines, this
effect would not
be visible.
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Pseudosphere
Poincaré Disc
Beltrami Half-Sphere

Hyperbolic Geometry

Pseudosphere: Tractrix “Height”

@ One can use a simple
“hack” of the interface to
determine the tractrix height
of the image points.

@ Simply compose the map:

F(z) = %-Iog(%(z))—l—exp(l)-i

on the motion in question.

@ Here the color spectrum
begins at tractrix edge; « is
chosen to be the tractrix
height at which it
terminates.

Figure: F composed on identity map
where o = 2.
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Pseudosphere
Poincaré Disc

Hyperbolic Geometry Beltrami Half-Sphere

Poincaré Disc

Figure: Left: Construction of the Poincaré Disc. Right: phase plotting on
Poincaré Disc as defined by our rule.
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Pseudosphere
Poincaré Disc
Beltrami Half-Sphere

Hyperbolic Geometry

Poincaré Disc

o We adopt a new plotting
rule
o Still colors tractrix
generators in a single color
o Pre-images of h-lines are
still h-lines
o Consistent with
Pseudosphere

o The trick is subtle.

o Where T is inversion map f
user function, HSV map for
p in disc is:
%argo ToXReofoT.

Figure: Phase plotting on Poincaré
Disc.
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Pseudosphere
Poincaré Disc

Hyperbolic Geometry Beltrami Half-Sphere

Poincaré Disc

Figure: Left: h-translation z — z 4+ 2. Right: h-rotation
z — (472) /(27 — z) corresponding to inversion in 2 circles radius 27
centered at 0,27. Notice that the preimages of lines are still lines.
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Pseudosphere
Poincaré Disc

Hyperbolic Geometry Beltrami Half-Sphere

Poincaré Disc

Figure: Left: a limit rotation z — 7(2w — 3z)/(m — 2z) corresponds to
inversion in circles of radius 7 centered at 0 and 27. Right: a map which
is not a direct motion: z — z5.
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Pseudosphere
Poincaré Disc

Hyperbolic Geometry Beltrami Half-Sphere

Poincaré Disc

“

Figure: Two more maps which are not direct motions. Left: z — sinh(z).
Right: z — sin(z).
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Pseudosphere
Poincaré Disc

Hyperbolic Geometry Beltrami Half-Sphere

Beltrami Half-Sphere

Figure: Left: Construction of the Beltrami Half-Sphere (first step) and
Klein Disc (second step). Right: phase plotting on Beltrami Half-Sphere
for z — z.

@ The Beltrami half-sphere is constructed via a lower
stereographic projection of the Poincare disc.
o Phase plotting rule is inherited from Poincare disc.
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Pseudosphere
Poincaré Disc

Hyperbolic Geometry Beltrami Half-Sphere

Beltrami Half Sphere

Figure: Left: h-translation z — z — 2. Right: h-rotation
z — (z —3)/(z — 1) corresponding to inversion in circles of radius 2
centered at —1, 1.

@ Notice how lines in hyperbolic space are now semi-circles
orthogonal to unit circle.
@ Hyperbolic subspaces are hemispheres orthogonal to unit

circle.
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Pseudosphere
Poincaré Disc

Hyperbolic Geometry Beltrami Half-Sphere

Beltrami Half Sphere

Figure: Left: a limit rotation z — z/(z + 1) corresponding to inversion
two circles of radius 2 centered at —2,2. Right: a map which is not a
direct motion: z — z5.

n
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Pseudosphere
Poincaré Disc
Beltrami Half-Sphere

Hyperbolic Geometry

Klein Disc

N/

Figure: Left: Construction of the Beltrami Half-Sphere (first step) and
Klein Disc (second step). Right: phase plotting on Klein Disc for z — z.

@ The Klein Disc.
@ Phase plotting rule is again inherited from Poincare disc.
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Pseudosphere
Poincaré Disc

Hyperbolic Geometry Beltrami Half-Sphere

Klein Disc

Figure: Left: h-translation z — z 4+ 2. Right: h-rotation
z — (z — 3)/(z — 1) corresponding to inversion in circles of radius 2
centered at —1, 1.
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Pseudosphere
Poincaré Disc

Hyperbolic Geometry Beltrami Half-Sphere

Klein Disc

Figure: Left: a limit rotation z — z/(z + 1) corresponding to inversion in
two circles of radius 2 centered at —2,2. Right: a map which is not a
direct motion: z — z5.
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Pseudosphere
Poincaré Disc

Hyperbolic Geometry Beltrami Half-Sphere

Klein Disc

Figure: Two more maps which are not direct motions. Left: z — sinh(z).
Right: z — sin(z).
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