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Automorphisms of graphs

Γ a locally finite, simple, connected graph.

Vertex set VΓ, edge set EΓ, arc set AΓ

Aut(Γ) is the group of all automorphisms of Γ.



Symmetry conditions

Given G 6 Aut(Γ) then G is

vertex-transitive: transitive on VΓ
edge-transitive: transitive on EΓ
arc-transitive: transitive on AΓ

Arc-transitive implies edge-transitive and vertex-transitive.

Edge-transitive but not vertex-transitive implies that Γ is bipartite
and G has two orbits on vertices.
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How many automorphisms?

G 6 Aut(Γ) arc-transitive or edge-transitive.

v ∈ VΓ, vertex stabiliser Gv .

Problem: Bound |Gv | when Gv finite?

• If Γ is finite and G is vertex-transitive, then by the
Orbit-Stabiliser Theorem |G | = |VΓ||Gv |, so also bound |G |.

• If Γ is infinite then |Gv | is bounded if and only if Aut(Γ) has
finitely many conjugacy classes of discrete arc/edge-transitive
subgroups.

Note that if Γ has valency d and G is arc-transitive then also have
|Gv | = d |Gvw |.
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A Theorem of Tutte
(1947,1959)

Theorem Let Γ be a connected cubic graph with an arc-transitive
group G of automorphisms such that Gv is finite. Then
|Gv | = 3.2s for some s ≤ 4.



Structure of stabilisers

Djoković and Miller (1980): Determined the possible structures of
finite vertex and edge-stabilisers for cubic arc-transitive graphs:

• Only 7 possibilities for the pair (Gv ,Ge) with e = {u, v}.
• In particular, G is a quotient of one of 7 finitely presented

groups.



Possibilities for (Gv ,Ge)

s Gv Ge

1 C3 C2

2 S3 C2 × C2 or C4

3 S3 × C2 D8

4 S4 D16 or QD16

5 S4 × C2 (D8 × C2) o C2



Applications

Conder and Dobcsányi (2002): Determined all cubic arc-transitive
graphs on at most 768 vertices:

• |Aut(Γ)| 6 768.48 = 36864

• So need to find all normal subgroups of index at most 36864.

• Conder has subsequently enumerated all such graphs on at
most 10,000 vertices.
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Edge-transitive

Goldschmidt (1980): Determined the possible structures of finite
pairs (Gu,Gv ) for adjacent vertices u, v in cubic edge-transitive
graphs:

• only fifteen possibilities

• |Gv | 6 384



Local actions

Γ(v) is the set of neighbours of v .

v

Γ (v)

G
Γ(v)
v is the permutation group induced on Γ(v) by Gv , called the

local action of Gv .

If G is vertex-transitive then all the G
Γ(v)
v are isomorphic.



Local actions

Γ connected, G 6 Aut(Γ) vertex-transitive

• Given a permutation group L, we say that the pair (Γ,G ) is

locally L if G
Γ(v)
v
∼= L for all vertices v .

• Given some permutation group property P, we say that (Γ,G )

is locally P if G
Γ(v)
v has property P for all vertices v .



Weiss Conjecture

Let G 6 Sym(Ω).

Call G primitive if the only partitions of Ω that it preserves are the
trivial ones {Ω} and {{ω} | ω ∈ Ω}.

Weiss Conjecture (1978): There is some function f (d) such that
for every locally primitive pair (Γ,G ) of valency d and Gv finite we
have |Gv | 6 f (d).

• Tutte’s result is that f (3) = 48.
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Graph-restrictive

Verret: We say that L is graph-restrictive if there is a constant C
such that for all locally L pairs (Γ,G ) with Gv finite, we have that
|Gv | 6 C .

• Tutte’s result is that C3 and S3 are graph-restrictive.

• The Weiss Conjecture asserts that every primitive group is
graph-restrictive.
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A nonexample
Wreath graphs

Aut(Γ) = S2 wrD2n

Aut(Γ)
Γ(v)
v = D8

|Aut(Γ)v | = 2n−1.2



An equivalent definition

G
[i ]
v is the kernel of the action of Gv on the set of all vertices at

distance at most i from v .

G
[1]
vw is the kernel of the action of Gvw on Γ(v) ∪ Γ(w), where
{v ,w} is an edge.

Lemma If Γ is connected and G
[i ]
v = G

[i+1]
v for some i , then

G
[i ]
v = 1.

Lemma L is graph-restrictive if and only if there is some constant k
such that for all locally L pairs (Γ,G ) with Gv finite, we have

G
[k]
v = 1.

Tutte: For cubic arc-transitive graphs with Gv finite we have

G
[3]
v = 1.
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Some graph-restrictive groups

• Any regular group. (regular=free+transitive)

• Gardiner (1973): Any transitive subgroup of S4 other than D8.

• Sami (2006): D2n for n odd.

• Potočnik, Spiga, Verret (2012): GL(2, p) acting on the set of
nonzero vectors of GF(p)2.
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Progress on the Weiss Conjecture

Trofimov, Weiss (1995): Any 2-transitive group is graph-restrictive

(G
[6]
v = 1)

Weiss (1979), Spiga (2016): If L is a primitive permutation group

of affine type, then L is graph-restrictive. (G
[4]
v = 1)

Spiga (2011): If L is a primitive permutation group with a regular
nonabelian minimal normal subgroup then L is graph-restrictive.

(G
[1]
uv = 1)

Trofimov, Weiss (1995): PSLn(q) acting on m-spaces is
graph-restrictive.
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What is the correct setting?

Let G 6 Sym(Ω).

• Call G quasiprimitive if every nontrivial normal subgroup is
transitive.

• Call G semiprimitive if every nontrivial normal subgroup is
transitive or semiregular.
(A permutation group H is semiregular on Ω if Hα = 1 for all
α ∈ Ω, that is, free.)
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Semiprimitive groups

Initially studied by Bereczky and Maróti (2008) (motivated by an
application from universal algebra and collapsing monoids).

Examples include:

• primitive and quasiprimitive groups;

• regular groups;

• Frobenius groups (that is, all nontrivial elements fix at most
one point);

• GL(n, p) acting on the set of nonzero vectors of Zn
p.

• Any locally quasiprimitive, vertex-transitive group of
automorphisms of a non-bipartite graph. (Praeger 1985)



What is the correct setting?

Praeger Conjecture (2000): Every quasiprimitive group is
graph-restrictive.

Potočnik, Spiga, Verret (2012): If a transitive group is graph
restrictive then it is semiprimitive.

D8 is not semiprimitive as it contains a normal intransitive
subgroup isomorphic to C 2

2 that is not semiregular.

PSV conjecture: A transitive group is graph-restrictive if and only
if it is semiprimitive.
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Potočnik, Spiga, Verret (2012): If a transitive group is graph
restrictive then it is semiprimitive.

D8 is not semiprimitive as it contains a normal intransitive
subgroup isomorphic to C 2

2 that is not semiregular.

PSV conjecture: A transitive group is graph-restrictive if and only
if it is semiprimitive.



What is the correct setting?

Praeger Conjecture (2000): Every quasiprimitive group is
graph-restrictive.
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The edge-transitive case

Γ edge-transitive but not vertex transitive. Edge {v ,w}

Say (Γ,G ) is locally [L1, L2] if G
Γ(v)
v
∼= L1 or L2 for all vertices v .

Goldschmidt-Sims Conjecture: If L1 and L2 are primitive then there
is a constant C such that if (Γ,G ) is locally [L1, L2] with finite
vertex stabilisers then |Gvw | ≤ C .

Morgan, Spiga, Verret (2015): If either L1 or L2 is not
semiprimitive then there is no bound on |Gvw | for a locally [L1, L2]
pair (Γ,G ) with finite stabilisers.
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Variation on Thompson-Wielandt

Given an edge {v ,w}, G [1]
vw is the kernel of the action of Gvw on

Γ(v) ∪ Γ(w).

Thompson-Wielandt Theorem: If (Γ,G ) is a locally primitive pair

with Gv finite and {v ,w} is an edge, then G
[1]
vw is a p-group for

some prime p.

• van Bon (2003): Still holds if (Γ,G ) is locally quasiprimitive.

• Spiga (2012): Still holds if (Γ,G ) is locally semiprimitive.
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Plinths

G 6 Sym(Ω), transitive.

Define a plinth of G to be a minimal transitive normal subgroup
of G .

• Every finite transitive group has a plinth.

• If a group has a transitive minimal normal subgroup it is a
plinth.

• Any regular normal subgroup is a plinth.



Properties of plinths of primitive groups

G primitive with minimal normal subgroup (plinth) N:

• N is characteristically simple and so in finite case N ∼= T k , for
some finite simple group T .

• CG (N) is semiregular.

• G has at most two plinths

• If M is a second plinth then N ∼= M and both N and M are
regular.

O’Nan–Scott Theorem for primitive groups, quasiprimitive groups.
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Structure of plinths of semiprimitive groups

A semiprimitive group can have arbitrarily many plinths, they may
not be isomorphic, and need not be characteristically simple.

Theorem (G-Morgan) Let K be a plinth of a semiprimitive group.

• If K is a nonregular plinth then K is perfect and unique.

• If L is a another plinth then every plinth is contained in KL
and every nonregular normal subgroup contains KL.

Bereczky, Maróti (2008): A finite soluble semiprimitive group has a
unique plinth, it is regular, and contains every intransitive normal
subgroup.
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“Topological” plinths

Γ an infinite, locally finite, nonbipartite graph.

Let G be a non-discrete, vertex-transitive, locally quasiprimitive
closed subgroup of Aut(Γ). Note that G is semiprimitive.

Define G (∞) = ∩L<GL, for L open and of finite index.

Burger-Mozes (2000): Let N be a closed normal subgroup of G .
Then either:

• N is nondiscrete and contains the transitive group G (∞), or

• N is discrete and acts freely with infinitely many orbits.

Moreover, G (∞) is topologically perfect.



Multiple plinths

Theorem (G-Morgan) Let G be semiprimitive with distinct plinths
K and L. Then

• G = G/(K ∩ L) acts primitively on the set of (K ∩ L)-orbits

• there exists a characteristically simple group X such that
L/(K ∩ L) ∼= K/(K ∩ L) ∼= X .

Corollary Finite plinths have the same set of composition factors.

Theorem (G-Morgan) If G is a finite semiprimitive group with

multiple plinths then G is graph-restrictive. (G
[1]
uv = 1)
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Nilpotent plinths

Let L be a finite semiprimitive group with a nilpotent plinth K .

Theorem (G-Morgan (2015)) Let (Γ,G ) be a locally L pair with Gv

finite and valency coprime to 6. Then L is graph-restrictive.

(G
[1]
vw = 1)

• Also give detailed information about what a counterexample
with valency not coprime to 6 must look like.

• Analogous to Weiss’s results for primitive affine groups


