Local actions on graphs and semiprimitive groups

Michael Giudici

on joint work with Luke Morgan

Centre for the Mathematics of Symmetry and Computation

Winter of Disconnectedness Newcastle, July 2016

Automorphisms of graphs

 Γ a locally finite, simple, connected graph. Vertex set $V\Gamma$, edge set $E\Gamma$, arc set $A\Gamma$ Aut(Γ) is the group of all automorphisms of Γ .

Symmetry conditions

Given $G \leq Aut(\Gamma)$ then G is

vertex-transitive: transitive on $V\Gamma$ edge-transitive: transitive on EF arc-transitive: transitive on $A\Gamma$

Symmetry conditions

Given $G \leq \operatorname{Aut}(\Gamma)$ then G is

vertex-transitive:transitive on $V\Gamma$ edge-transitive:transitive on $E\Gamma$ arc-transitive:transitive on $A\Gamma$

Arc-transitive implies edge-transitive and vertex-transitive.

Symmetry conditions

Given $G \leq \operatorname{Aut}(\Gamma)$ then G is

vertex-transitive:	transitive on $V\Gamma$
edge-transitive:	transitive on <i>E</i> Г
arc-transitive:	transitive on AF

Arc-transitive implies edge-transitive and vertex-transitive.

Edge-transitive but not vertex-transitive implies that Γ is bipartite and *G* has two orbits on vertices.

How many automorphisms?

 $G \leqslant Aut(\Gamma)$ arc-transitive or edge-transitive.

 $v \in V\Gamma$, vertex stabiliser G_v .

Problem: Bound $|G_v|$ when G_v finite?

How many automorphisms?

 $G \leqslant Aut(\Gamma)$ arc-transitive or edge-transitive.

 $v \in V\Gamma$, vertex stabiliser G_v .

Problem: Bound $|G_v|$ when G_v finite?

- If Γ is finite and G is vertex-transitive, then by the Orbit-Stabiliser Theorem $|G| = |V\Gamma||G_v|$, so also bound |G|.
- If Γ is infinite then |G_ν| is bounded if and only if Aut(Γ) has finitely many conjugacy classes of discrete arc/edge-transitive subgroups.

How many automorphisms?

 $G \leqslant Aut(\Gamma)$ arc-transitive or edge-transitive.

 $v \in V\Gamma$, vertex stabiliser G_v .

Problem: Bound $|G_v|$ when G_v finite?

- If Γ is finite and G is vertex-transitive, then by the Orbit-Stabiliser Theorem $|G| = |V\Gamma||G_v|$, so also bound |G|.
- If Γ is infinite then |G_ν| is bounded if and only if Aut(Γ) has finitely many conjugacy classes of discrete arc/edge-transitive subgroups.

Note that if Γ has valency d and G is arc-transitive then also have $|G_v| = d|G_{vw}|$.

A Theorem of Tutte (1947,1959)

Theorem Let Γ be a connected cubic graph with an arc-transitive group G of automorphisms such that G_{ν} is finite. Then $|G_{\nu}| = 3.2^{s}$ for some $s \leq 4$.

Djoković and Miller (1980): Determined the possible structures of finite vertex and edge-stabilisers for cubic arc-transitive graphs:

- Only 7 possibilities for the pair (G_v, G_e) with $e = \{u, v\}$.
- In particular, G is a quotient of one of 7 finitely presented groups.

Possibilities for (G_v, G_e)

Γ	5	Gv	G _e
	1	<i>C</i> ₃	<i>C</i> ₂
	2	S_3	$\mathcal{C}_2 imes \mathcal{C}_2$ or \mathcal{C}_4
	3	$S_3 \times C_2$	D_8
	4	S_4	D_{16} or QD_{16}
	5	$S_4 \times C_2$	$(D_8 \times C_2) \rtimes C_2$

Applications

Conder and Dobcsányi (2002): Determined all cubic arc-transitive graphs on at most 768 vertices:

- $|Aut(\Gamma)| \leq 768.48 = 36864$
- So need to find all normal subgroups of index at most 36864.

Applications

Conder and Dobcsányi (2002): Determined all cubic arc-transitive graphs on at most 768 vertices:

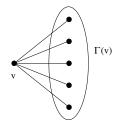
- $|Aut(\Gamma)| \leq 768.48 = 36864$
- So need to find all normal subgroups of index at most 36864.
- Conder has subsequently enumerated all such graphs on at most 10,000 vertices.

Goldschmidt (1980): Determined the possible structures of finite pairs (G_u, G_v) for adjacent vertices u, v in cubic edge-transitive graphs:

- only fifteen possibilities
- $|G_v| \leqslant 384$

Local actions

 $\Gamma(v)$ is the set of neighbours of v.



 $G_v^{\Gamma(v)}$ is the permutation group induced on $\Gamma(v)$ by G_v , called the local action of G_v .

If G is vertex-transitive then all the $G_v^{\Gamma(v)}$ are isomorphic.

Local actions

- Γ connected, $G \leq Aut(\Gamma)$ vertex-transitive
 - Given a permutation group L, we say that the pair (Γ, G) is locally L if G_v^{Γ(v)} ≅ L for all vertices v.
 - Given some permutation group property *P*, we say that (Γ, G) is locally *P* if G_v^{Γ(v)} has property *P* for all vertices v.

Weiss Conjecture

Let $G \leq \text{Sym}(\Omega)$.

Call *G* primitive if the only partitions of Ω that it preserves are the trivial ones $\{\Omega\}$ and $\{\{\omega\} \mid \omega \in \Omega\}$.

Weiss Conjecture

Let $G \leq \text{Sym}(\Omega)$.

Call G primitive if the only partitions of Ω that it preserves are the trivial ones $\{\Omega\}$ and $\{\{\omega\} \mid \omega \in \Omega\}$.

Weiss Conjecture (1978): There is some function f(d) such that for every locally primitive pair (Γ, G) of valency d and G_v finite we have $|G_v| \leq f(d)$.

• Tutte's result is that f(3) = 48.

Verret: We say that *L* is graph-restrictive if there is a constant *C* such that for all locally *L* pairs (Γ , *G*) with G_v finite, we have that $|G_v| \leq C$.

Verret: We say that *L* is graph-restrictive if there is a constant *C* such that for all locally *L* pairs (Γ , *G*) with G_v finite, we have that $|G_v| \leq C$.

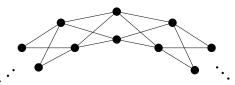
• Tutte's result is that C_3 and S_3 are graph-restrictive.

Verret: We say that *L* is graph-restrictive if there is a constant *C* such that for all locally *L* pairs (Γ , *G*) with G_v finite, we have that $|G_v| \leq C$.

- Tutte's result is that C_3 and S_3 are graph-restrictive.
- The Weiss Conjecture asserts that every primitive group is graph-restrictive.

A nonexample

Wreath graphs



Aut(
$$\Gamma$$
) = S_2 wr D_{2n}
Aut(Γ) $_{\nu}^{\Gamma(\nu)} = D_8$
 $|$ Aut(Γ) $_{\nu}| = 2^{n-1}.2$

An equivalent definition

 $G_v^{[i]}$ is the kernel of the action of G_v on the set of all vertices at distance at most *i* from *v*.

 $G_{vw}^{[1]}$ is the kernel of the action of G_{vw} on $\Gamma(v) \cup \Gamma(w)$, where $\{v, w\}$ is an edge.

An equivalent definition

 $G_v^{[i]}$ is the kernel of the action of G_v on the set of all vertices at distance at most *i* from *v*.

 $G_{vw}^{[1]}$ is the kernel of the action of G_{vw} on $\Gamma(v) \cup \Gamma(w)$, where $\{v, w\}$ is an edge.

Lemma If Γ is connected and $G_v^{[i]} = G_v^{[i+1]}$ for some *i*, then $G_v^{[i]} = 1$.

Lemma *L* is graph-restrictive if and only if there is some constant *k* such that for all locally *L* pairs (Γ , *G*) with G_v finite, we have $G_v^{[k]} = 1$.

An equivalent definition

 $G_v^{[i]}$ is the kernel of the action of G_v on the set of all vertices at distance at most *i* from *v*.

 $G_{vw}^{[1]}$ is the kernel of the action of G_{vw} on $\Gamma(v) \cup \Gamma(w)$, where $\{v, w\}$ is an edge.

Lemma If Γ is connected and $G_v^{[i]} = G_v^{[i+1]}$ for some *i*, then $G_v^{[i]} = 1$.

Lemma *L* is graph-restrictive if and only if there is some constant *k* such that for all locally *L* pairs (Γ , *G*) with G_v finite, we have $G_v^{[k]} = 1$.

Tutte: For cubic arc-transitive graphs with G_v finite we have $G_v^{[3]} = 1$.

• Any regular group. (regular=free+transitive)

- Any regular group. (regular=free+transitive)
- Gardiner (1973): Any transitive subgroup of S_4 other than D_8 .

- Any regular group. (regular=free+transitive)
- Gardiner (1973): Any transitive subgroup of S_4 other than D_8 .
- Sami (2006): *D*_{2n} for *n* odd.

- Any regular group. (regular=free+transitive)
- Gardiner (1973): Any transitive subgroup of S_4 other than D_8 .
- Sami (2006): *D*_{2n} for *n* odd.
- Potočnik, Spiga, Verret (2012): GL(2, p) acting on the set of nonzero vectors of GF(p)².

Trofimov, Weiss (1995): Any 2-transitive group is graph-restrictive $(G_v^{[6]} = 1)$

Trofimov, Weiss (1995): Any 2-transitive group is graph-restrictive $(G_v^{[6]} = 1)$

Weiss (1979), Spiga (2016): If *L* is a primitive permutation group of affine type, then *L* is graph-restrictive. $(G_v^{[4]} = 1)$

Trofimov, Weiss (1995): Any 2-transitive group is graph-restrictive $(G_v^{[6]} = 1)$

Weiss (1979), Spiga (2016): If L is a primitive permutation group of affine type, then L is graph-restrictive. $(G_v^{[4]} = 1)$

Spiga (2011): If *L* is a primitive permutation group with a regular nonabelian minimal normal subgroup then *L* is graph-restrictive. $(G_{uv}^{[1]} = 1)$

Trofimov, Weiss (1995): Any 2-transitive group is graph-restrictive $(G_v^{[6]} = 1)$

Weiss (1979), Spiga (2016): If L is a primitive permutation group of affine type, then L is graph-restrictive. $(G_v^{[4]} = 1)$

Spiga (2011): If *L* is a primitive permutation group with a regular nonabelian minimal normal subgroup then *L* is graph-restrictive. $(G_{uv}^{[1]} = 1)$

Trofimov, Weiss (1995): $PSL_n(q)$ acting on *m*-spaces is graph-restrictive.

What is the correct setting?

Let $G \leq \text{Sym}(\Omega)$.

• Call *G* quasiprimitive if every nontrivial normal subgroup is transitive.

What is the correct setting?

Let $G \leq \operatorname{Sym}(\Omega)$.

- Call *G* quasiprimitive if every nontrivial normal subgroup is transitive.
- Call G semiprimitive if every nontrivial normal subgroup is transitive or semiregular.
 (A permutation group H is semiregular on Ω if H_α = 1 for all α ∈ Ω, that is, free.)

Semiprimitive groups

Initially studied by Bereczky and Maróti (2008) (motivated by an application from universal algebra and collapsing monoids).

Examples include:

- primitive and quasiprimitive groups;
- regular groups;
- Frobenius groups (that is, all nontrivial elements fix at most one point);
- GL(n, p) acting on the set of nonzero vectors of Zⁿ_p.
- Any locally quasiprimitive, vertex-transitive group of automorphisms of a non-bipartite graph. (Praeger 1985)

What is the correct setting?

Praeger Conjecture (2000): Every quasiprimitive group is graph-restrictive.

What is the correct setting?

Praeger Conjecture (2000): Every quasiprimitive group is graph-restrictive.

Potočnik, Spiga, Verret (2012): If a transitive group is graph restrictive then it is semiprimitive.

Praeger Conjecture (2000): Every quasiprimitive group is graph-restrictive.

Potočnik, Spiga, Verret (2012): If a transitive group is graph restrictive then it is semiprimitive.

 D_8 is not semiprimitive as it contains a normal intransitive subgroup isomorphic to C_2^2 that is not semiregular.

Praeger Conjecture (2000): Every quasiprimitive group is graph-restrictive.

Potočnik, Spiga, Verret (2012): If a transitive group is graph restrictive then it is semiprimitive.

 D_8 is not semiprimitive as it contains a normal intransitive subgroup isomorphic to C_2^2 that is not semiregular.

PSV conjecture: A transitive group is graph-restrictive if and only if it is semiprimitive.

The edge-transitive case

 Γ edge-transitive but not vertex transitive. Edge $\{v, w\}$ Say (Γ, G) is locally $[L_1, L_2]$ if $G_v^{\Gamma(v)} \cong L_1$ or L_2 for all vertices v.

The edge-transitive case

 Γ edge-transitive but not vertex transitive. Edge $\{v,w\}$

Say (Γ, G) is locally $[L_1, L_2]$ if $G_v^{\Gamma(v)} \cong L_1$ or L_2 for all vertices v.

Goldschmidt-Sims Conjecture: If L_1 and L_2 are primitive then there is a constant C such that if (Γ, G) is locally $[L_1, L_2]$ with finite vertex stabilisers then $|G_{vw}| \leq C$. Γ edge-transitive but not vertex transitive. Edge $\{v,w\}$

Say (Γ, G) is locally $[L_1, L_2]$ if $G_v^{\Gamma(v)} \cong L_1$ or L_2 for all vertices v.

Goldschmidt-Sims Conjecture: If L_1 and L_2 are primitive then there is a constant C such that if (Γ, G) is locally $[L_1, L_2]$ with finite vertex stabilisers then $|G_{vw}| \leq C$.

Morgan, Spiga, Verret (2015): If either L_1 or L_2 is not semiprimitive then there is no bound on $|G_{vw}|$ for a locally $[L_1, L_2]$ pair (Γ, G) with finite stabilisers.

Variation on Thompson-Wielandt

Given an edge $\{v, w\}$, $G_{vw}^{[1]}$ is the kernel of the action of G_{vw} on $\Gamma(v) \cup \Gamma(w)$.

Thompson-Wielandt Theorem: If (Γ, G) is a locally primitive pair with G_v finite and $\{v, w\}$ is an edge, then $G_{vw}^{[1]}$ is a *p*-group for some prime *p*.

Variation on Thompson-Wielandt

Given an edge $\{v, w\}$, $G_{vw}^{[1]}$ is the kernel of the action of G_{vw} on $\Gamma(v) \cup \Gamma(w)$.

Thompson-Wielandt Theorem: If (Γ, G) is a locally primitive pair with G_v finite and $\{v, w\}$ is an edge, then $G_{vw}^{[1]}$ is a *p*-group for some prime *p*.

- van Bon (2003): Still holds if (Γ, G) is locally quasiprimitive.
- Spiga (2012): Still holds if (Γ, G) is locally semiprimitive.

Plinths

 $G \leq \operatorname{Sym}(\Omega)$, transitive.

Define a plinth of G to be a minimal transitive normal subgroup of G.

- Every finite transitive group has a plinth.
- If a group has a transitive minimal normal subgroup it is a plinth.
- Any regular normal subgroup is a plinth.

Properties of plinths of primitive groups

G primitive with minimal normal subgroup (plinth) N:

- N is characteristically simple and so in finite case N ≅ T^k, for some finite simple group T.
- $C_G(N)$ is semiregular.
- G has at most two plinths
- If M is a second plinth then $N \cong M$ and both N and M are regular.

Properties of plinths of primitive groups

G primitive with minimal normal subgroup (plinth) N:

- N is characteristically simple and so in finite case N ≅ T^k, for some finite simple group T.
- $C_G(N)$ is semiregular.
- G has at most two plinths
- If M is a second plinth then $N \cong M$ and both N and M are regular.

O'Nan-Scott Theorem for primitive groups, quasiprimitive groups.

Structure of plinths of semiprimitive groups

A semiprimitive group can have arbitrarily many plinths, they may not be isomorphic, and need not be characteristically simple.

Structure of plinths of semiprimitive groups

A semiprimitive group can have arbitrarily many plinths, they may not be isomorphic, and need not be characteristically simple.

Theorem (G-Morgan) Let K be a plinth of a semiprimitive group.

- If K is a nonregular plinth then K is perfect and unique.
- If *L* is a another plinth then every plinth is contained in *KL* and every nonregular normal subgroup contains *KL*.

Structure of plinths of semiprimitive groups

A semiprimitive group can have arbitrarily many plinths, they may not be isomorphic, and need not be characteristically simple.

Theorem (G-Morgan) Let K be a plinth of a semiprimitive group.

- If K is a nonregular plinth then K is perfect and unique.
- If *L* is a another plinth then every plinth is contained in *KL* and every nonregular normal subgroup contains *KL*.

Bereczky, Maróti (2008): A finite soluble semiprimitive group has a unique plinth, it is regular, and contains every intransitive normal subgroup.

"Topological" plinths

 Γ an infinite, locally finite, nonbipartite graph.

Let G be a non-discrete, vertex-transitive, locally quasiprimitive closed subgroup of $Aut(\Gamma)$. Note that G is semiprimitive.

Define $G^{(\infty)} = \bigcap_{L < G} L$, for L open and of finite index.

Burger-Mozes (2000): Let N be a closed normal subgroup of G. Then either:

- N is nondiscrete and contains the transitive group $G^{(\infty)}$, or
- N is discrete and acts freely with infinitely many orbits.

Moreover, $G^{(\infty)}$ is topologically perfect.

Multiple plinths

Theorem (G-Morgan) Let G be semiprimitive with distinct plinths K and L. Then

- $\overline{G} = G/(K \cap L)$ acts primitively on the set of $(K \cap L)$ -orbits
- there exists a characteristically simple group X such that $L/(K \cap L) \cong K/(K \cap L) \cong X$.

Multiple plinths

Theorem (G-Morgan) Let G be semiprimitive with distinct plinths K and L. Then

- $\overline{G} = G/(K \cap L)$ acts primitively on the set of $(K \cap L)$ -orbits
- there exists a characteristically simple group X such that $L/(K \cap L) \cong K/(K \cap L) \cong X$.

Corollary Finite plinths have the same set of composition factors.

Multiple plinths

Theorem (G-Morgan) Let G be semiprimitive with distinct plinths K and L. Then

- $\overline{G} = G/(K \cap L)$ acts primitively on the set of $(K \cap L)$ -orbits
- there exists a characteristically simple group X such that $L/(K \cap L) \cong K/(K \cap L) \cong X$.

Corollary Finite plinths have the same set of composition factors. Theorem (G-Morgan) If G is a finite semiprimitive group with multiple plinths then G is graph-restrictive. $(G_{uv}^{[1]} = 1)$ Let *L* be a finite semiprimitive group with a nilpotent plinth *K*. Theorem (G-Morgan (2015)) Let (Γ , *G*) be a locally *L* pair with G_v finite and valency coprime to 6. Then *L* is graph-restrictive. ($G_{vw}^{[1]} = 1$)

- Also give detailed information about what a counterexample with valency not coprime to 6 must look like.
- Analogous to Weiss's results for primitive affine groups