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CHAPTER 1

Introduction to Topological Groups and the
Birkhoff-Kakutani Theorem

1. Introduction

For us, a topological group is a group G that is equipped with a topology that makes the func-

tions (x,y

) — 2y from G x G to G and x — x~! from G to G continuous.

Here are some basic observations regarding topological groups; they follow simply and directly
from the definition

given a,b € G, should ab find itself in an open set U then there are open sets V and W
such that a e V;be Wand V-W ={zy: 2 € V,y e W} CU.

given a € G, should U be an open set containing a~!, then there is an open set V
containing a so that V-1 ={v"1:v eV} CU.

given a,b € G, should U be an open set containing ab—!, then there are open sets V and
W suchthat a € V,be Wand V- W1 CU.

given a,b € G, should U be an open set containing a~'b, then there are open sets V and
W such that a € V,be W and V-1 .- W C U.

Each of the mappings from G to G

lo:G— G, li(x)=ax
re: G— G, 71.(r)=1xa
inv:G— G, nv(z)==z

is a homeomorphism of G onto G.

e If I is a closed subset of G then so are aF, Fa, and F~! for any a € G.

The homo
one such

THEO

If U is an open subset of G and S is a non-void subset of G then the sets S-U,U - S, and
U~ are open subsets of G.

G is homogeneous: if p,q € G then there is a homeomorphism ¢ of G onto G such that
¢(p) = q. Indeed ¢ = 1,,—1 will do the trick.

geneity of topological groups has consequences regarding its topological structure. Here’s

REM 1.0.1. Let G be a topological group. If U is an open set containing the identity e then

there is an open set V containing e such that e € V C'V C U. Consequently, a Ty topological group

s reqular

Proo

and so Hausdorff.
F. First things first: Let U be an open set that contains the identity e. By continuity of

multiplication there is an open set W containing e such that W -W C U. If weset V=W NW~!
then we have an open set that contains e, is symmetric (V = V~!) and satisfies V - V C U.
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We claim V' C U. Take x € V. Then zV is an open set that contains x and so zV NV # 0,
so there must be vy, vy € V' so that xv; = vy. But then
r=uv;leV.-VI1I=V.VCU.

The homogeneous structure of G now tells us that whenever x € G and U is an open set containing
x, then there is an open set V such that 2 € V C V C U. Regularity follows from this and G’s
homogeneity. Again, homogeneity of G tells us that if z,y € G are distinct and there’s a neighbor-
hood of z that doesn’t contain y, then we have a neighborhood of y that doesn’t contain z. In other
words, Ty topological groups satisfy the 77 axiom. O

Henceforth, we assume that all topological groups are Hausdorff.

The surprising conclusion reached in Theorem 1.0.1 is a typical product of the mix of the alge-
bra and topology in topological groups. Here’s another:

PROPOSITION 1.0.2. Every open subgroup of a topological group is closed.

PROOF. Let H be an open subgroup of the topological group G. Take g € H. Every open set
that contains g intersects H; gH is such an open set. Therefore gH N H # (). Since cosets are either
the same or disjoint, gH = H. Thus

g=gec€gH =H,
and H C H. O

EXERCISE 1. If G is a connected topological group then any neighborhood of the identity is a
system of generators for G.

2. The Classical (locally compact) groups
R™ and C™ will denote, as usual, real and complex n—spaces, respectively. M, will denote the
linear algebra of all n x n matrices with complex entries. We can associate with any (a;;) € M, the
point (by,...,b,2) € C"2, where
bit(j—1)n = Qa5
this establishes a bijective correspondence between M,, and (C”27 a correspondence we use to equip
M,, with the Euclidean topology of cr’.

Of course if o, B € M,, then o - 8 € M,,, too, with

n
Cij = E Qikbr;
k=1

whenever o = (a;;), 8 = (b;;), and a - § = (c;;). It is easy to see that the operation (o, §) — a3
is continuous from M,, x M,, to M,.

In addition to addition and multiplication, M,, is endowed by nature with a couple of other natural
operations: transposition and conjugation: if a = (a;;) € M, then o' = (a;j;) and @ = (a;;), where
a is the complex conjugate of the complex number a. Both of these operations are homeomorphisms
of M, onto itself and each is of ‘order two’, that is, o’ = o and & = «.



February 3, 2009

2. THE CLASSICAL (LOCALLY COMPACT) GROUPS 3

Some members of M,, have a multiplicative inverse; the collection of all such matrices will be de-
noted by GL(n, C) and called the General Linear Group. Of course, o € M, belongs to GL(n,C)
precisely when det o # 0. Now it is easy to believe and also true that o — det « is a continuous
function of the coordinates of o and so GL(n,C) is an open subset of M,,. If o, 8 € GL(n,C) then
a-B € GL(n,C) and (a-B)~! = B371.a~!. This is elementary linear algebra; further if o« € GL(n,C)
then a~! has coordinates b;; where

_ Dpij(a)

Y det(ar)
where p;;(«) is a polynomial with coordinates of a. It follows that the operation a — a~! of
GL(n,C) onto itself is also a homeomorphism (of order two).

COROLLARY 2.0.3. GL(n,C) is a locally compact metrizable topological group.

PRroor. After all,
GL(n,C) =det™ ({z € C: z#0}),
and so GL(n,C) is homeomorphic to an open subset of a locally compact metric space, Cc"’. Our
comments about continuity of the operations (a, 3) — a - 3 and a — a~! finish the proof. O

Inside GL(n,C) we can find other classical topological groups. Here are a few of them.
O(n) : a € GL(n,C) is orthogonal if « = @ = (o™ 1)’

O(n,C) : o € GL(n,C) is complex orthogonal if o = (a~1)’.

U(n) : « € GL(n,C) is unitary if & = (a71)".

Since the mappings & — a~! and a — (a~!)! are continuous in GL(n,C), each of the groups
O(n),0(n,C) and U(n) are closed subgroups of GL(n,C).

GL(n,R) : a € M, is real if &« = &; denote the set of real members of M,, by M, (R) so
GL(n,R) = GL(n,C) N M, (R).
SL(n,C) : the members of GL(n,C) with determinant 1, called the Special Linear Group.
SL(n,R) : SL(N,C) N M, (R).
SO(n) : SL(n,C) N O(n).
SU(n) : SL(n,C)NU(n).
Again, SL(n,C),SL(n,R),SO(n), SU(n) are closed subgroups of GL(n,C)). Actually more can
be said.

THEOREM 2.0.4. The groups U(n),O(n),SU(n) and SO(n) are compact metric topological
groups.

ProoF. Each of O(n), SU(n), SO(n) are closed subgroups of U(n), so it’s enough to establish
that U(n) is compact. Now a € U(n) precisely when a'@ = id|c». This in turn is the same as saying
if @ = (aj;) that for each 1 <4,k < n,

Zajiajk = k-
J

Now the left side is a continuous function of a so U(n) is closed not just in GL(n,C) but even in

M,,. Moreover
E aji&ji = 1
J



February 3, 2009

4 1. INTRODUCTION TO TOPOLOGICAL GROUPS AND THE BIRKHOFF-KAKUTANI THEOREM

ensures that |a;;| <1 for 1 <4,j < n. So the entries of any a € U(n) are bounded. But this ensures
that U(n) is homeomorphic to a closed bounded subset of cr’. O

3. The Birkhoff-Kakutani Theorem
Our next result is technical but it’s an investment well-worth the price.

THEOREM 3.0.5 (Garrett Birkhoff/Shizuo Kakutani). Let (U,,) be a sequence of symmetric open
sets each containing the identity e of the topological group G. Suppose that for each k € N,

Ukt1 - Uks1 C Uy.

Let H = N Uyg. Then there is a left invariant pseudo-metric o on G X G such that

(i) o is ‘left uniformly continuous’ on G x G;
(ii) o(x,y) =0 is and only if x € yH;
(iii) o(z,y) <4-27F ifv €y Uy;

(iV) 27k < a(x,y), fo ¢ yUk-

PROOF. We start by reinterpreting the sequence’s descending character with an eye toward
defining o. For each k, set

Vo = Uy.

Next define V. for r a dyadic rational number with 0 < r < 1 as follows: if

r=2"h 4ol 4. 427l
with 0 <} < --- < ,, all positive integers, let

Vi =Voty - Vgty - Vi,
For dyadic r’s greater than or equal to 1, set V,. = G. Here’s what’s so
(3.1) r<s=V,CVg
further for any [ € N, we have
(3:2) Vi Vot © Vijo-t2.
We put off the somewhat tedious yet clever proofs of the indicated relationships between the V’s
(equations (3.1) and (3.2)) until the end of our general discussion.
With these in hand we go forth to define o. First, for x € G, let

o(z) =inf{r:z € V,.}.
Plainly ¢(x) = 0 if and only if © € H. Now for z,y € G define
o(2,y) = sup{lé(z2) — (zy)| : = € G}.

Plainly, o(z,y) = o(y,x) and o(x,x) = 0. It’s easy to see that o(x,u) < o(x,y) + o(y,u) for any
x,y,u € G, and the fact that o(azx,ay) = o(z,y) for all a € G is obvious. So o is a left invariant
pseudometric.

Now we join the hunt.
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Let | € N, and suppose u € Vo1 and z € G. If z € V, then z-u € V,,5-1+2 thanks to (3.2).
Hence

Pz -u) <r+271F2%

this is true whenever z € V., so using the definition of ¢,

o(z-u) < o(z) + 2 1+2,
Similarly, if z - u € V,. then

2€Vr-ut CVVI = ViVor CVippiee,
again by (3.2). It follows that
$z) <r+271F2

so we see that

6(2) < 6z - u) + 272,
So

B(2) < 6z w) + 272 and Pz u) < ¢(2) + 272,

The only conclusion that we can make is that for u € V45—, and z € G,

|p(2) = ¢z - u)] < 27172
From this we see that

o(u,e) <2772 for u € Vyr.

The third statement of the theorem follows from this and o’s left invariance: If x € yUy then
ylz € Uy = Vok s0
o(z,y) = oy 'we) <27M2=4.27F

Next we deal with ¢’s ‘uniform continuity.” Suppose z,y, , and y satisfy
ylreVos and §7'% € Vooioa.
Then
gyt € Vi Voo = Vo Vooroa C Voo,

and so

‘U(y_l.’E, 6) - U(:lj_lja 6)|

lo(,y) — o(Z, 9)

< oy e, g tE)
= lo@ 'gy 'z, e)
< 27720 (by (iii))

and this is what we mean by o is ‘left uniformly continuous.’

For (iv), suppose y~'x & U; = Va—i. Then ¢(y~'z) ~! and so

> 9
o(z,y) =o(y 'z,e) > ¢(y 'z) > 27,
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where the last inequality follows since for any a € G,

o(a,e) = sup{[d(za) —(z)|: z € G}
> |o(a) — ¢(e)] = |¢(a)], (since e €V, for every r.)

Finally, (ii) is an easy consequence of (iii) and (iv). O

The hard work of Birkhoff and Kakutani pays off in a couple of fundamental consequences, conse-
quences which underscore the special character of topological groups.

COROLLARY 3.0.6. Let G be a topological group. If G has a countable neighborhood base at {e}
then G is metrizable. In this case the metric can be taken to be left invariant.

PROOF. Suppose {V,, : n € N} is a countable open base at e. Let Uy = Vi N Vfl, and Us be a
symmetric open neighborhood of e such that such that Uy C U; N'V; and U, - Uy C U;. Continuing,
let U,, be a symmetric open neighborhood of e such that

U, CU NUN---NU,_1 NV,
and Ug CU,_1.

The family {Uy, : k € N} satisfies the conditions set forth in the Birkhoff-Kakutani theorem. Fur-
ther, H = N,U, = {e}. Let o be the left pseudo-metric introduced in the theorem. In fact, o is a
true metric; o(z,y) = 0 if and only if z = y, since after all, H = {e}!

Since
{reG:o(x,e) <27} CU, C{zeG:o(x,e) <2772}
the topology defined by ¢ coincides with the given topology of G. O

COROLLARY 3.0.7. Let G be a topological group, a € G, and F be a closed subset of G such
that a € F. Then there is a continuous real function x on G such that x(a) = 0 and x(z) =1 for
all x € F. Consequently, every topological group is completely regular.

PRrROOF. Let Uy be a symmetric neighborhood of e such that (all1) N F = @. Choose a sequence
(Un : m > 2) of open neighborhoods of e such that each U, is symmetric, Uy41 - Uny1 C Uy, and let
H =n,U,. Apply Birkhoff-Kakutani theorem to the U,,’s. For « € G, define x(z) by

x(x) = min{1, 20 (a, z)}

where o is the left-invariant, uniformly continuous pseudometric produced in the Birkhoff-Kakutani
theorem. Y is continuous by (i) of our theorem, and y(a) = 0. If z € F then a~ 'z € a™'F, a set
disjoint from Uy; consequently, a 'z ¢ U; and o(a,x) > 271 by (iv) of our theorem. It follows that
x(xz) =1 for all x € F. O

COROLLARY 3.0.8. Let G be a locally compact group and suppose {e} is the intersection of
countably many open sets. Then G admits a left-invariant metric compatible with its topology.

PROOF. Suppose {e} = N,U,, where U, is open in G. Choose open sets V1, Va,..., V,,...,
each containing e with V,, a compact subset of V,,_; N U,, for each n. We claim that {V,, : n € N}
is an open base at e.
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Let W be an open set in G that contains e. Could it be that no V,, € W7 Well let’s suppose
this to be the case. Then {V, N W€ :n > 2} enjoys the finite intersection property; indeed,

Vin...nV,NWeDV, i NWED Vg NWE .
It follows that N, V,, N W¢ # 0. But

(N Vanwe)=|(\Va mwwc<rﬁ@>mwwz{@mww=0

n>2 n>2

OOPS! There must be some V,, that’s contained in W. O

Here’s another feature of topological groups that distinguishes them from general topological spaces;
they admit apt notions of uniform continuity, for instance.

THEOREM 3.0.9. Let G be a topological group and M be a non-empty compact subset of G.
Then any continuous function f: G — R is left uniformly continuous on M. i.e., given € > 0 there
is an open set V' containing the identity of G so that if x,y € M and x € yV then |f(x) — f(y)| <e.

PRrROOF. Let € > 0 be given. For each a € M there is an open set V, that contains the identity
such that if 2 € M and = € aV, then |f(z) — f(a)| < §. Since e- e = e, there is an open set W, that
contains the identity e and satisfies W, - W, C V,,. Now ifa € M thena € a-W, so {a-W, :a € M}
covers M; we can find ay,...,a, € M so that

M C(ay - Wo)U---U(an - W,,).
Look at
V=W,n---NnW,,.

Then V is open and contains e. Let z,y € M with € yV. To see that |f(z) — f(y)| < € note
that if y € M then y € a; - W,, for some ¢ = 1,...,n. It follows from this and W, C V, that

|f(y) = flai)| < §. Also
zeyV Ca; - W,, -V Ca; - W,, - W,, Ca;-V,,,

and so | f(z) — f(a;)| < § too.

In sum, if z,y € M with z € yV then
[f(@) = f)] < [f (@) = flai)l + | fas) = f(y)] <

N o
NN e

O

We’ll be spending much of our time in a locally compact setting and again, there’s more than
meets the eye because of the group’s structure.

THEOREM 3.0.10. Any locally compact topological group is paracompact, hence normal.

PROOF. Let G be a locally compact topological group, and let V' be an open set in G containing
the identity of G' and having a compact closure V. By thereom 1.0.1 there exists a symmetric open
set U such that

ecUCUCU-UCV.
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Look at H = U,,U™, where U™ = U ---U . Then H is an open subgroup (hence closed) of G. Also
~——

n

H:UU"'UQUU"'U;)H’

2n n n

H is o-compact since

a countable union of compact subsets. Hence H is Lindel6f and regular, so H is paracompact [?].

Let U be an open cover of G. Each coset *H of H is also o-compact and so there is a count-
able subfamily {V.7 : n € N} of U that covers zH.

Naturally,

{VI(Z) NzH :n €N}
is an open cover of xH and since xH is paracompact, there is a locally finite open cover of zH that
refines {Vafz) NzH :n € N}, call it {Wf;}}flo:l Note that for each n =1,2,...

Wg(ﬁrg C xH.
Foreachn=1,2..., let
n (n)
wr= ) Wi,
cHeG/H

so {W"}2  is a locally finite open cover. Therefore W = U, W™ is an open cover of G that’s

plainly o-locally finite and refines &. Thus each open cover U of G admits a o-locally finite open
cover W that refines U so G is paracompact and therefore normal ([?], Theorem 5.28, Corollary 5.32).

Warning: Not every topological group is normal as exhibited by the following classical example.

ExaMpPLE 3.0.11. Let m be an uncountable cardinal number. Then Z™ is a Ty group, hence
completely reqular. But Z™ is not normal.

Proor. We'll write Z™ as [[,.; Z; where each Z; is Z and |I| = m. For the sake of the present
efforts, let A, B C Z™ be given as follows

A={(x;)eZ™: forany n#0, thereisat mostoneindex ¢ for which x; =n},
and
B={(x;) €Z™: forany n#1, thereisat mostoneindex 4 for which z; =n}.
Then A and B are disjoint. If (z;);c;r ¢ A then there are ig,i1 € I,i9 # i1 such that for some
n € Z,n #0,z;, = x;, =n. The set
{(Wi)ier € Z™ : yiy, = yi, = n}

is an open set containing (x;);e; but no point of A, so A is a closed set. Similarly B is a closed set.

Let U,V be open subsets of Z™ such that A C U and B C V. We claim that U NV # (), which will
show that Z™ is not normal.

Let (.'L'(-l))iej € Z™ be defined by xgl) = 0 for each ¢ € I. Since (:cl(-l)) € A C U, there are dis-

1
tinct indices 41, ...,%m, € I such that

(@ )ier € {(@i)ier €Z™ 2y, =2y = -2y, =0} C UL

7
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Let (m@))iej be defined by

7

2@ _ k for i=idp,k=1,...,m
© 71 0 otherwise.

Since (xz@)) € A C U there exists im,+1,---,%m, € I, distinct indices from each other and from
i1, ..,0m, such that

(x(?))ie] €E{(®i)ier €Z™ 1y = 1,25, = 2,..., 25

K3

=mi, i, +1=0,...,2;, =0} CU,

m1

Continue in this manner.

Define (y;)icr € Z™ as follows: y;, = k for any k and y; = 1 if ¢ # 4x. Plainly, (y;)icr € B.
Hence for some finite subset J of I,

{(z)ic1 €2 :2; =vy;, for ieJ}CV.
But J is finite so there is an ng such that iy, & J whenever k > m,,,. Look at (z;)icr € Z™, where
koif i=ip,k < mn,

zi = 0 if i=dg,mp, +1<k<my 11
1 otherwise

So
(zi)icr € {(2)ic1 €Z™ :2; =y;, for i€ J} CV.
So
(zi)ier € {(wiier € Z™ 1 @iy = 1,23, =2, @i, =0, Tiy, 41 = T, 2= Ty, =0} CU.
So (2i)ier € V,(2i)icr € U, and U NV # (. Therefore Z™ is not normal. O

After thoughts: The missing steps of the Birkhoff-Kakutani Theorem. To prove (3.1)
r<s=V.CVj,

suppose s < 1, and write r, s in dyadic forms

o= 27hpoth g9t o< <y <<,

§ = 274272 4.4 27 0<m1<m2<'~<mp,

where Iy, ..., Ly, m1,...,m, are all positive integers. There must be a k so that
l1:ml,lgzmg,...,lk,lzmk,l but I > my.

Let
W =Vor, - Voeiy - Vymuy 4.
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Then
Vio= W Vo - Votya -+ Vot
c w- Véfzk . ‘/271,671 . VQ—Zk—2 o Vortprr - Voou, - Vo,
C W Vo Vogtper - Voeipz -+ Votnsr - Vot -
(since after all Vo1, - Vot = Uy, - Uy, C UL 1 = Vy1,44)

C W Vo, - Vogrp, TW - Vooipt1

C W Viyumy CVoory Vot -+ Vogetper - Ve,

c ‘/2*”"1 ' szmrz e szmkq ' szmk

C Voo - Voemy - Vommy -+ Voey

Vs.

With the same representation of  in mind we set off to prove (3.2)
Vi Voot € Vyygoie.

We suppose that r + 27172 < 1. If [ > [,, then

Vr . V2—l = ‘/r+2—‘a

and all is well. So we look to the case that | <1,.

Let k£ be the positive integer such that
lg—1 <1 <lg, (lop=0).
Let r1 be given by
pp =27 9l o=l _ L _g=ln,
and
rog <71 +71y.
It’s plain that
T <rgy < r+2_l+1,
SO
Vi Vot CVoy - VP =V ot S Vim0t © Viggotie,
and that’s that.
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CHAPTER 2

Lebesgue Measure in Euclidean Space

By an interval in R” we mean any set I of the form
I = Il X X Ik

where I,--- I are finite intervals in R. We do not ask that Iy,---,I; all be open, closed or
half-open/ half-closed mixtures are just fine. Each I; C R has a length [(I;) and with this mind we
define “volume” of I by
vol(I) = [ i(1;)
J<k
let A C R*. We define the outer measure or Lebesgue outer measure of A, m*(A) by

m*(A) = inf {Z vol(I,) : I, is an interval in R, A C Unln} .

Regarding edges: There is a great deal of latitude with regards to the nature of the edges of the
intervals in the coverings of a set A C R* that are used to compute m*(A).

For instance if we wish we can assume each edge has length less than § for some fixed & > 0.
This is plain since any interval I in R* is the union of overlapping intervals all of whose edges have
length less than § and the sum of whose volume totals I’s volume.

More, we can assume we’re covering A by open intervals, that is, all the edges are open. In fact, if
(I;) is a covering of A by intervals and € > 0 then for each j we can enlarge I; to an open interval
Jj, 1 € Jj and
vol(J;) < vol(I;) + €/2.

It follows that in computing m*(A), if (I;) is a covering of A by intervals then we can find a sum
> vol(J;) that is as close as we please to ) vol(I;) where (J;) is a covering of A by open intervals.
Hence we can restrict our attention to finding the infimum of such sums ) vol(J;) where (J;) is an
open covering of A by intervals.

1° If A C B then

20 If A =U,A, then

11
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We can, and do, assume that )  m*(A,) < oco. Indeed, let € > 0 be given and choose for each
n a sequence (I, )of intervals that cover A, and satisfy
Zvol(lnj) <m*(A,) + €
J

o

Since A = U, An, C Uy 515,

m*(A) < Zvol(lnj) < Z (m*(An) + 2%) < Zm*(A”) +e.

n

39 For any interval I,
m*(I) = vol(I).

Let € > 0 be given and let (I;) be an open covering of I such that
Zvol(lj) <m*(I)+e.
J

Take any closed subinterval J of I. Since J is compact there is a jo such that J C Iy U--- U Ij,.
Let’s look closely to the intervals Iy,---,I;,,J. Each (k — 1) dimensional face of these intervals
lies in a (k — 1) dimensional hyperplane in RF: in turn, these hyperplanes divide Ip,..., I jo into
closed intervals Ki, ..., K, ; similarly J is divided into closed intervals Ji, ..., i, by the same
hyperplane. (Think of the case n = 3.) Since J C U,<,,I; each J,, is one of the K,,’s so that

vol(J) = Z vol(Jy,)

m<mj,

< Z vol(K,)
n<nj,

< Z vol(I;)
J<jo

< m*(I)+e

This is so for every closed subinterval J of I so
vol(I) <m*(I) + ¢

epsilonics soon tell us that
vol(I) < m*(I).

The reverse is plain.
Some ground work is needed to prepare the way for measurable sets.

A. If Fy and Fy are disjoint closed bounded sets then
m*(Fl U F2) = m*(Fl) —+ m*(FQ)
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Let § > 0 be chosen so that no interval of diameter less than ¢ meets both F; and Fy (e.g.,
§ < 3d(Fy, F).) Let € > 0 be given. Pick a sequence (I;) of intervals of diameter less than § such
that

FLUF, CUL;, and Y vol(l;) ~m*(F U Fy).

Denote by (I,gl)) those intervals among the I;’s that meet F; and by (I,gz)) those that meet Fy.
mcy;l ](1) and F, CJI J@) and by our judicious concerns over ¢§. Alas,

S vol(1Y) + 3 vol (1)
J J

< Y vol(I) < mA(FLUF) + ¢

m*(F1) + m*(Fy)

IN

Epsilonics to the rescue: m*(Fy) + m*(Fz) < m*(Fy U Fy).

B. If G is a bounded open set then for each € > 0 there is a closed set F' C G such that
m*(F) > m*(G) —e.
Represent G = U;I; where I;’s are non-overlapping intervals, and let € > 0 be given; of course

m*(G) <Y, vol(;) and so there is an ng so that

> vol(f) > m*(@) - .
i<no
For each i < ng let J; be a closed subinterval of the interior of I; with
vol(J;) > vol(I;) — Qi

Then F = J; is a closed subset of G’ and

Z’S’ﬂo

m*(F) = m" U Ji

> Y (vol(Ii) - Qi)

1<no

> Z vol(I;) —

i§n0

> m*(G) —e.

[NCN e

NB: The openness of G was used to represent G in an appropriate way.

C. If F is a closed subset of an open bounded set G then
m*(G\F) = m*(G) — m*(F).
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Let € > 0 be given. Using B, chose a closed set F; C G\ F so that
m*(Fy) > m*(G\F) — e.

Notice that

m*(F)+m*(G\F) < m*(F)+ (m*(F1)+e¢)
= m*(F1 UFQ) +e€
< m*(G)+e

Epsilonics take over to say
m*(F) +m*(G\F) < m*(G).
Of course, 2° takes care of the reverse inequality and with it, C.
A subset E of R¥ is Lebesgue measurable if given an € > 0 there is a closed set F' and open set
G such that
FCACG, and m*(G\F) < e.

By the complementary nature of open and closed sets E is Lebesgue measurable if and only if E°
18:

FCECG®& G°CE°CFC and FO\G° = G\F.

4% If A and B are measurable then so is AU B.

Pick F4, Fg closed and G4, G open such that

Fy, CACG4 and m*(GA\FA)

<
FB g B g GB and m*(GB\FB) <

Nl NIm

F=FyNFpisclosed, G=G4NGpgisopen, F C ANB C G, and G\F C (Ga\Fa)U (Gg\FB)
so that

m*(G\F) < m*(G4\Fa) + m*(Gp\Fg) < % + % =

5% A bounded set B is measurable if for each ¢ > 0 there is a compact set K C B such that
m*(K) > m*(B) —e.
Suppose the bounded set B satisfies the conditions set forth and let € > 0 be given. We can find a
compact set K C B such that
m*(K) > m*(B) — 7
But m*(B) < oo (why is that?). So we can cover B by a sequence (I;) of open intervals each of
diameter less than % such that

Z vol(I;) < m*(B).
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Let G be the union of all those /;’s that meet B. K C B C G and G is bounded. So our preparatory
... tells us that

m*(G\K) = m*(G)—m*(K)

I IA
-1
S
CHRG
C
s 3
5 3

IA

6° (Finite) intervals are measurable.

After all, if I is a (finite or bounded) interval m*(I) = vol(I) and so we can plainly approxi-
mate [ from the inside by compact intervals.

79 Sets of outer measure zero are measurable.

If m*(N) = 0 and € > 0 is given there must be a sequence (I;) of open intervals so N C U;I;
and

D vol(I;) <m*(N) + e =e.
J
Then G = U;I; and F = () soon show the way to N’s measurability.
Another technical rest stop.

D. If (4,) is a sequence of disjoint measurable sets of the interval I then U, A, is measurable,
too, and

m*(UpAy) = > m*(Ay).

Let € > 0 be given. Choose compact sets F,, C A,, so
€
B 2n+1 :

m*(F,) > m*(A,)

Since

m*(Undy) < m*(Ay)

there is an n € N so that

37 m(An) > m*(UnAn) — g

n<ng
If F = Up<p, then F is compact (it’s closed, and being a subset of I, bounded). Hence by A
m*(F) = Zm(Fn)> Zm(An) 2>m(UnAn) 5

n<ng n<ng
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We've just taken the bounded set U, A, and for each € > 0 found a compact set K, contained in
U, A4,, so that

m*(F) >m*(A) —e.
UpA,, is measurable thanks to 5°. Let’s check the sums: for any n € N

Z m*(A,) < Z (m*(Fn) + QH%)

n<m n<m

IN
(]
3—)(—
&
+
I

n<m
€
= m*(U,A )+§.

Epsilonics assure us that

> m*(An) < m*(UnAy)

n<m

and this is so for each n. It follows that

S e (4,) < (U An> |
We've already seen the reverse so that’s all she wrote for D.

8% If (A,) is any sequence of disjoint measurable set of R then U, A,, is measurable and
m*(UpAy) = > m*(Ay).

We’ll bootstrap our way from D to 8°. To start, let (I,,,) be a sequence of disjoint intervals whose
union is R¥ and such that any bounded set in R” is covered by finitely many I,,’s.

For each m,n € N let

Amn =InNA,
be that part of A,, inside I,,. Each A,, , is measurable (6° and 4°) and then A,,,’s are pairwise
disjoint. Look to

A = UpAp ,
the part of UnA, in I,. By D, Z; is measurable. Further, the X;’s are pairwise disjoint and
UnAm = UpA,.

Let € > 0 be given. For each m, choose a closed set F,, C Z,; and an open set G,,, which is
a bounded open set, A,, C G,, such that

€
Look at F = U, F,, and G = U,,G,,,. F is closed (if (x,) is a convergent sequence of points of
F then (z,,) is bounded and so for some mg, (x,) is a sequence on Uy, <m,Fn hence visits one of
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Fy,..., Fy, infinitely often - which ever Fj it visits so often contains its limit and G is open.
F=UpnFpn CUnAm =UnAp = UpnAy, C UG = G.
Further,
G\F - UnL(Gm\F) g Um(Gm\Fm)
S0

m*(G\F) <Y m*(G\Fr) < Y 2% =,

and U, A,, is measurable.

Now
An = UAm,n
SO
m*(An) < m* (A ).
It follows that

S omr(An) < DD mF (Amn)

m

= 22 m (Ann)

by D. Take m € N. Then

j<m i<m
= m’ Fy |+ Z m*(G;\Fj) (by A)
j<m j<m
Y €
< m Fj + 27
j<m j<m

< m* <U An> +e.
The usual epsilonics leads us to conclude that
Zm*(ﬁz) <m* (U An>
and in tandem with what gone on b;nfore we see '
Zm*(An) <m* (U An> .

Again the reverse holds without assumption so 8° is proved.

THEOREM 0.0.12 (The Fundamental Theorem of Lebesgue Measure). In summary

17
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(i) m* is a non-negative, extended real-valued function defined for every subset of R¥ which
assigns
e to each interval, a value equal to its volume,
e to each set, a value common to all its translates,
e to bigger sets, bigger values
e to compact sets, finite values
e to non-empty sets, positive values
and is countably subadditive in doing so. For any A C R¥,

m*(A) = inf{m*(G) : G is open A C G}.

(ii) The Lebesgue measurable subsets of RE form a o—field M of sets containing every open
set, closed set, interval, and set of outer measure zero; E € M if and only if E’s translates
are members of M.

(iil) m* is countably additive on M and for E € M,

m*(E) = sup{m*(K) : K is compact ,K C E}.
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CHAPTER 3

Invariant Measures on R"

1. Introduction

As we proceed in our study of invariant measures we will encounter theorems that assert the
uniqueness of such measures in varying degrees of generality and in differing senses.

On compact object the uniqueness will be with regard to Borel probabilities (positive Borel
measures of total mass 1).

If G is a locally compact group then we’ll see that there is a unique left invariant regular Borel
measure acting on (the Borel subsets of G) with uniqueness taken to mean ‘up to multiplicative
constants.’

In concrete cases it occurs that those multiplicative constants can themselves be of considerable
interest, representing the rate of exchange between various natural geometric view points of the
groups under consideration.

In this chapter we encounter an early example of seemingly mulitple invariant measures on a con-
crete group and compute the constants that allow one to convert from one viewpoint to another.

Our setting with be R™. We will be dealing with Lebesgue n—measure A, on R and Hausdorff
n—measure p(™) on R™. Each is translation invariant and, sure enough, for each n, there is a
constant k,, such that

,u(") = KnAp.

The constant k., is in fact the precise rate of exchange that allows one to move from a rectalinear
view of R" (as expressed by \,) to a spherical view (as found in z(™).)

Along the way to establishing the existence of k,, and of computing it, we meet some of the real
stalwarts of measure theory.

In the first section we give the elegant Hadwiger-Ohlmann proof of the Brunn-Minkowski The-
orem, a geometric version of the Arthimetic-Geometric Mean Inequality. As a simple consequence
of this we derive the Isodiametric Inequality which says that among Borel sets in R™ of the same
diameter, the ball has the greatest volume.

In the next section we derive the still-wonderful Covering Theorem of Vitali for Vitali fam-
ilies of balls. We follow this with a short introduction to Hausdorff measure on R, p("). This leads

19
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to the main course of this chapter, the proof that for each n there is a x,, > 0 such that
2. The Brunn-Minkowski Theorem

THEOREM 2.0.13 (The Brunn-Minkowski Theorem). Let n > 1, and let A, denote Lebesgue
measure on R™. If A and B are compact subsets of R™ then

(An(A+BNY™ = a(ANY" + (Au(B))" (BM)

where
A+B={a+b:a€ Abe B}

Notice that (BM) is a geometric generalization of the Arithmetic-Geometric Mean Inequality
for if A and B are rectangles with sides of length (a;)7_; and (b;)}_; respectively, then (BM) looks

like
1/n n 1/n n 1/n
1 1

Homogeneity lets us reduce this to the case where a; +b; = 1 for each j. But now the Arithmetic-
Geometric Mean Inequality assures that

1 1
g Z aj Z (H aj) 5 and E ij Z (H b3>
Jj=1 1 j=1 1
So (noting that >0, a; + >0 b; = >0 (a; +b;) =7 1 =n)
1 n 1/n n 1/n
n
1 1

which is (BM) . Thus we have proved (BM) for boxes, rectangular parallelpipeds whose sides are
parallel to the coordinate hyperplanes.

[H(aj +bj)

7

1/n

To prove (BM), note that A and B each are the union of finitely many rectangles whose interi-
ors are distinct. We proceed by induction on the total number of rectangles in A and B. It is
important to realize that the inequality is inaffected if we translate A and B independently: in fact,
replacing A by A+ h and B by B + k replaces A+ B by A+ B + h + k and the corresponding
measures are the same as what we started with. If R; and R, are essentially disjoint rectangles
in the collection making up A then they can be separated (a translation may be necessary) by a
coordinate hyperplane {z; = 0} say. Thus we may assume that Ry liesin A~ = AN {z; <0} and
R, lies in AT = AN {xz; > 0}. Notice that each AT and A~ contain at least one rectangle less than
does Aand A=ATUA".

What to do with B? Well, slide B over so if BT = BN {z; > 0} then
An(BT) _ An(AT)
A(B)  An(A)

of course this entails
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as well. But

(AT +BYYU(A"+B)CA+B
and the union on the left hand side is essentially disjoint. Moreover the total number of rectangles
in either A* and BT orin A~ and B~ is less than that in A and B. Our induction hypothesis applies.
The result?
A (A + B) M(AT+BT)+ X, (A" +B7)
A (A" £ X, (BHY™)™ + (A (A7)Y™ + Mo (B7)Y™)™ (induction hypothesis)

M () ) e () )

An(A) (1 ; (ig;)”)

= ()‘n(A)l/n + /\n(B)l/n)n

and that’s all she wrote. Thus we have (BM) for finite unions of boxes.

If A and B are open sets of finite measure then once given a margin of error, ¢ > 0, we can
find unions Ae¢, Be of essentially disjoint rectangles such that A¢ C A, B¢ C B, and

A (A) <A (Ae) + €, Mn(B) < M\(Be) +e.
Once done, A¢ + Be € A+ B and we can apply the work of the previous paragraphs:
A(A+B)Y™ > A (Ae + Be)'/m
> (Aa(A) = )"+ (Aa(B) =)'/,

Since € > 0 was but a margin of error and we can assume arbitrary small errors and made at worst,
it follows that (BM) holds for open sets A and B of finite measure.

If A and B are compact sets then A + B is compact as well. Look at A¢ = [d(x, A) < €|. Then
A¢ is open, contains A and A¢ \, A. Similarly Be is defined analogously. What can we say about
(A + B)e? The same conclusions can be drawn. Further

A+ B C A¢ + Be C (A + B)ae.
Applying (BM) to Ae, Be we get
An((At Blae)™ = Aa(Ae + Be)/"
> A(A)Y™ + A (Be)V™
> (A (B
Letting e—0 gives (BM) for A, B, A+ B.
The general situation of A,B and A + B measurable follows by approximating from within: if

A, B are compact sets with A CA, B C B then A+ Bisa compact set inside A + B, and
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Let Ay (A) / A (A), A\ (B) / \u(B) and be done with it. O

With the Brunn-Minkowski inequality in hand we can easily find our way to the isodiametric
inequality.

THEOREM 2.0.14. For any Borel set B C R™ we have
diam B\"
An(B) < < Sl > An(B™),

where as usual B™ denotes the closed unit ball of R™.

Proor. Without loss of sleep we can assume that
d := diam B < oo.
This in mind, realize that if z,y, € B then ||z — y|| < d. Hence
B—-BCdB",

and so

2\, (B)Y/" (B)Y™ + A (B)/"
DBV A (=BT
n(B — B)™ (Brunn-Minkowski to the rescue!)
A(dB)"
(B,
It’s easy to deduce the conclusion of the theorem from this inequality:

2\, (B)Y™ < diam(B)X\, (BM)Y™. O

n

A
A
A
A

IN A

I
&
>

3. Vitali’s Covering Theorem

THEOREM 3.0.15 (Vitali). Let F be a family of closed balls in R™ that covers a set E in the
sense of Vitali. i.e., given an € > 0 and x € E there is a B € F such that the diameter of B is less
than € and x € B. Then F contains a disjoint sequence that covers A, —almost all of E.

PrOOF. First we suppose F is bounded and contained in the bounded open set G. We disregard
any members of F that aren’t contained in G as well as those that don’t intersect E. The resulting
family, which we will still refer to as F covers E in the sense of Vitali. Our proof will be by
‘exhaustion.” To start let Ry be

R, :=sup{radius(B) : B € F}.
Choose B; € F, say centered at a, with radius r; so that
71 <r.
Next let Ry be
Ry = sup{radius (B) : B € F,B; N By = 0}.
Choose By € F, say centered at a, with radius o so that Bs N By = () and

2
— < ro.
2_2
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Continue down this primrose lane. After k steps, let Ry11 be
Ry+1 = sup{radius(B) : B€ F,BN (B U---UBy) = 0}.
Choose Byjy1 € F with center ag1, radius rg41 so

BpiiN(ByU---UBg) =10

and R
k+1
< .
5 = Tk+1
Naturally,
Ri >Ry >---

More is so. The By’s are pairwise disjoint so

> An(Br) = <U Bk) < M(G) < o0
n k

hence
li]1€m An(Byg) = 0.

But
M (Bg) = curyp
(and we know ¢, but we don’t need to right now) so
li]£n r, = 0.
Since 0 < Ry, < 2r;, we see
liin Rr =0.

The By’s eat up £. How? What does it mean for x € E not to be in U< Bx? Well z & Uy < ;¢ B
means

d|z, |JBi|=6>0.
k<K
Choose B € F so « € B and B (which is centered at say a with radius r) has radius less than §/2.

Each point of B is within 2r of z and 2r < §. Hence B is disjoint from By U--- U Bg. B is
one of those balls belonging to F that take part in defining Ry.1; in particular, r < Ryy;. But

lim R; = 0
J

and the R;’s are monotone and non-increasing. Hence there is a j (which is necessarily bigger than
K) so that
Rj+1 <r< Rj.
Since r > Rj 1, B must meet one of the balls Bi,..., Bj; Suppose BN By, # (). Since B does not
meet By U---U Bk, m > K. It follows that for any ¢ € BN B,,,
llz — a|| + ||a — || + ||c — am|| (where a,, is the center of B, and a is the center of B)
r+r4+r,
2r + 1o,

lz —aml| <
<
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So

|z — am|| < 2r + 1rm,
where

TSRjSRm§27‘m.
WHY?
Hence

[l — aml|| < 2r 4+ rm <2 (2rm) + 7m < 5r,.

To summarize: if x € E\ U<k By then x belongs to the union Uk>KBk of those closed balls Bk,
where By, shares the center a, with By but Bj, has five times the radius of By.

In other words,

M| B\ Be| <Y (B
k<K k<K
= Z 5" \n(Bg) —0, as K—o0,
k>K

since, as we have already noted,

> An(Br) =X <U Bk> < An(G) < 0.

For general F, look at the sets
En={z€E:m-1<||z|| <m}, meN.
Of course,

A(E\| JEm) =0

and each E,, is as we’ve discussed above. What’s more, the G we chose at the very start of our
proof can be chosen to be the open set

{z eR" :m—1<]|z|| <m}

so the disjointness is achieved by passing from one E,, to the next. O

4. Hausdorff n—measure on R"
A Hausdorff gauge function is a map
h : [0, 00]—[0, 0]
such that h(0) = 0, h(t) > 0 whenever t > 0, h(co) < oo, h is ascending and right-continuous from
[0,0) to [0, 00).

Let (X, p) be a metric space. For E C X let h(F) = h(diam E), h(@) = 0. Notice that h so
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defined is a premeasure on any class C containing @). Let § > 0. Consider the following classes C of
subsets of X:
C = G6={GCX:Gisopen}
C = F={FCX:Fisclosed}
C = P={SCX}.

On each of these classes, we have intermediate measures

ug,yg,ag, and Tg,

pR(E) = inf<Y h(Gn): Gn €G,EC UGy, diam G, <5}

n

n

Q

S

5
Il

Vg(E) = inf {Zh : F, € F,E CU,F,,diam F, < 5}

inf ¢ Y " A(Sy) : E C UpS,, diam S, < 5}

i\

Tg(E) = inf{ h(S,) : E =U,S,,diam S, < 6} )

PROPOSITION 4.0.16. If 0 < 6 < € then
uggugzag:ngug.

COROLLARY 4.0.17. If ", v and o" are the measures derived from h and the classes G, F and

P a la Method II then

uh = b = gt

Moreover
p"(E) = sup 4 (E).
0>0
As C.A. Rogers noted, this shows that the p" measure of E can be defined in terms of the
diameters and covering properties of subsets of E. Thus the p—measure of E is an intrinsic
property of F as a set with the metric p. So p”(E) doesn’t change when E is put (isometrically)
insider another metric space (X', p’) than (X, p).

PROOF. Several assertions of the proposition are clear or, at the very least, easy-to-see. So z/g re-
quires covering by closed sets of diameter < ¢ and so Ug <vh 5 On the other hand, diam S = diam S

N h _ o h
so in fact, o5 = Vs

Again it’s plain that o < (}5‘ yet if (S,,) is a sequence of sets that covers E with each S,, having

diameter < § and T, = S N E then {T,} also covers E, diam T,, < § and U, T;, = F; it soon follows

that
<Zh <Zh

(o9
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and so T(}SL < ag. In sum:
h_ _h
T§ = 0'6.
Naturally, Jg < ,ug and so the only missing ingredient to a complete proof is that ul < Vg when

0 < €. Here some epsilonics are called for. Let n > 0. Cover E by a sequence (F),) of closed sets
with diameter < § so that

AE) < S h(F,) < vA(E) +1
(we clearly need only consider what happens when l/g(E) < 00).

Choose 1 > 0 so that
h(diam F,, + 2n,) < h(F,) + 2%

and
6+ 2n, < €.
Let
Un = [d(z, F) < mnl;
each U, is open, contains F;, and

diam U, < diam F,, +n, + 1, < + 21, < €.

Further

h(Un) < h(diam +2n,) < h(Fy) + 5k

Hence F C U,U,, each U, open, has diameter less than € and

> hU,) < h(diam F, + 21,)

Ui
< g h(F7z)+27§V§(E)+77-
It follows that

pe(B) < vg 4.

Since n > 0 was arbitrary, the proof is complete. O

Let h(t) = t". The Hausdorff measure generated by h is denoted by u(™. Keep in mind that
‘the Hausdorff measure’ is a misnomer; after all (™) makes sense in any metric space (X, p).

A comparison of (™ and n—dimensional Lebesgue measure A, on R” is worth our while. The
comparison proceeds in two steps. In the first, we’ll argue to their proportionality, in the second
step we’ll complete the constant of proportionality.

THEOREM 4.0.18. Let
Co = {33: (xl,...,xn) anOS.’El < 1,i:1,2,...7n}

and

Then
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PrOOF. Both (™ and ), are invariant under translations and are homogeneous of order n.
(i.e., for any t > 0, p(™ (tE) = t"u(™ (E) and A\, (tE) = t" )\, (E).) It follows that

N(n)(c) = knAn(C)
for any cube of the form
C={z=(21,...,2,) 1 a; < x; < a; + 8}

where (a1,...,a,) € R and s > 0.
Consider the collection C of cubes of the form
{x = (Z1,...,Tp): 7‘;;1 <z < Q}

where k > 0 is an integer and r1,...,r, € Z. C enjoys the following property: if two members of C
have a point in common, then one is a subset of the other.

So what? Well if G is any open set then each point ¢ € G lies in a cube C' € C that is con-
tained entirely within G and is maximized in the sense that C' is not a subset of any larger member
of C that is entirely inside G. Hence G is the union of the maximal cubes from C and these cubes
are disjoint. Let’s write

G =U,,Cp,

where (C,) is the sequence of maximal cubes just described. Everything we’re talking about is
measurable and so

N(n)(G) = Zﬂ(n)(Cm) = Z"%An(cm) = knAn(G).

So
M(”)(G) = KpAn(G)
for open sets G C R™.

Next we bootstrap this equality’s verity to Gs—sets. Let H be a Gg5— subset of R™. If p™ (H)
and /\(")(H) are both equal to 4+oo then there’s little that need be said. Naturally, they’re also
finite at the same time. In fact, if 4™ (H) < oo then we can cover H by a sequence (G,) of open
sets with ) (diam G,,)™ < oo; if we enclose each G, in an open cube Uy, where each edge of Uy,
is twice the diameter of G,, then H C U,,,U,,, and

A(UmCrm) < An(Cr) <> (2 diam Gy)"

< 2" Z(diam Gp)" < o0.

m

On the other hand, if A\,,(H) < oo then H can be covered by an open set of finite A\, measure and
so (since for open sets (™ and x,\, agree),

W (H) < 1(G) = ~da(G)

for any appropriate open set H C G and p(”)(H ) < oo follows.
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Okay, suppose pu(™ (H) and r,\,(H) are both finite. H is a Gs set so we can write H in the
form
H= mmea

where (G,,) is a descending sequence of open sets each of finite measure (be that measure u™ or
Anl). Tt follows that

™ (H) = inf 1 (G = inf kpAn(Grm) = KnAn(H),
m m
thanks to the measurability of all sets involved. So
N(n)(H) = knAn(H)
for any Gs—set H C R".

Now look at any ' C R™. Choose G5— sets Hy, Hy € R™ with ' C H; N Hj so
P (E) = p™ (Hy), and A (E) = A (Ha).

Of course
p(E) < ™ (Hy 0 Hy) < p™ (Hy) = p™(E)
and
A (E) < A (Hi N Hz) < A\p(Hz) = A (E)
S0

p(E) = "™ (Hy N Hy) and A\ (E) = A\ (Hy N Hy).
It soon follows that
p (B = ™M (Hy N Hy) = knAn(H1 N Hy) = kpAn(E)
since Hy N Hy is a 95 set. O

n/2
v (2) ()
T 2

PrROOF. To compute k, we need to know the volume, A, (B), of the closed unit ball in R";
cutting to the quick, this is given by

THEOREM 4.0.19.

71.71/2
n+2\°
L (%3%)
Let’s see what is involved. Let (Sk) be a sequence of subsets of R™ that cover the cube Cy. Then

1= )\n(Co) < )\n(Uksk)

An (E) =

S Z An(Sk)
k

S

4
by the isodiametric inequality. It follows that

T2




February 3, 2009

5. NOTES AND REMARKS 29

On the other hand, if § > 0 is given to us then Vitali’s covering theorem provides us with a sequence
(By) of disjoint balls each of diameter less than ¢ and each contained in Cy with

An(Co) =Y An(Br), and X,(Co\ Ug By) =0.
k

It follows that
,u(")(C'o\ Ug Bk) =0

Hence
gV (Co) < p§ (UkBr) + p§ (Co\ Ug By)
= ’ugn)(UkBk-)
< ) (diam By)"
k
n/2
S
AT 2
n/2
4 n+ 2
n/2
(e
s 2
- (1) ()
s 2
So

as well. Therefore

n/2
4
w=(2) (%)
s 2

5. Notes and Remarks

e The isoperimetric inequality
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CHAPTER 4

Measures on Metric Spaces

DEFINITION 0.0.20. A function u defined on the sets of a space € is called a measure on Q if
it satisfies the conditions
(i) p(E) > 0,u(E) < 400 for each E C Q;
(i) u(0) = 0;
(i) ju(E) < u(F) if E C F;
(iv) if (En) is a sequence of subsets of 2 then

H(UnEn) < Z p(En).

If u is a measure on the space Q) then E C Q is said to be uy—measurable if whenever A C E and
B C E€ then
n(AU B) = p(A) + pu(B).
Notice that £ C Q) is u—measurable precisely when given A C E and B C E°,
(0.1) W(AUB) = pu(A) + u(B);
after all, (iv) assures that the reverse inequality holds regardless of E, A or B. In fact, we really
need only show (0.1) for sets A, B of finite p—measure. (WHY?)

THEOREM 0.0.21 (Caratheodory). Let p be a measure on the set Q. Then

(i) if u(N) = 0 then N is u—measurable;

(ii) F is p—measurable if and only if E° is;

(i) if (Ey) is a sequence of p—measurable sets then U, E,, and N, E,, are too;
) if

(iv) if (En) is a sequence of pairwise disjoint p—measurable sets then

w(UnEp) = Z 1(En).

PROOF. (of (i)) Suppose A C N and B C N°. Of course u(A) = 0. Hence
u(B) < p(AU B) < p(A) + p(B) = pu(B).

Squeezy says all are equal and so N is p—measurable. (ii) is plain. To start the proof of (iii) and
(iv), we’ll show that the union of two u—measurable sets F, F' is u—measurable. Take A and B to
be sets of finite p—measure with

ACEUF, BC(EUF)“.

Notice
AUB=(ANE)U((AUB)NE°).

31
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Since
ANECE, and (AUB)NE°C E°,
by E’s measurability,
w(AUB) = p((ANE)U((AUB)NE®)) = u(ANE) + u((AU B) N E°).
At the same time
(AUB)NE°=(ANE°)UB
with
ANE°CF
and
BC(EUF)
so F’s py—measurability assures that
p((AUB)NE®) = (AN E)UB) = u(AN E°) + u(B).
But E’s measurability is still in effect and says that
AN E) 4+ p(AN E°) = u(A),
SO
w(AUB) = p(ANE)+ u((AUB)NE°)
= p(ANE)+u(ANE) + u(B)
= W(A) + u(B).

Therefore if E and F are p—measurable then so is FUF. Next we consider a sequence (E,,) of pairwise
disjoint p—measurable sets and write £ = |J,, E,,. Let A and B be sets (of finite g—measure) with

ACE, BCE"“
Each of U,_, E,, is p—measurable and

n(AU B)

v

(AN UL,y En] U B)
1(AN (Upz1 Em)) + 1(B),
because, after all,
AU (U _1Ep) CUN B,
and
B C (UnEn)C = mnETCL c m?n:l(E’rcn) = (U:anlEM)c-
Since the sets E,,, E,_1,..., E1 are pairwise disjoint and y—measurable,
AN (UnoiBn)) = s(AN (UL ER)UIAN B,
(Aﬂ(U" IE m)) + (AN E,)

= WAN(US2E) + uw(ANEy 1) + n(ANE,)

= WANE)+u(ANEy) +- -+ pu(ANEy,).
So we see that

WAUB) > p(AN (UL, ) + u(B)

= Xn:uAﬂE + u(B),

m=1
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and this is so for each n. Thus
u(AUB) = (AN Ey) + p(B)
> w(AN(UpEyR)) 4+ u(B) (since p is subadditive)
= WAUE)+ u(B)
= p(A)+p(B)
> u(AUB).

All are equal; in particular, u(AU B) and p(A) + p(B) are equal and U, E,, is p—measurable. Next
if B = () we get for any subset A of U, E,,

w(A) = 3" u(AN B,).

Letting A = U, E,, gives

p(UnEn) = Z 1(En).

This gives (iv) and (iii), at least in the case the sets are pairwise disjoint.

Alas from (ii) and the fact that any finite union of y—measurable sets is p—measurable, we see
that any finite intersection of y—measurable sets is also y—measurable .* To establish (iv) is now
clear sailing: let (E,,) be a sequence of (not necessarily pairwise disjoint) p—measurable sets. Write
U, E,, as follows:

* It seems tha
this sentence

belongs in the
UnEn = E1 U (E1\E2) U (E3\(Ey U E3))U--- previous

the result is what we wanted - U, E,, is the union of a sequence of pairwise disjoint y—measurable paragraph.
sets and so is itself p—measurable. 0

DEFINITION 0.0.22. A function 7 defined on a class C of subsets of a space §) is a premeasure
if
(i) bec;
(ii) 0 <7(C) < o0 for all C €C;
(iii) 7(0) = 0.
THEOREM 0.0.23. If 7 is a premeasure defined on a class C of subsets of the space Q) then the
set function

w(E) = inf{ZT(CZ-) C;eCEC UCQ}

1S a measure.

Here, as usual, the infimum over an empty set is +0o. The measure i so constructed from 7 is
said to be constructed by Method I.

PROOF. It is plain and easy to see that the set function p as defined from 7 satisfies properties
(i)-(iii) of the definition of a measure. Only ‘countable subadditivity’ requires a bit more proof. So
let (E,) be a sequence of subsets of the space 2, and let’s show that

w(Unky) < Z w(Ey).
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For sure we can assume ) p(E,) < oo and so, in particular, each p(E,) < oo as well. Now for
each n, choose a covering of E,,, say {C;(n)}; from C so that for the always present € > 0 we have

€
< i < —.
n(En) < Ej 7(Cj(n)) < u(EBn) + o5

Now {Cj(n) : j,n € N} covers U, E,, and so

wW(UnEy) < ZT(CJ'("))
33 m)
= Z#(En) t e

IN

IN

As expected, € > 0 was arbitrary and its arbitrariness leads us to the conclusion that
w(Unky) < Z,U(En) g
n

Let 7 be a premeasure on the family C of subsets of the metric space Q. Let § > 0 and denote by
Cs = {C € C : diameter C < d}.

Denote by 75 the restriction of 7 to Cs. The result is a premeasure that generates a measure ps on
Q by Method I. A look at ug is worth taking:

s = inf {ZT(Q) : E CU,C;,C; €C, diam C; < 5} :
Notice that ps is a measure by Method I. It’s plain that as & gets smaller there are fewer sets with
diameter < § so us(F) gets bigger. Hence we can define u(E) by

p(E) = sup ps(E),
6>0
and we say that 7 generates u by Method II.

Method I applies in a general setting, as opposed to Method II which relies on the metric structure
present in the underlying structure set €.

THEOREM 0.0.24. p constructed by Method II is a measure.

The only possible stumbling point to this is the countable subadditivity so let’s see why pu is
countably subadditive. To this end, let (E,) be a sequence of subsets of {2 and consider these
quantities

wWUnE,) and Z P(Ey).

Obviously the latter exceeds the former if it’s co so we may as well assume ) u(E,) < oco.
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Now for each 6 > 0, us is a known measure so

Mé(UnEn) < Z M5(En)7

which in turn is

< Z,“(En)

n

The countable subadditivity follows from this. O

A key ingredient to our mix is provided in the following. Comment on this theorem?

THEOREM 0.0.25. Let pu be a measure on a metric space ) derived from the premeasure T by
Method II. If A and B are non-empty subsets of ) that are ‘positively separated’ then

n(AU B) = p(A) + pu(B).

Here A and B ‘positively separated’ means that there is a § > 0 so that for any a € A and
be B,
pla,b) > 6.
Measures that enjoy this additive property are called metric measures and their importance lies
in the fact that these are precisely the measures on a metric space for which every Borel set is
measurable. Define Borel sets here or somewhere else?

PRrOOF. We need to show that if A and B are positively separated then
(AU B) > u(A) + u(B)

where all the terms involved are finite. The idea of the proof is to cover A, B and AU B with very
fine covers from the domain C of 7, so fine that we can distinguish between which sets are needed
to cover A and which to cover B.

More precisely, suppose
pla,b) >0 >0

for any a € A and b € B. Let ¢ > 0 announce its presence. By the rules of engagement

d>0

w(AU B) = sup inf {ZT(CZ) sdiamC; <d,C; € C,AUB C UCZ} .
So we can choose a sequence (C;) in C so that

e diam C; are all ‘small’;
e AUB C U;Cy;
o > 7(C;) < (AUB) + e

‘Small’? Well to set things up for computation of the yu—measure of A and of B through the
intermediaries us(A), us(B), we let 01,2 be positive numbers each less than diam , and let 7 be

the number
. )
7 = min {51,62, 3} .

Choose 1 as our model of small.
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Here’s the first punchline; if each C; has diameter < n then each has diameter < g and so
a given C; can intersect A or B but not both. It follows that

Z 7(Cy) + Z 7(B;) < ZT(Ci) <u(AUB)+e.
C;NAZD Ci;NB#D i

But each C; that intersects A has diameter < n < d; so knowing, as we do, that A is a subset of

U Ci7

CiNA#£D
we get
ps, (A) < > 7(Ch).
CiNA#D
Similarly,
ps,(B)< > 7(Cy).
C,NB#0D
The result:

ps, (A) + ps,(B) < > 7(Ci)+ Y T(Ci) S u(AUB) +e,
and so Method II leads us to believe

1(A) + p(B) < u(AUB) +e.
Since € > 0 was arbitrary, this proof is done. a
Metric measures enjoy some very strong continuity properties. Here’s one of them. Comment
on the importance of this proposition.

PROPOSITION 0.0.26. Let p be a metric measure on a metric space Q. Suppose (A,) is an
increasing sequence of subsets of Q so that A, and Aj, | are positively separated. Then

w(UpAy) = sup p(Ap).
We defer the proof until after giving the Proposition a chance to ‘show off.’

THEOREM 0.0.27. If 1 is a metric measure on the metric space ) then every closed subset of )
is u—measurable.

Comment that this tells us that Borel sets are yi—measurable.

PROOF. Suppose F' is a closed subset of the metric space 2, and let A C F and B C F° be
non-empty sets. For each n let

1
B, = € B : inf ,Y) > — o
{fc Jnf p(z,y) n}

Notice that B,, / B.

By their very definition, each B,, is positively separated from A. We’ll show that each B, is
also positively separated from By, ;. To this end, let z € B,, and v € By, ;. Now u & By, ;1 so

> inf :
1 _ylng(x,y),
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~ > plu,yo)
U, Yo ).
n+% Zp Yo
Now if .
z,u é La
then
i f b < b)
nf plzy) < (@)
S P(%u)‘i‘P(U’yO)
1
S 5

b

n(n+ 1) + (n+ %)

which by the method of common denominators, is

i4n 1

n(n—i—%) T

Hence x ¢ B,,. Our conclusion? If x € B,, and u € Bf_;, then

i.e., B, and By, are positively

Let’s compute u(AU B) :
u(AU B)

and F' is measurable.

i _ 1
n(n+3) n@2n+1)

separated.

p(z,u) >

> supu(AUB,)
= supp(4) + u(By)
= p(A)+sup u(Br)

= wu(A) + p(U,By,) by Proposition 0.0.26
= w(A) + pu(B),

Now we look to the rather elegant proof of Proposition 0.0.26:

PrOOF. We have

A CAC--CAC-o

37

with A, and Af,, positively separated for each n. We want to show that (U, A,) < sup,, u(Ay)

and in this effort we may plainly suppose sup,, ;(A,) < oo since otherwise all is okay.

First we look at the difference sequence

Of course, D,, C A,, but further

= AQ\Al,Dg = Ag\Ag, .. .,Dn = AA»,L\/ln_l7 .

Dy C A5, Dy C A5 C A5, Dy C A5 C A5 C 45,
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So
Dy C Ay and D3, Dy,... C AS,
Dy C Ay and Dy, D5, ... C AS,
etc., etc., etc. In particular
D, C Ay, D3 C A3
Dy C Ay, D, C A3
DU D3 C As, D5 C A§
Dy U Dy C Ay, D¢ C Ag

DiUD3U---UDgy_1 C Agp_1, Dopq C A5,
DyUDyU---UDs, C Ag,, Dy, C A5, 4.

It follows (inductively if you must know) that
(D) + p(Ds) + -+ + p(Dan—1) + p(Dany1) = p(Upty Dok 1),
and
#(D2) + p(Da) + - + p(Dan) + p(Dant2) = p(Ut] Day).
Each of UZ;L%DQk,l and UZLID% are subsets of Ag, 12 and so all above find themselves

< p(Azny2) < sup p(A,) < oo.

Conclusion: both series ) p(Da,—1) and ), p1(Day) converge. Now

wUnAy) = p(ApUDpy1UDy o U--+) Not sure about this one.
< wAn) + (D) + p(Dngz) + -+
< supp(An) + Y u(Dy);
n k=n-+1

if € > 0 be given then there is an n so that the latter sum is less than € so
w(UnAy) < supu(A,) + e
n

Enough said. U

We've seen that every Borel set in a metric space ) is pg—measurable whenever p is a metric
measure on 2. It’s worthwhile to note that this is not accidental; it’s part and parcel of being a
metric measure. Indeed if we suppose u is a measure on the metric space §2 for which every closed
subset of  is y—measurable and if A, B C Q are positively separated (so AN B = (}), then

w(AUB) = u((AUB)NA) + u((AUB)NA")
by the measurability of A. But
(AUB)NA=A and (AUB)N(A)° =B
by the positive separation of A and B. So
(AU B) = u((AUB) N A) + u((AU B) N (A)° = u(A) + u(B),

and g is a metric measure.
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We turn now to regularity properties of measures on a metric space, that is, how well we can
approximate a typical value u(E) of u by values at ‘good’ sets - closed, open, F,,Gs or even com-
pact. REWRITE THIS SENTENCE: Before we go any further we hasten to say that the problems
we’re concerned with are previously with metric measures that are not finite. To be sure, we em-
phasize that if measure is finite then good things happen (at least in the world of Borel sets).

Here’s (some of) what’s so.

THEOREM 0.0.28. Let (X, p) be a metric space. Let p be a countably additive map from the
Borel o—field Bi(X) to [0,00). Define this o— field?
(i) For any Borel set B in X, we have
sup{u(F) : F C B, F closed} = u(B) = inf{u(G) : B C G, G open}.

Should we change G to U since we use U in the proof ?
(ii) If X is Polish (that is, there is a complete metric that generates X ’s topology and X is
separable) then for any Borel set B in X

w(B) =sup{u(K) : K C B, K compact}.
This result finds so much use in what we do, we submit a proof in detail.

PROOF. (of (i)) Here’s the ‘trick’ to find an approach to general Borel sets; we consider the
collection S of Borel sets in X that satisfy the conclusion of (i).

Open sets belong to S. If U is open then it’s trivial to approximate pu(U) from above by p’s
values on open super sets of U. How to approximate from within by u’s values at closed subsets?
Well, notice that if U is an open set in X then U*€ is closed and so « € U*€ precisely when d(z,U¢) =0
where
d(z,U¢) = inf{d(z,y) : y € U°}.
But d(z,U¢) is a continuous function of x € X and so we see that
1
U= a;-,uc) > —
U { (- U%) > n] :
neN
and U is an F,—set. If we let F,, = [d(o, Ue) > %] then each F, is closed,
KCRC---CF,C--- /U,
and so

p(U) = lim p(Fy).

Open sets are F,’s and so each open set belongs to S.

Now &, by it’s very definition, can be described in a manner suited to epsilonics. Indeed, a Borel
set B € S precisely when B satisfies

given € > 0 there is an open set U containing B and a closed set F contained in B such that
p(U\F) < e.

It’s plain from this that S is closed under complements.
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What about countable unions? We’'ll suppose (By) is a sequence of Borel sets each one of which is
in S. For each n, pick U,, and F,, so that U, is open, F), is closed, F,, C B,, C U, and

€
u(Un\Fy) < ot

Let U = U, U,, F =U,F,. Then
FCu,B, CU.

Moreover

€ €
ZU(Un\Fn) < Z ontl g
Now U is open and F' is almost closed. In fact, F = U, F}, so there is an ng so that

PE\ Unsng Fn) <

IA

i

DO

The result:
no
UFrclUB.cr,
n=1 n

where UZOZI F,, is closed, U is still open and
p(U\ UL, F) <e.

Therefore S is a collection of Borel sets containing X’s topology, (containing?) closed under com-
plementation and the taking of countable unions. Thus & = By(X).

(ii) hints at the plentitude of compact sets in Polish spaces. This comes from the (existence of a)
complete metric; in complete metric spaces, subsets are relatively compact precisely when they’re
totally bounded. So to prove (ii) we’ll use the separability to construct good closed and totally
bounded approximants. We start with a complete separable metric space (X, p) and show (ii) holds
for the Borel set X itself. Let {z,, : n € N} be a countable dense subset of X. For each n € N

X = Uk:Bl/n(mk)
where

Be(z) ={y € X : p(z,y) < €}.
For each n we can find a k,, so that

u (L] Bl/nm))

is within =% of u(X). Look at

on

kn
K = ﬂ (U B1/n(ﬂ7k)> .
k=1

n
Since K is complete, it’s closed. K is totally bounded, too: after all, for any n,

k

K g U Bl/n(xk)
k=1
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so each point of K is within 2/n of an zy, k =1,..., k,. Therefore K is compact.

P(K®)

Il
=
/
A/
)

IA Il
=
S tj
3
C

IN
\g

=
/N

Generally if we apply (i) we can find inside any Borel subset B of X a closed set F with p(F) within
€/2 of u(B); then define fi on the Borel sets of X by

[(E) = W(ENF).

Our opening salvo applied to i gives a compact K C X so f(K) is within ¢/2 of a(X) = u(F).
Then K N F does the dirty deed since p(K N F') = fi(K), which is within e of pu(B). O

Before entering into the subject of regularity of metric measures, there are a few apt comments
to be made regarding the theorem above. First regarding (ii) an example might highlight the com-
pleteness hypothesis. Suppose 2 is a subset of [0,1] for which the inner measure A\, (€2) is 0 and
the outer measure \;(Q) is 1. Of course  is not Lebesgue measurable and hopelessly incomplete.
However (2 is separable. Now the Borel subsets of 2 are just those subsets of 2 of the form B N Q)
where B is a Borel subset of [0, 1]. If we define P(B N Q) to be the Lebesgue measure of B then
P is \*|p,(£2). P is a probability Borel measure on the separable metric space €. However, if K is
a compact subset of Q then K is also a compact subset of [0,1] and so a Borel subset of [0,1]; it
follows that

P(K)=X(K)=A(K)=0.
P is not a regular Borel measure on 2. Comments on this example:
e Should we say something about inner measure and outer measure? What is A7
e How do we know anything about Q7 eg Why is {2 not Lebesgue measurable and incom-
plete?
e What is A*?
e Should we define probability here or somewhere prior to this?

Some kind of completeness assumption is needed in (ii). How about separability? Well most
probabilities have separable support. Should we define ‘separable support?’ Here’s the fact.

THEOREM 0.0.29. Let Q be a metric space. Then in order that every probability Borel measure
on § have a separable support it is both necessary and sufficient that each discrete subset of 0 have
‘non-measurable cardinal.’
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Recall that a set S has measurable cardinal if one can define on 2° a probability measure that
vanishes on singletons; otherwise S has non-measurable cardinal. It’s unknown if sets measurable
cardinals exist. It is known that if they do, then they must be huge! So the comforts of finite
measure aside, let’s discuss general metric measures and approximation properties thereof. First, a
general definition: if p is a measure on a space {2 and R is a family of subsets of {2 then we call y
R-regular if for any F C Q there is an R € R so that E C R and u(E) = u(R).

Now some facts.

o If 11 is a measure on a space 2 generated by a premeasure T on a collection C with 2 € C
by Method I, then p is C,5—regular. What does this mean? Since 2 € C, 2 is certainly
Cys and so for sets E with u(E) = oo, E C Q) serves us well. So we look at E’s with
w(E) < co. In this case, epsilonics enter the foray: for each n there is a sequence (CI');
of members of C such that

1
ECuU,C" E)< M <u(E)+ —.
C U;CF, and p( )_Zi:T(Cz)_u( )+

Set
D=n,y; Czn € Cys-
Then £ C D and for each n

W(E) < p(D) £ Y (C1) < p(B) + -

It follows that u(F) = u(D).
e Let i1 be a measure on a metric space {2 generated by a premeasure 7 on a class C which
contains 2 via Method II. Then u is C,5—regular.

PROOF. As before we use £ € C to rid us nuisances: take E C Q; if u(F) = oo
then € C C C,s contains F and plainly p(E) = pu(f2) = co. So we can restrict our
attention to E such that p(F) < co. But now each pu,(F) is also finite since p,, < p for
any 1 > 0. Because each p,(E) < oo we can also find a C,, € Cys such that E C C;, and
pn(E) = 1y (Cp). To keep tabs on pu(E) for each n let C), € Cys be so that £ C C), and

H1/n(E) = #1/n(0n)-
Put
C =n,C, € Cys.
E CC and

p1/n(E) < p1/n(C) < p1yn(Cn) = paym(E) < p(E).

Choosing carefully from this we see

Taking n — oo, we get

and that’s all she wrote.

Each of these facts has interesting consequences in case C is special.
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COROLLARY 0.0.30. Suppose u is a measure on a topological group generated by a premeasure
T defined on the topology of the space by Method I. Then p is Gs—regular. If p is a measure on a
metric space generated by a premeasure defined on the topology of the space by Method II, then p is
Gs—reqular.

COROLLARY 0.0.31. Suppose i is a measure on a topological space ) generated by a premeasure
defined on the Borel subsets of 2 by Method I. Then pu is Borel-reqular. Suppose u is a measure on
a metric space () generated by a premeasure defined on the Borel subsets of ) by Method II. then p
is Borel-regular.

We have the following general principle for approximating from within:

If v is an R-regular measure on a space {2 and E is a u—measurable subset of Q with u(F) < oo
then there is a set R1\R2 where Ry, Ry € R, contained in E so that

pw(Ri\Rg) = u(E).

Choose Ry € R with E C R; so that
W(E) = u(Ry).
FE is p—measurable so
p(E0 = p(Ry) = p(Ry N E) + p(R1 N E®) = p(E) + p(Ry N E°).
But pu(E) < oo so
(R NE°) =0.
w is still R—regular so there is an Ry € R so that
RiNE°C Ry and 0= pu(R1 NE°) = u(Ra).
Now
Ri\R; C (RiNE°
= Ry N (Ry N E6e)©
R—1nNn(R{UE)
= (RiNR)U(RNE)=E.
Also p(R2) = 0. So

w(R1\R2) p(R1\Rg) + p(Ra)
p((Ri\R2) U Ry)

(
(
(R1)
(
(

AV,
=

E)
1(Ri\Ro).

AV
=

Voila!
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CHAPTER 5

Banach and Measure

Like most (abstract) analysts of his day, Banach also took a keen interest in developments
related to the existence, uniqueness and uses of Haar measure. In this chapter we recount Banach’s
views on the subject. Naturally we open with a bit of functional analysis and present the real case
of the Hahn-Banach theorem. We follow this with a derivation of the existence of “Banach limits.”
After a brief discussion of weak topologies, we pass to Banach’s remarkable characterization of
weakly null sequences of bounded functions on a set. That is followed by Banach’s characterization
of weakly null sequences in the space C(Q), where ) is a compact metric space, a result that was
derived before Banach knew what C(Q)* was! It wasn’t long before Banach was able to ‘compute’
C(Q)*. We follow his way of doing this, benefiting from his view of abstract Lebesgue integration,
a la a Daniell type construction. Finally we present Banach’s construction of invariant measures.
His proof was a source of inspiration for many and will reappear in our discussion of Steinlage’s
description of existence and uniqueness of measures on locally compact spaces that are invariant
under group actions.

1. A bit of Functional Analysis

THEOREM 1.0.32 (Hahn-Banach Theorem). Let X be a real linear space, and let S be a linear
subspace of X. Suppose that p : X — R is a subadditive positively homogeneous functional and
f:S — Ris a linear functional with f(s) < p(s) for all s € S. Then there is a linear functional F
defined on all of X such that F(z) < p(z) for allx € X, and F(s) = f(s) for all s € S.

PRrROOF. Our first task is to see how to extend a functional like f one dimension at a time
preserving the domination by p. With this in mind, let x € X\S and notice that for any linear
combination s + ax of a vector in S and x, whatever the linear extension F’s value at x (say that
value is ‘c’) we must have

F(s+azx) = F(s) + aF(x) = f(s) + ac.
So it must be (if we are to have F' dominated by p) that
f(s) + ac < p(s + ax)

holds for all s € S and all real a’s. We’ll follow where this leads us; for all « € R and s € S we have
to have

ac < p(s+ ax) — f(s).
For o > 0 this tells us that

¢ < = (s +az) - f(5)

(51 (2)

45
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while if & < 0 then (—a > 0 and)
—ac > f(s) = p(s + ax),

or since —a > 0,

o
IV

2 f(s) ~ —=pls + 0z)

s 5
(=) ()
- -
Taking into account the linearity of S we see that what we seek is a ¢ € R (which will be F'(z)) so
that regardless of s,s € S satisfies
f(s) = p(s =) < e <pls+a) = f(s).

Does such a ¢ exist? You bet! After all if s,s" € S then

Fs)+f(s)=Ff(s+5)<pls+s)<p(s—z)+p(s +a).

So for all 5,5 € S

’

f(s) =p(s —x) <p(s +x)— f(s),
and we can chose ¢ in an appropriate manner.

Now we know that we can extend linear functionals one dimension at a time while preserving
p’s domination. It’s time for some transfinite hijinks. We consider the collection of all linear func-
tionals g defined on a linear subspace Y of X such that S C Y, g|s = fandon Y, g < p. We
partially order this collection by saying that “g; < g” if g9 is an extension of g1 (so g1 is defined
on a linear subspace Y] that is contained in go’s domain).

Hausdorfl’s maximal principle ensures us that there is a maximal linearly ordered subfamily {gq}
of linear extensions of f so that on go’s domain Yy, (which contains S), g, < p. We define F' on
the linear space that’s the union of the domains of the go’s as one mine expect! F(x) = go(x) if x
is in go’s domain. Because of the ordering described above, the domain of F' is linear subspace of
X and on that domain F' is linear and dominated by p. Of course, F' is a linear extension of f and
the domain of F' must be all of X - this is assured us by the opening salvo. O

We put the Hahn-Banach theorem to immediate use by establishing the existence of ‘generalized
limits’ or Banach limits, as we’ll refer to them henceforth. We will call on two spaces: [°°, the space
of bounded, real-valued sequences, and the linear subspace ¢ of [°° consisting of all the convergent
sequences. Typically if x € [*° then

[|z]|oo = sup{(zy) : x € N}.
THEOREM 1.0.33 (Banach). There exists a linear functional LIM on 1> such that
(i) LIM(z) > 0 if x = (z,,) €1 and x,, > 0 for all n;
(ii) |LIM(z)| < ||%]|oo, for all x € 1°;
(i) If x € I1*° and Tz = (x2,x3,...) for x = (x1,22,...), then LIM(Tx) = LIM(z);
(iv) For any x € 1>
liminf x,, < LIM(x) < lim sup z,.

n—oo n—oo
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PROOF. Let p:1°° — R be given by

. T+ -+ Ty
p(z) = limsup ———.

n—o0 n

It is easy to see that p is subadditive and positively homogeneous. Next, let f : c—R be the linear
functional

flx)= 1i71Ln T,

Since f and p agree on ¢, f(z) < p(z) is trivially satisfied. LIM is any Hahn-Banach extension of f
to all of [*°. LIM is a linear functional on [*° such that for any = € [*°

LIM(z) < p(z).
To see (i), take x € [*° and suppose z,, > 0 for all n. Then
—LIM(z) = LIM(—z) < p(—x),

SO
LIM(z) > —p(z)= —limsup 2"~ n
n—00 n
~ limipf ET2 I

n—00 n

because x,, > 0 for all n.

(ii) is plain since p(x) < ||z||oo for all z € I*°. To see (iii), take € [*°, then

p(x — Tx) = lim sup I Fntl

n—00 n

=0,

since z is bounded. It follows that
LIM(z — Tz) < p(z —Tz) = 0.

So for any x € [
(1.1) LIM(z) < LIM(Tz).
This applies as well to —x so

—LIM(2) = LIM(—z) < LIM(—T2) = —LIM(Tx),
and so
(1.2) LIM(z) > LIM(T'z)
as well. LIM(z) = LIM(T'z) is the only conclusion that can be drawn from (1.1) and (1.2).

For (iv), let ¢ > 0. Find N € N so
infz, <zy <infz, +e.
Then
Ty, +e—xny >infx, +e—xny > 0.
n

Hence
0<LIM(x+e¢—xy)=LIM(z)+¢e—an
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by (i). Hence
i%fxn <y < LIM(x) +e.
Since € > 0 was arbitrary
iry}f xn < LIM(x).

For any k

inf ,, = inf Tz, < LIM(T*z) = LIM(z);

n>k n>k
but

lim inf 2,, = sup inf z;, < sup LIM(z) = LIM(z).
n n k=n n

Again using LIM’s linearity, we see that

limsup z,, = — liminf(—x,) > —LIM(—xz) = LIM(z).

n n—00

The proof of the existence of Banach limits appears. O

Let X be a normed linear space. A linear functional on X is bounded if there is a ¢ > 0 so
that |f(z) < ¢||z|| for all z € X. The appellation ‘bounded’ pertains to f’s boundedness on the
closed unit ball

Bx ={z e X :|z|| <1}
of X. It is easy to show that a linear functional’s boundedness is tantamount to its continuity and
this, in turn, is assured by f’s continuity at the origin. Then

fIl = sup [f(2)]
r€EBx

is a norm on X* and is in fact, ‘complete.” So Cauchy sequences in X* with respect to this just-
defined norm, converge.

The Hahn-Banach Theorem provides any normed linear space with lots of linear functionals in
its dual.
e Let S be a linear subspace of the real normed linear space X, and let s* be a continuous
linear functional on S. Then there is an extension z* of s* to all of X so that ||s*|| = [|z*||.
We simply let p(z) = ||s*|| ||z*|| and apply the Hahn-Banach Theorem to find a linear
functional F' defined on all of X with F'(z) < p(z) for all z € X. Because

F(—z) < p(=z) = p(x),
we see that

F(a) < p(x) = [|s"[| []«"]|
for all = € X and so F = * is in X* and ||F|| < [|s°[|. Since F extends s, [|s*]| < ||F|
too.

e Let z be a member of the (real) normed linear space X. Then there is an z* € X* with
l|z*|] = 1 so that z*(z) = ||z||. Indeed, let
S ={azr:aeR},

define s*(ax) = a||z||, apply the Hahn-Banach Theorem and get z*, the norm-preserving
extension of s*.
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It is frequently the case that for a particular normed linear space the norm-topology is too coarse
to uncover special and delicate phenomena peculiar to that space. Oft times such phenomena are
best described using the weak topology.

DEFINITION 1.0.34. A base for the weak topology of the normed linear space X is given by
sets of the form

U(zyzy,zs,...,or)={ye X |zj(z —y)| <ei=1,...n}
where x € X, x7,...,z; € X*, and e > 0.

The topology generated by this base is easily seen to be a Hausdorff linear topology so the
operations of (z,y)—x+y and (A, x)— Az of X x X to X and Rx X to X, respectively, are continuous.
This topology is mever metrizable and never complete for the infinite-dimensional normed linear
spaces! Usually closures are not determined sequentially. Nevertheless, weak sequential convergence
in special spaces often holds secrets regarding the inner nature of such spaces. To be sure, if X
is a normed linear space and (z,,) is a sequence of vectors in X then we say that (z,) converges
weakly to z € X (sometimes denoted by x = weak-lim,, x,,) if for each z* € X*,

liTan x*(zy,) = 2" (x).
It is an integral part of basic functional analysis to compute the duals of special normed linear
spaces and using the specific character of the spaces involved to characterize when sequences are
weakly null (tend to zero weakly).

We now turn our attention to life inside spaces of the form [*°(Q), where @ is a set and {*°(Q)
denotes the normed linear space of all bounded real-valued functions x defined on @), where z’s
norm is given by

lzlloc = sup{|z(q)[ : ¢ € @}

Now to bring tools like the Hahn-Banach Theorem to bear on the study of [*°(Q), we need to know
something about {*°(Q)*. Banach knew a great deal about this (as did F. Riesz before him); he
didn’t formulate an ezact description of [°°(Q)* but nevertheless, understood the basics. To begin,
if * € 1°°(Q)*, then z* is entirely determined by its values at members of {*°(Q) of the form g
where E C @Q); after all, simple functions are dense in [*°(Q). Now if F(E) = z*(xg) then F is a
bounded finitely additive real-valued measure on 2%, the collection of all subsets of Q. If we define
|F| by
|F|(E) = sup{F(5): S C E}

for £ C Q then |F| is a non-negative real-valued function defined on 29 and |F(E)| < |F|(E) for
each £ C Q. (Remember: xp = 0 so F() = z*(xg) = *(0) = 0.) What’s more, |F| is also finitely
additive! If G C F; U E5 where E; and Es are disjoint subsets of @ then G = (GN E;) U (G N Es),
and so

F(G) = F(GNE)U(GNEy))
= F(GNE)+F(FNEy) C |F|(Ey) + |F|(Bs);

It follows that
|F|(E1U Es) < [F|(E) + |F|(E2).



February 3, 2009

50 5. BANACH AND MEASURE

On the other hand, if F4 and E5 are disjoint subsets of @) then for any € > 0 we can pick G; C E;
and G5 C F5 so
€ €
|F|(E1) < F(Gy) + > |F|(Eq) < F(G2) + 2

But now

[FI(BY) + [FI(E) < F(Gi)+ 5 +F(Ga)+5
= F(G1)+F(Gs) +e
= F(G1UGs) + € (since F is finitely additive)
< |F|(F1UE3) +¢
since € > 0 was arbitrary, we see that
|F|(Er) + |F|(E2) < |F|(Ey U E»)

whenever F; and FEs are disjoint subsets of Q.

Here’s the punch line: if z* € [°°(Q)* then z* defines a bounded finitely additive measure on
2@ - call this measure F. From F we generate |F|, all of whose values are non-negative; |F| — F is
also a non-negative bounded real-valued finitely additive map on 2¢ and F = |F|— (|F| - F). So F
is the difference of non-negative bounded finitely additive maps on 29. In turn, such non-negative
additive bounded maps on 2% define positive linear functionals on [°°(Q), functionals that are nec-
essarily bounded linear functionals.

Why is this last statement so? Well suppose G : 220, c0) is finitely additive. If A C B C @ then
B=AU(B\A) so

G(B) = G(AU (B\A)) = G(A) + G(B\A) = G(A);
it follows that for any F C Q, G(FE) < G(Q), and G is bounded by G(Q). Moreover if Ey,... Ey
are pairwise disjoint subsets of @ and a1, ...,a, € R then

Y aG(E)| < > |ailG(E) < sup |ai| > G(E:)
i<n i<n Isisn o)
= ZaiXEi G UEZ
i<n 00 i<n
< GQ||]Daixe,

isn 00

and so G determines a linear functional

> aixe— Y aiG(E))

on the simple functions which is ‘bounded’ there on. This bounded linear functional extends to
[°(®) in a bounded linear fashion, a positive functional to be sure.

Now z € Bloo(Q) means |z(q)] < 1 for all ¢ € Q; it follows that —1 < z(q) < 1 for all ¢ € Q.
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If f is a positive linear functional defined on {*°(Q), so f(z) > 0 whenever z(q) > 0 for all ¢ € Q,
then f(—1) < f(x) < f(1), or |f(z)] < f(1), whenever x € Bjoo - Positive linear functionals on

1°°(Q) are bounded linear functionals.

THEOREM 1.0.35 (Banach). Let Q be a (non-empty) set and (x,) be a (uniformly) bounded
sequence in 1°°(Q). Then () is weakly null if and only if

(1.3) lim limkinf |zn(gr)| =0
for each sequence (qi) of points in Q.

PROOF. Necessity: Suppose to the contrary that there is a sequence of points (gx) in @ such
that
lim sup limkinf |2n(qr)] >a >0
n

for some «. Then unraveling the meaning of limsup’s, we can find a strictly increasing sequence
(n;) of positive integers such that

limkinf |Tn, (qr)] > a >0
for each j. Now turning to the meaning of liminf, we find a subsequence (gx,, ) of (¢x) such that
i, (g, )| > @ > 0
for each j. Let z* € [°°(Q) be given by
" () = LIM((z(gk,, )m))
where LIM € [*°(N)* is a Banach limit. Then for each j,
|2* (20,)| > @
and so

limsup |z*(x,)] > a > 0.
n

It follows that (z,,) is not weakly null in I*°(Q).

Sufficiency: By remarks preceding the statement of this theorem, to test (z,)’s weak nullity it
suffices to check the action of z* € I*°(Q)*, for «* a positive linear functional of norm 1, on the
sequence (x,). So suppose x* is such a functional, with

limsup 2*(z,) > a >0
where (1.3) holds:

lim limkinf |zn(gr)| =0
for each sequence (gi) of points in Q. Let s,, be the sequence

_ [ walq) ifan(q) 20
sn(q) = { 0 otherwise

and let ¢, = z,, — s,

One of limsup,, #*(sy) and limsup,, 2* (t,) must exceed §; after all, 2, = s, + t;, s0

x*(xn) = 2*(sn) + 2*(tn)
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ensuring that

limsup z*(z,,) = limsup(z*(g,,) + 2*(¢t,,)) < limsup x*(s,,) + limsup z*(¢,,).

n n n

If we clip off the ‘bottoms’ of s, by defining
_ [ sala) ifsale) 2 §
ynla) = { 0 otherwise

then

)

SHES

18 — Ynlloo <

what’s more,

limsupz*(y,) = lmsupa*(s, — (sp — yn))

= limsup(z*(sn) — 2*($n — Yn))

so that

lim sup z*(y,) > % —

n

o
2
>}

[Ynlloo < llsnlloe < [|Tnllee < M,

SRS

Let
Su={a€Q: lzala)

and look at g, . Since

say, we see that for any ¢ € Q

&)

xs,(q) >

S

so that
(M- xs,) = 2" (yn)-
From this we see that
—3M
For E C Q, let F(E) = 2*(xg); of course F € [*(Q)* and
lim sup F(S,) > 0.

limsup z*(xs,) > 2 8> 0.

Let n1 be the smallest positive integer such that
limsup F(S, NS,,) > 0.
Such an n exists by the way! This is the crux of the matter! In fact, otherwise,
liTan F(S,NSk) =0
for each k so (because F is additive)
lim F(UF_ (S, nS;) =0,
for each k as well. Let ky = 1. Pick my > k; so large that
F(Sm,) >0

and
F(Sml N Skl) <

1w
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Let ko > mq. Pick mo so large that

F(Sm,) > 8
and
F(Sm, N(S1U---USg,)) < g
Continuing in this fashion, producing k1 < m1 < kg < mg < ---, with
F(Sm;) > B
and

F(Sm, N(S1U---USg;)) < g
Now disjointivity: let T; be given by
kj
Tj = Smj\[smj N (Uizlsi)]'
By construction
F(T]) > g

and this is a “no-no” since F takes disjoint sequences to 0.

So n1 does indeed exist such that

limsup F(S, NS,,) > 0.

Believe it or not.

Once faith has been established for n; we see that there are no < ng < --- <ng < --- so that

limsup F(S, NSy, N---NS,, ) >0

for each k. The all-important point here is that for each k there is at least one point ¢x so
Gr € Spy N Sp, N NSy,

Of course if j > k then ¢; € S, and so by how the S,,’s were defined
e’
o (07)] 2 5.
It soon follows that

lim sup liminf |z, (g;)| >
n J

This contradicts (1.3) and thus, the sufficiency is proven. g

|2

This result is remarkable because it characterizes weak convergence in a highly non-separable, non-
metrizable situation in terms of sequences g in Q.

Suppose @ is a non-void compact metric space. Then the space C(Q) of all continuous functions
real-valued functions defined on @, equipped with the norm

[|z[|oo = sup{|(q)| - ¢ € Q}

is a closed linear subspace of [*°(Q), the space of all bounded real-valued functions on Q. We can
give a much more succinct characterization of when a bounded sequence () is weakly null in C(Q)
then just what Banach has above. Indeed, and again this was observed by Banach.
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THEOREM 1.0.36 (Banach). A (uniformly) bounded sequence (x,,) in C(Q) is weakly null if and

only if
limz,(¢) =0

for each q € Q.

Proor. If (z,) C C(Q) is weakly null and ¢ € @ then using the point evaluation
dq € C(K)*, where d4(z) = z(q)

we see that
0 = lim d4(xy,) = limx,(q).

Now assume that (x,,) is a (uniformly) bounded sequence in C(Q) for which lim,, x,,(¢) = 0 for each
g € @ and imagine that (x,) is not weakly null in C(Q). Of course the Hahn-Banach theorem tells
us that (z,,) is not weakly null in I°°(Q) either. So by Theorem 1.0.35 there must be a subsequence
() of (z,) and a sequence of points (g) in Q and an a > 0 so that for each n

(1.4) lim inf |z, (qx)| > a > 0.

But (g) is a sequence in the compact (hence sequentially compact) metric space @ and so (g, ) has
a subsequence (g;,) that converges to some gy € Q. By (1.4) it must be that for all n

|2, (g0)] > & > 0.
OOPS. 0

2. The Lebesgue Integral on Abstract Spaces

In this section we present Banach’s approach to the Lebesgue integral in abstract spaces.
Banach’s approach is a Daniell-like construction built using his clear and deep understanding of
limsup’s and liminf’s. His starting point is a positive linear functional f acting on a vector lattice
C of real-valued functions defined on some set K; we suppose (with Banach) that the functional
satisfies a kind of Bounded Convergence Theorem (BC#) on C. It is important to note that in the
previous section we presented Banach’s famous result characterizing weakly convergent sequences
in spaces C(Q), @ a compact metric space; it follows from this that should the initial vector lattice
C be such a C(Q), then every positive linear functional satisfies the (BCH) hypothesis.

After an initial discussion of technical consequences of the (BC#) hypothesis involving lim sup’s
and liminf’s of functions in C, Banach introduces an upper and a lower integral. Were we doing
measure theory, this piece of the puzzle would be concerned with properties of outer and inner
measures generated from an initial set function.

Next the class of integrable functions is isolated, being identified as those real-valued func-
tions for which the upper and lower integrals coincide and are simultaneously finite. The classical

Monotone and Dominated Convergence Theorems are derived and all is well with the world.

We follow a discussion of what the construction does in the all important case that the ini-
tial vector lattice C = C(Q), @ a compact metric space.

It is noteworthy that this construction of Banach led him to a description of C(Q)*. Tt is
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impossible to tell for certain (but easy to imagine) what Saks thought of Banach’s ‘construction’ of
C(Q)*. Tt appeared after all, as an appendix to Saks’ classic monograph “Theory of the Integral’,
yet uses practically none of the material from the monograph! Whatever Saks though, he soon
presented an elegant proof of Banach’s result about C(Q)* in the Duke Mathematics Journal. We
present Saks’ proof in an appendix to this chapter.

2.1. A Start. The numbering and notation throughout this section is consistent with Ba-
nach’s. Let C denote a vector lattice of real-valued functions defined on a set Q. (i.e., If z,y € C
then so is  Vy = inf{z,y} and = A y = sup{z,y}.) A linear functional f on C is a positive linear
functional if f(z) > 0 for any x € C,z > 0.

Throughout this section, we will suppose f is a positive linear functional on C satisfying
if (z,) CC, M € C, with |z,| < M and lim,, ,(t) = 0 for all t € Q, then
lim,, f(x,) = 0.

If C = C(Q), Q a compact metric space then any positive linear functional f on C satisfies (BC6)
thanks to Theorem 1.0.36. This is an example well worth keeping in mind.

BCé {

1° If (xp,) CC,m € C,z > 0,x, > m, and liminf, z, > 2 then
limx,, — |z, = 0.
n
Now lim inf,, 2,, > z ensures liminf, x,(t) > 0 for each ¢ € @, that is, for each t € Q,
lim inf{x,(t), x,1(t),...} > 0.

n—ro0

So, given 1 > 0 there’s n = n(n) so that for all k > n,
(2.1) z(t) = —n.

Look at x,, — |zn|:
[ o, if z,(t) >0
(Tn — |za])(t) = { 2z, (1), ifz,(t) <O0;

naturally, (z, — |z,|)(t) < 0 for all ¢. So, if lim, (x, — |x,|) exists, it must be less than or equal to
0.

Let’s check on contrary possibilities. Can it be that
lirrilinf(xn — |zn])(to) <O
for some tg € Q7 Let’s suppose that this is possible. Notice since m € C
1int;Linf(xn — |zn])(to) > inf{2m(ty),0} > —o0.
If
limninf(:vn —|zn|)(to) <0
it’s because there’s a subsequence (x/n) of z,, so that for some ¢y > 0
21, (to) = ,,(to) — &, (to)| < —eo,

for all n. It follows that
’ —60
T, (to) < 72
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for all n. But if n is BIG we can arrange
’ —€
Z‘n(to) > TO

(that’s what our opening words (2.1) of wisdom guarantee). Ah ha! While

’ —60
{En(to) > T,
we also have
’ fﬁo
T, (to) < 5

Drawing the conclusion that %0 < %0 is easy from this and leaves us with a clear-cut contradiction
to all that is right in our world. We conclude that

lim inf (2, — |z,|) > 0.
We know that
lim sup(z,, — |z,]) <0,
n

and so 1° follows. O

2° If (z,) CC,m € C,x,, > m, and liminf,, x,, > 0 then
limninf f(zn) > 0.
Again start with a look at x,, — |x,|; as before since 2m € C
—oo < inf{2m, 0} < z,, — |z,| <O0.
By 1°, we know that
hran(xn — |z,|)(t) =0
for each ¢ € @, and since C is a lattice, we can use the the (BC#) condition on f to conclude

hmf(xn - ‘an =0.
n
Can liminf, f(z,) < 07 If so then it’s because there is a subsequence (z, ) of (z,) and an e > 0 so

f(l";i) < —¢€o
for all n. We can (and do) assume that
lim £ (z,)
exists as well. But now
lim f(z,), lim f(z,, — |z,])
both exist and so
lim /(|2

exists, too, with

lm f(ja,) = Tm(f (e, — o) + f(@,)

lim f(x;l) < —e¢,

which is not possible, and so we have 2°. O
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2.2. Upper and lower integrals. Let £* denote the set of all real-valued functions z on @
for which there exist two sequences (x,,), (y) € C such that

limsupy, <z < liminf z,.
n n

L* is a linear space containing C since C is a vector lattice.

Given z € L£*, the upper integral of z, [(z), is defined by
/(z) = inf{liminf f(z,) : there exists m € C, (x,) C C,z, > m,liminf z,, > z};

the lower integral of z, [(z), is defined by

/(2) = sup{limsup f(z,) : there exists M € C, (x,) C C,z,, < M,limsupz,, < z}.

/ZZ—/(—Z).

Note: in each of the above definitions we can suppose that lim,, f(z,) exists and is real valued
since liminf’s and limsup’s are taken over sequences which are eventually finite. So we replace
liminf, f(z,) and limsup,, f(z,) with lim,, f(z,) throughout.

Obviously

From the definitions we have

3 Ifze Lz >0, and f(z) < P < o then we can find (xz,) C C,x, > 0,liminfz, > 2z
with f(xy,) < P for all n.

The value of 3° is found in the accessibility it affords us to epsilonics; since (with Banach) we
have frequent call on computing limsup’s and lim inf’s. This is a critical aid.

LEMMA 2.2.1. For any z € C, [(z) = f(x).
PROOF. On the one hand, we can let x,, = z for all n and m = x; this done, we plainly have
liminf x, > 2, and z, > m.
n

Hence

/(x) < liminf f(x,) = f(x).
On the other hand, if (z,) C C and m € C with

liminf x, > x, and z, > m,
n

then

liminf(z, —z) >0, and z, — 2z >m — .
n

2° steps in to say
“0 < liminf f(x, — ) = liminf f(z,) — f(z)”;

we see that
f(z) < liminf f(x,)
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and with this we conclude

f@ < [@.

LEMMA 2.2.2. If 21,20 € L* with f(zl),f(ZQ) < 00, then f(zl + 29) < f(zl) + [(22).

PROOF. Suppose P;, P, are numbers such that
/(zl) < P;, and /(22) < Ps.

There are sequences (xsll)), (xg)) C C and functions mj,my € C such that

lim inf m£}> >z, x§}> > m; for all n,
lim inf :csf) > 29, :cg) > mo for all n,

and
lim f(z(V) < Py, lim f(z?) < P,.
Letting x,, = x%l) + xg) and m = mq + ms, we see that

liminf x, > 21 + 22, ©, > m.
It follows that
/ (21 + 22) < lim f(2,) = lim f(zf)) + lim f(2P) < Py + Py,
n n n

Enough said. O

[o<[o.

PROOF. There is nothing to prove if [(2) = +o0. If [(=2) = 400 then [(2) = —[(—2) so

again there is nothing to prove. If [(z), [(~2) < co then Lemma 2.2.2 kicks in to give

0=10=[0=[c-2< [0+ [
[o=-[ax[w)

LEMMA 2.2.4. Ifz € L* and f(z) < 00, then

J(5) -~
Jir- T4 (),

LEMMA 2.2.3. For any z € L*,

so that

and
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PROOF. Suppose f(z) < P < oo0. Find m € C and (z,) C C so that x,, > m for all n, and
liminf,, z, > z, lim, f(x,) < P. Notice that if z,, > m then

Tn — |Tn| s m- |m|,
2 - 2
this can be seen by a simple analysis of cases.

Hence
(=) = (e ()
= flan -1 (25)
< flan -1 ("5™)
and
[ (z+ |7 . Ty, + |0
57 = s (25)
< tim (o) - 7 ()
< 0o0.
Now

P > lim f(zy)

lim inf f (wn i |33n|) + liminf f (mn — |$n|>

Y

2 2

(57 (55):

it follows from P’s arbitrary nature among members > f (z) that

Y

Jio=JC5)- ] (5)

Lemma 2.2.2 tells the rest of this tale. O

Two more lemmas are plain and worth mentioning.

LEMMA 2.2.5. If 21,29 € L* satisfy z1 < 2o then f(zl) < f(ZQ); in particular if z € L* and
z >0 then [(z) > 0.

LEMMA 2.2.6. If 2 € £* then [(\2) = A[(2) for any real number \ > 0.
2.3. The Integral. Let £ be the set

L=1{s €L / (2) = / (2), with both finite}.

LEMMA 2.3.1. L is a linear space and f is a linear functional on L. Moreover C C L and f
extends f.
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LEMMA 2.3.2. If z € L then |z| € L, that is, L is a vector lattice.

o= (25 (|z|2—z),

it’s enough (thanks to L’s linearity) to show that ZH | 2=l 1oth belong to £ if z € £. We recall
that Lemma 2.2.4 ensures that if z € £ then [ (%lzl) < oo and [ (ZTH) > —o00, as well as

o= (57) 1 (57)

Symmetry (applying Lemma 2.2.4 to —z and using [ — 2z = J#) shows that [ (ZJ;

J(53) > —oc as well as
Jo-](557)-[(57)

PROOF. Since

|2|

)<ooand

HEE S (]
T JEA ) (5] - )

Now Lemma 2.2.3 kicks in to say that the finite quantities [ (ZJFZIZ‘> 7f (z ‘Z‘) must, in fact, be
equal and the finite quantities | (z |2 |> . (Z_T‘Z‘) follow suit. O

An old friend is next on the agenda.
LEMMA 2.3.3 (Monotone Convergence Theorem).

if (zn) C L, 2 < zpy1 for alln and z = lim,, z,, with

MC’O{ limy, [ (2n) < 00, then z € L and [(z) = lim,, [(zy).

PRrROOF. We can, and do, assume z; = 0; otherwise subtract 21 from each of the z,,’s. Next note
that z > z, for all n and so since [(z,) = [(z,) we have

(2.2) /(z) > ngln/(zn) = lim /(zn).

Let € > 0. Let w, = 2,41 — 2, > 0. For each n find (w,i")) C C with w,(cn) > 0,limy, w,(gn) > w,, and

f) < [+ 5

say. Write
Yn = w,(ll)) NI w%ﬂ);
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SO
Y1 = w%l) eC
Yo = wél) + wéZ) eC

Since yp, = w4+ w0 > w +wo + - - wy,
liminf y, > liminf(w; +wo + -+ - + wy) = an = z.

At the same time,

o) = fD) 4 flwf) i
= (w1)+§+/(w2)+2—2+---+/(wn)+2in
< (w1)+~~~+/(wn)+e

(32)+/(Z3—Z2)+'--+/(Zn+1—zn)—|—e

(22 + (23 — 22) + - + (2041 — 20)) t €

|
— T T T =

(znt1) + €< hm/(zn) + €. (by Lemma 2.2.5)

It follows that _ _
/(z) <liminf f(y,) < lim/(zn) + €,

and by €’s arbitrary nature,

0 < [@r<im [
< [Ewe
< /(z)<oo

Therefore

Another old friend.

LEMMA 2.3.4 (Dominated Convergence Theorem). Suppose (z,) C L,M € L and |z,| < M.
Then

g = liminf z,,, h =limsupz, € L
n n
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[ <imint [ <timsw [z < [

Suppose (zn) C L, M € L satisfy |zn| < M.
If z(t) = limy, 2,,(t) for eacht € Q then z € L and [(z) = lim,, [(25).

with

Consequently
DCh {

PROOF. For each i and for each j > i, write
9ij = min{zi7 Zidlye-s Zj}

Then the sequence (g;;)52,; is decreasing, each member belongs to £ and so the sequence (M —g;5)52,;
is an increasing sequence of members of £. (MC#H) guarantees that if

g; = lim g5,
j

then
M*gi el

and

Jor-gy=tm [r - g
Jwr=1m [

g =liminfz, =limg;; € £
n 7 :

/(g) = lifn /(gl) < limninf /(zn)

LEMMA 2.3.5. If z € L,z > 0 and fz = 0 then whenever the function x satisfies |z| < z we
have that x € L and [z = 0.

that is, g; € £ and

Applying (MC6) again reveals

with

O

This is an immediate consequence of lemma 2.2.5.

2.4. We have the integral... Now let’s turn to Banach’s approach to integration. Start with
C = C(Q), Q a compact metric space. If f is a positive linear functional on C then |f(z)| is bounded
by f(1) so long as € Be. Why? Well if € Be then |z| < 1 and |z(q)] < 1 for all ¢ € Q. So
x € Be means —1 < z(q) < 1; from this it follows that —f(1) = f(—-1) < f(z) < f(1). Okay?
Any positive linear functional f on C(Q) is a bounded linear functional with norm f(1). By Ba-
nach’s theorem (Theorem 1.0.36), if (z,,) C B¢ and |z,| < M € C with lim,, z,,(¢) =0 for all ¢ € Q,
then (z,,) is weakly null in C(Q), hence lim,, f(z,) = 0. This is (BC#) in Banach’s integration theory!
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So we can extend f to a vector lattice £ of real-valued functions defined on ) in a linear fash-
ion so that the extension, denoted by [ df, enjoys the fruits of (MC#) and (DC#), that is

if (z,,) C L, (z,) an ascending sequence with z = lim,, z,,, 2 € £ whenever lim,, f Zpdf < 00;

in this case, [z =lim, [ z,. (MC0)

Suppose (z,) € L and M € L satisty |z,| < M. Then liminf z,, limsup z,, € £ and

Jliminf z, < liminf [z, <limsup [z, < [limsupz,. (DC6)
So should (z,) C L, M € L satisfy |z,| < M, if z(¢) = lim, z,(q) for each ¢ € Q then z € £ and
[ z=1lim, [ z,.

What does this provide us with? To start, let F' be a closed subset of (). Consider the continuous
function ¢r(g) = d(q; F'); notice that ¢ € F precisely when ¢r(q) = 0. If we consider ¢,, € C(Q) to
be

bula) = inf{¢>F<q> ! }

n
then lim, ¢,(q) = xr(q) for each ¢ € Q. Moreover, |¢,|] < 1 € C C L; hence xp € L and
[ xrdf =lim,, [ ¢,df be either (MCH) or (DCH), take your pick.
Suppose £ C Q and xg € L. Then 1 = xg + xge 0 xge C L, too — afterall 1 € C and yg € L. If
A,B C Q and x4, xp € L then since xanp = inf{xa, x5}, we see that xanp € L. Because

XA+ XB = XAUB — XANB

we see that should x4, xp € £ then yaup € L as well. Therefore
{E CQ:xg€ [:}

is an algebra of sets containing all the closed subsets of Q.

Suppose (E,) is an ascending sequence of subsets of @ such that xg, € L for each n. Then
XU, B, = limxg,
n

and
IXe, | <1eCC L
80 Xu, E, € L too - here you can appeal to (MC#) or (DC#), take your choice.

Therefore {E € Q : xg € L} is a o—algebra of subsets of @) containing each and every closed
subset of ). Therefore for any Borel set B C @, xg € L. Thus we have proved

THEOREM 2.4.1. L contains all of the indicator functions on Borel sets.

Suppose (By,) is a sequence of pairwise disjoint Borel subsets of Q. Then x5, xu,B, € £ and

Xu,B, = E XB,,;
n

an appeal to (MC#) or (DC#) soon reveals that

[ dt =3 [ o
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[ df acts in a countably additive fashion on Bo(Q)! It is a measure on Bo(Q). i.e.,

s :/df7 where ¢ (E) :/XEdf7 whenever yg € L

is a countably additive measure defined on some o— field that contains the Borel o— field. The
total mass of s is f(1).

3. A Brief Intermission

While Banach did not base his derivation of C'(Q)* on the material of Saks’ monograph, he
did find it useful in his development of Haar measure for compact metric groups. In particular, he
called on metric outer measures as a guiding light for his passage to Haar measure.

What follows is a presentation of the basics of metric outer measures, enough to see us through
Banach’s proof of the existence of an invariant (outer) measure and, afterwards, Saks’ elegant proof
that C(Q)* is what it is.

Preceding via the standard path, we suppose that we have a metric space ) with metric d
and a premeasure 7 defined on the family F of subsets of 2. Let § > 0 and denote by

Fs ={C € F: diameter C < d}.

Denote by 75 the restriction of 7 to Cs. The result is a premeasure that generates an outer measure
s on € by Method I, namely for E C ),

pis = inf {ZT(;(En) B, € F5,EC UnEn} = inf {ZT(ER) B, € F,E CU,E,,diam(E,) < 5} :

n

It’s plain that as § gets smaller there are fewer members of F having diameter < § so us(E) gets
bigger. Hence

E) = E) = lim p15(E),
HB) = sup pis(E) = limy 15(F)

exists and is well-defined.

THEOREM 3.0.2. u is a measure.

The only possible stumbling point to this is the countable subadditivity so let’s see why u
is countably subadditive. To this end, let (E,) be a sequence of subsets of {2 and consider the
quantities

w(UpFy) and Zu(En)

Obviously the latter exceeds the former if it’s ) p1(E;,) = oo so we may as well assume ) u(E,) <
00.

Now for each 6 > 0, ps is a known outer measure so

M&(UnEn) < Z /1’5(En)7

which in turn is

<> u(Ey).
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The countable subadditivity follows from this. O

A key ingredient to our mix is provided in the following.
THEOREM 3.0.3. If A and B are non-empty subsets of Q that are ‘positively separated’ then
u(AU B) = p(A) + pu(B).

Here A and B ‘positively separated’ means that there is a § > 0 so that for any a € A and
b e B,
pla,b) > 0.

PRrROOF. We need to show that if A and B are positively separated then
u(AUB) = p(A) + u(B)

where all the terms involved are finite. The idea of the proof is to cover A, B and AU B with very
fine covers from the domain F of 7, a cover so fine that we can distinguish which members of the
cover touch A from those that touch B.

More precisely, suppose ¢y > 0 is so small that

d(a,b) > €
for any a € A and b € B. Let ¢ > 0 announce its presence, € < €,/3. Let e/,e// > 0 be such that
€,€ <e Let p=min{e € }. Since

#(A U B) = sup{inf > r(Cu)},

where the infimum is taken over all sequences (C,) of members of F such that each C,, has diameter
< ¢ and AU B C Uy,cy,, we can choose (C),) from F in such a way that

AUB CuU,Cy,

diam C,, <,

and

> 7(Ch) SuAUB) +e.

n

By choosing C),’s this way we see that a given C,, can intersect A or B but not both.

Here’s the first punchline; if each C; has diameter < 7 then each has diameter < g and so
a given C; can intersect A or B but not both. It follows that

doorC)+ Y T(Bi) <> 7(Ci) S(AUB) +e.
C;NA#D C,NB#D i
But each C; that intersects A has diameter < n < §; so knowing, as we do, that A is a subset of
U Cia
CiNA#£D

we get

pa(A) < Y T(C).

CiNAAD
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Similarly,
22 (B) < Z T(Ci)'
C,NB#0D
The result:
po,(A) + s, (B) < D 7(Ci)+ > 7(Ci) S p(AUB) +e,
CiNA#£D C;NB#£0D
and so Method II leads us to believe

u(A) + pu(B) < (AU B) +e.

Since € > 0 was arbitrary, this proof is done. O

The property of an outer measure on a metric space that we have isolated above is important
enough to earn a special designation: an outer measure p defined on the subsets of a metric space
(2,d) is called a metric outer measure if whenever A and B are non-empty subsets of 2 which are
positively separated then p(AU B) = p(A) + p(B). Their importance lies in the fact that these are
precisely the measures on a metric space for which every Borel set is measurable. Metric measures
enjoy some very strong continuity properties. Here’s one of them.

PROPOSITION 3.0.4. Let pu be a metric measure on a metric space Q. Suppose (A,) is an
increasing sequence of subsets of Q so that A, and Ay, | are positively separated. Then

1(UnAy) = sup u(Ay).
PRrROOF. We have
A1 CAC---CA,

with A, and Af | positively separated for each n. We want to show that p(U,A,) < sup,, (A,)
and in this effort we may plainly suppose sup,, ;1(A,) < oo since otherwise all is okay.

N

First we look at the difference sequence
Dy = Ay,Dy = A5\A1,D3 = A3\As,...,D,, = A \Ap—1,. ..
Of course, D,, C A,, but further
Dy C A7, D3y C A5 C AT, Dy C A5 C A5 C AY, ...

So

D; C Ay and D3, Dy, ... C AS,

Dy C Ay and Dy, Ds, ... C AS,
etc., etc., etc. In particular

D, C Ay, D3 C A5
Dy C Ay, D, C Af
Dy U D3 C Az, D5 C Af
Dy UDy C Ay, D¢ C Af

DiUD3U---UDg,_1 C Agp, Dony1 C A3,
DQUD4U"'UD2n CAQn; D2n gAgn-i-l'
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It follows (inductively if you must know) that

1(D1) + p(D3) + -+ + p(Dan—1) + (Dany1) = p(UpL] Dag_1),
and
1(D2) + 1(Dy) + -+ + p(Dan) + p(Dang2) = (Ut Dag).
Each of UZ;LllDQk—l and UZilngk are subsets of Ag, 10 and so all above find themselves

< p(Azpp2) < sup pu(4,) < oco.

Conclusion: both series ) p(Da,—1) and ), p(Day,) converge. Now
w(Undy,) = p(A,UDpiqaUD,yoU--+) Not sure about this one.
< w(An) + w(Dntr) + p(Dpy2) + -+

oo

sup (An) + Y u(Dy);
n k=n+1

IN

if € > 0 be given then there is an n so that the latter sum is less than € so
1(UnAy) < sup p(A,) + e

Enough said. U

A dividend paid by considering metric outer measures is found in the following.

THEOREM 3.0.5. If p is a metric measure on the metric space (2,d) then every closed subset
of Q is p—measurable. Consequently every Boreal subset of () is y—measurable.

Comment that this tells us that Borel sets are p—measurable.

PROOF. Suppose F is a closed subset of the metric space €2, and let A C F and B C F* be
non-empty sets. For each n let

1
B, = €B:infd(z,y) >—;.
\zeB: igato >

Notice that (B,,) is an ascending sequence of subsets of B with B = U,, B,,.

By their very definition of B,,, each B, is positively separated from A. In fact, each B, is positively
separated from B ;. Indeed if 2 € B,, and T € By, it’s because

1 ,
inf d >~ and infd < .
[nf, (z,y) 5y and inf (x,y) < e

In the latter situation, it must be that for any € > 0 there is a ye € F' so

/ 1
d .
(xay€)<n+1+€a

of course d(x, ye) > % It follows from the triangle inequality that

d(z,z) > d(z,ye — d(«, ye)

1 1 1 1
> == +e)=—— — €.
n <n+1 ) n n+1
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So if we choose € = (+ — 7)/_1~_1)/2 we see that
/ 1 1
d(x, > | —— 2.
@e)> (3 57)/

This we can do for any 2 € B,, and = € B ..

Let’s compute (A U B). By our previous theorem
w(AUB) > supu(AUB,)

= sup(A) + p(Bn)

= p(A) + sup u(Bn)
= u(A)+ p(U,By) by Proposition 77
= p(A) + u(B),

and it follows that F' is y—measurable. O

Since the collection of y—measurable sets which contain each closed set in €2 is a o—fielf, it must
be that each Borel set belongs. That Borel sets are y—measurable whenever p is a metric outer
measure on ) is not accidental; it’s part and parcel of being a metric measure. Indeed if we suppose
 is an outer measure on the metric space (€2, d) for which every closed subset of ) is p—measurable
and suppose that A and B are positively separated subsets of 2. Of course AN B = () so

u(AUB) = u((AUB)NA) + u((AUB)NA")
by the measurability of A. But
(AUB)NA=A and (AUB)N(A)° =B
by the positive separation of A and B. So
(AU B) = u((AUB) N A) + u((AU B) N (A)° = u(A) + u(B),

and p is a metric measure.

4. Haar Measure
Let @ be a fixed compact metric space.

DEFINITION 4.0.6. We suppose that for subsets of QQ the motion of congruence is defined to
satisfy the following conditions (here A= B means A is congruent to B):
(i) A= A
(i) A¥ B B~ A.
(iii) AXB, B2C=A=C.
(iv) If A is an open set then so is any set congruent to A.
(v) If A is congruent to B and A can be covered by a sequence (A,) of open sets then B can
be covered by a sequence (By,) so that B, = A,, for each n.
(vi) For any open set A the collection of sets congruent to A cover Q.
(vil) If (Sy) is a sequence of open concentric balls with radii tending to zero, and if G, = S,
and an, b, € G, with lim, a,, and lim,, b,, existing then these limits coincide.
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ExAMPLE 4.0.7. If Q is a compact metrizable group with left invariant metric then A = B
whenever B = xA for some x € Q is a congruence.

ExAMPLE 4.0.8. If Q is a compact metric space and G is a group of isometries of QQ onto Q
that is transitive then A = B if B = ¢(A) for some ¢ € G is a congruence.

Given two relatively compact open sets A, B, by Definition 4.0.6 (vi), the collection of sets
congruent to A covers B, a compact set. Hence there is a finite collection of sets congruent to A
that still cover B. This motivates Haar’s covering function h(B, A):

h(B, A) = the least number of sets congruent to A needed to cover B.

PROPOSITION 4.0.9. Suppose A, B, and C are non-empty open subsets of Q. Then
(i) CC B= h(C,A) <h(B,A).
(ii) h(BUC,A) < h(B,A)+ h(C, A).
(iii) B2 C = h(B,A) =h(C,A).
(iv) h(B,A) < h(B,C)h(C,A).
(v) If d(A B) = distance from A to B is positive (so ANB = 0) and (S,,) is sequence of open
concentric balls with radii tending to zero, then there is a number N so that forn > N

h(AU B, S,) = h(A,S,) + h(B, Sy).

PROOF. (v) requires some serious and careful attention. Suppose (v) fails. Then there is (ng)

so that
h(AUB,S,,) < h(A,Sp,) + h(B,Sn,)

for each k. We can plainly suppose that the ny’s are chosen so large that S,,, NA # 0 and S,,, "B # ()
cannot both occur. It follows that there is a sequence (Gy) such that Gy = S,,, and GyN A # () and
GrNB # (. Why? Well fix ni, momentarily and imagine that any G that is congruent to S, could
meet at most one of A and B. If we cover AU B by h(AU B,S,,) many sets congruent to Sy, ,
then this cover (call it C) would be the disjoint union of the collection A (respectively B) where A
(respectively B) consists of the members of C that meet only A (respectively B). Consequently,

h(AUB,S,,) =IC| = |A| +|B| > h(A, Sp,) + h(B, Sn,)
which is not an option. So we get a sequence (Gy) of sets with Gy =2 S,,, and GyNA # 0, GxNB # (.
From each of the sets G, N A pick a point aj and from each Gy N B pick a point bx. The sequences
(ag), (br) lie inside relatively compact sets so there is a J € Px(N) so that

a=lima;, b=1imb;
jel Jjel

both exist. Of course, a € A,b € B. But now we're in precisely the position to which (vii) of
definition 4.0.6 is applicable: ay,br € Gg, G = S, . Hence a = b. But AN B = (. OOPS! The
denial of (v) leads to unnecessary chaos. O

Fix a non-empty open subset G of Q. Let (S,,) be a sequence of open concentric balls with radii
tending to zero, each contained in G. For any open set A C @, define
h(A,Sy)
Ih(A) = ———=.
W= G5,
Then
h(A,S,) <h(A,G)-h(G,S,),
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and
WG, S,) <h(G,A)-h(A,S,),

tell us that
1

h(G, A)
Therefore (1,,(A4)) is a bounded sequence of real numbers, each of whose terms exceeds the fixed
positive number 1/h(G, A). Let LIM be a Banach limit, that is,

LIM € Bj.

<l (A) < h(A,G).

and LIM satisfies
liminf < LIM(z) < limsup =
for each and every x € . Let
1(A) = LIM((In(A4))
for A C G.

PrOPOSITION 4.0.10. If A and B are open sets then
(i) 0 <(A) < 0o, as long as A # (.

(i) ACB=1(A) <IUB).

(iii) (AU B) <I(A) +1(B).

(iv) A2 B=1I(A) =I(B).

v) If d(A,B) > 0 then l(AU B) =1(A) + I(B).

PrOOF. To see (v), note that by Proposition 4.0.9 (v), there exists an N such that for all
n>N,
h(AU B, S,) = h(A4,S,) + h(B, Sp).
From this we easily see that for all n > N,
In(AUB) = 1,(A) + 1,(B),
and (v) follows.

Let X C Q. Define A(X) as follows:

= inf {ZZ(AH) : X C UA”’ A, open}.

Here are the fundamental properties of A.

THEOREM 4.0.11. Let @ be a compact metric space. Then
(i) 0 < A(X).
(ii) If X is a non-empty open subset of Q then 0 < A(X) < oo.
(iii) X CY C Q= MNX) <AY).
(iv) X CUXp, = AMX) <D0, AMXn).
v) X2Y = AX) =AY).
(vi) d(X,Y) > 0= AXUY) =XX)+ AY).
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PROOF. (i)-(iv) tells us that A is a(n) (outer) measure; (v) assures us that A\ respects congru-
ence and (vi) says that X is a ‘metric outer measure.” It is a known consequence of \’s metric outer
measure character that every Borel set B C @) is A-measurable.

(i) deserves comment. If X is open then
AMX) <I(X) < .

If, in addition, X # @ then for any € > 0 we can find a sequence (A,,) of open sets so that X C U, A4,
and

AX) +e> ) U(An).

Now if S is an open ball centered at a point in X and a subset of X, then only finitely many of the
Ay’s, say A1, Ag, ... Ay are needed to cover S. Then

0<I(8) <US) SUALU... Ay) <D 1(An) < MX) + ¢,

and 0 < \(X) follows.

(v), too, deserves proof - after all, it’s (v) that ensures that A is a metric outer measure. By
Proposition 4.0.10(iv), it suffices to show that M(X) + A(Y) < AM(X UY). If d(X,Y) > 0 then there
are disjoint open sets U,V such that d(U,V) > 0 with X C U and Y C V; this is so thanks to
normality of metric spaces, if you please. Let ¢ > 0. Pick a sequence (A,,) of relatively compact
open sets such that

XuYgUAn,

and

D 1A SAXUY) +e

n

Now each of the sets A, NU, A,, NV are open and
d(A, NU,A,NV)>dU,V)>D0.
Hence by Proposition 4.0.10 (v)
(A, ND)U (AN V) =1(A,NU)+ (A, NV) <I(Ay),

where the last inequality follows since A,, " U and A, NV are disjoint open sets, whose union is a
subset of A,,. Further

xclJa.no), Yyl JAnnV).

So
AX) <Y UANT), AY) <D (A, NV).

n
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This in turns ensures that

AMX)+AY) < Y WA, NU)+ > (A, NY)

n

< > (UANTU) +1(A, N TV))

< Y UAn).
It follows that A(X) + A(Y) < A(X UY).

From this we know that A is a metric outer measure on ) which assigns to any pair of congru-
ent subsets of () the same value. Hence the collection of A— measurable sets is a o— field of subsets
of @ which contains the Borel o— field, and on this o— field, A is countably additive and assigns
congruent measurable sets the same measure.

5. Notes and Remarks

5.1. Saks’ Proof of C(K)*, K a Compact Metric Space. Soon after the appearance of
Saks’ monograph, Saks published an alternative proof of the theorem of Banach regarding positive
linear functionals on C(Q), @ a compact metric space. This proof relies on the theory of metric
outer measures to ensure that the resulting measure is a Borel measure.

We set our notation. Let @ be a compact metric space (with metric d), C(Q) is the Ba-
nach space of continuous real-valued functions defined on @, and (to be consistent with Saks) ® is
a positive linear functional on C(Q). Recall that

Phi(z)| < &(1)

whenever z € B¢ (@), so ® is a member of C'(Q)* with norm ®(1).

For any ¢ € @Q,r > 0 denote by U,.(¢) and B,.(q) the sets

Ur(g) ={y € Q:d(q,y) <7}, By(q) ={y€Q:d(q,y) <r}.
Stage I For E C Q, define A\(E) by

AE) == inf{®(z) : 2 € C(Q),2(q) > xp(z), for all z € Q}.

Here’s what’s so about A:

(i) if A C B then A(A) < A\(B);
(i) if A, B C Q then A(AU B) < A\(A) + A\(B);
(iii) if d(A, B) > 0 (which is the same as AN B = (}) then A\(AU B) = A\(A) + \(B).

(iii) demands comment and proof, even. Let € > 0. Pick z € C(Q) so
(

q) = xauB(q)
B) > 0) and so that

T
for all ¢ € Q (where A, B C @ satisfy d(A,
O(x) < A(AUB) +e.
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Next chose h € C(Q) so that 0 < h(g) < 1 for all ¢, with h(q) = 1 for ¢ € B,h(q) = 0 for ¢ € A.
Let z4 = (1 — h)x and 5 = ha. Both 4,25 € C(Q); also

| z(q) ifgeA xaup(z) ifge A [ 1 ifgeAd

0 ifge B — | 0 ifge B
and
|0 ifge A
z5(q) —{ o) ifqeB > x5(q)

for all x € Q. It follows that

= O(xa+zp)

= O(2)

< MAUB)+e.

Stage IT Let E C @ and define u(F) by
w(E) = inf{z MGy) : Gy, is open, E C UG”}

Then p is an outer measure on (), a metric outer measure, with the added property that for any
closed subset F' of @, u(F) = MF). We'll establish this last claim. Suppose G,, is a sequence of
open sets so that

FgUGn.

Since F' is closed, Q’s compactness is inherited by F', and so we can find N so that
FCGiU---UGN.

It follows that

N

AF) <Y MG <D MG).

=1 n
It follows that

A(F) < u(F).

Now let € > 0 be given. Pick z € C(Q) so that z(q) > xr(q) for all ¢ and ®(x) < A(F) + €. Look
at the open set

={ge@:z(g) > (1+e}
xr(z) =1. So
AG) (Since G is open and F' C G)
x) ( by definition of A\(G))
)

AV

So F C G since if ¢ € F then x(q)

p(F) <
<

A
E/—\
8

(A(F) +e).
Let € \, 0. Then p(F) < A(F) follows.

Stage I Like all metric outer measures, p has among its u—measurable sets each and every Borel
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subset of @. In particular, each x € C(Q) is u—measurable, and of course, bounded. Hence each
z € C(Q) is p—integrable. Let’s check ®(z) vis-a-vis [ zdu. We’ll show that

P(x) < /xdu

for every z € C(Q).

Take z € C(Q). Let € > 0. Realizing that u(Q) = ®(1) we assume that z(q) > 0 for all
q € Q - just add an appropriate constant to z and note that this has the exact same effect on
®(z) and [ zdy, leaving their relationship unchanged. Choose n > 0 so that if d(q, q') < 7 then
|z(q) — z(q'| < e. Cover Q by open balls Uy, (q1), . ..Uy, (gn), of radii 71,...7, each < 7/2 centered
at ¢, ...qy respectively, with the added feature that

n({y € Q:d(y,q;) =m:}) = 0.

This last feature can be assumed since p(Q) < oo, and so for a fixed go € @ only countably many
of the sets {y € @ : d(y,q;) = r} can have positive u—measure. Now that the U’s are in place, set

E, = U,(q1)

E, = U,(q)\Er

E; = Up(g3)\(E1U E»)

E., = U. (g)\(F1U---UE,_1).

Each set Ey,... E, is closed with diameter < n and
Q=F,U---UE,.

What’s more, and this is crucial, the E;’s overlap only in a set of y—measure 0! Let m; = min{z(q) :
q € E;}, i=1,2...n. Consider

a(g) =Y _mixe,(9);
i=1

notice that
x(q) > alq)

p—almost everywhere. Hence

/xdu > /Zmim(q)du
=1

Z miu(Ei) = Z ml)\(EZ)

i—1

For each k =1, --n, pick z; € C(Q) so that for all ¢ € Q, xx(q) > xg,(¢) and
€

(k) = A(Eg) > @(zy) — pr—

Put

T =mixry+ -+ mrprg + €.
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Since the oscillation of z on Ej is no more than e then

u(q) = Zmlml(x) +e>xz(q).

It follows that

/wdu >

Y

>

imm(Ei)
(I)(i i) — ¢
Dlu— o) ¢

D(u) —P(e) — e
D(z) — e(P(1) + 1).

Let € \, 0 and be happy, don’t worry; afterall,

for all x € C(Q).

/ xdp > (x)
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CHAPTER 6

The Arzela-Ascoli Theorem

7
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CHAPTER 7

Von Neumann’s Proof of the Existence and Uniqueness of an
Invariant Measure on a Compact Metric group

In this chapter, we’ll show how to ascribe to each f € C(G), a mean M(f), which is at one and
the same time, linear in f, non-negative when f is, and is a true average with the values at f and
any right translate of f, identical.

Let G be a compact metrizable topological group. Denote by F(G) the collection of non-empty
finite subsets of G and by C(G) the Banach space of all continuous real-valued functions defined on
G, equipped as usual with the supremum norm.

Throughout this section, if F, Fy € F(G) then by Fy - F5, we mean all words a - b, where a € Fy
and b € Fy; in particular, if a; - by = ag - bs but a1 # as then we distinguish a; - b; and as - bs.

LEMMA 0.1.1. (i) If f € C(G) then min f, max f, and Oscf = max f — min f all exist.
(ii) If f € C(G) and F € F(G) then

OscRAvep f < Oscf.

In fact,
min f < min RAver f < max RAver f < max f.
(iii) If f € C(G) and Fy, F> € F(G) then
RAver, RAver, f = RAver,.r, f.

PRrROOF. To see (ii), let F' € F(G) and f € C(G). Define

1
RAverpf(x) := F Z f(xa), xeG.
acF

Naturally RAver f € C(G).

79
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To see (iii), if # € G then

1
RAver, RAvep, f(z) = RAVGF1@ Z f(xb)
beFy

S S(za) ettin, )= T
= |F1|a;1 Bl <1 tting S(x) = ) _ f( b))

beFy
1
- - Y's
Al E 2 S

a€Fy

1
= B Z Z f(zab)

a€Fy a€F>

1
= 7|F1-F2| Z f(zc)

ceF -Fy
= RAVGFl.F2f(I‘). O

LeMMA 0.1.2. If f € C(G) is not constant then there is an F € F(G) such that
OscRAvep f < Oscf.

PRrROOF. After all, f’s not being constant ensures that there is an a such that min f < o <
max f. Set
U=[f<al={zreG: f(zx) <al.
Since min f < «, U is a non-empty open set in G and G = (J ¢ Ua=!. (If x € G then for any
yeU,x=yly'z) €Uy 'z) CU,eqUa™")

Now U is open (since f € C(G)), and U # () so Ua~! is also a non-empty open set for each
a € G. Therefore the Ua™'’s cover the compact G. There is F' € F(G) such that

G= U Ua™t.
acF

Therefore for any o € G there exists a, € F such that € Ua, . i.e., for any 2 € G there exists
a; € F such that f(zay) < . Thus

RAvepf(z) = |1?|Zf(xa)

a€F

= = X s+ )
|F| a€F,a#a,
1
< m@g};a#% f(za) +
< (JF| - 1)max f + «
- |F|
< (IF) = 1) max f + max f
|F|

= max f.
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Therefore
OscRAvep f < Oscf.
O

LEMMA 0.1.3. Let f € C(G) and define K = {RAvepf : F € F(G)}. Then K is uniformly
bounded, equicontinuous family in C(QG).

PROOF. The key to this precious fact is that f is of course uniformly continuous. So given an
€ > 0 there is an open set V in G containing G’s identity such that if zy=! € V then |f(z)— f(y)| <e.
Notice that if a € G and zy~! € V then (za)(ya)~! = zaa=ly~! =2y~ € V. So once 2y~ ! € V,

|f(za) — f(ya)| <€

for all a € G. But now if F € F(G) then whenever zy~! € V we have

[RAver f(z) — RAverf(y)] = % Z f(za) — Z f(ya)
a€F acF
< L3 17@wa) - flya)
|F| a€F
1
S ﬁ|F|€ = €.
Note that I is uniformly bounded since
Raverf@)| = — |3 f(za)
|F| a€F
1
< T (; | f(za)]
1
—IF|-If]| = [|1flle- O
< |F|| | LA = 1111

We see that Lemma 0.1.3 takes on added significance if we but recall the classical theory of Arzela
and Ascoli to the effect that K C C(G) is relatively norm compact if and only if K is uniformly
bounded and equicontinuous.

With Lemmas 0.1.2 and 0.1.3 in hand, the plan of attack is clear. We want an averaging tech-
nique which will give a true average, assigning values in a uniformly distributed manner, If the
function f is constant then we will plainly want to assign that value of constancy to f. With the
aforementioned lemmas in hand, we handle non-constant functions thusly; if f is not constant, then
we can find F; € F(G) so that

OscRAver, < Oscf;

If RAvep, (f) is constant then it’s value of constancy is the natural value to ascribe to f. If
RAver, (f) is not constant, then we appeal to Lemma 0.1.3 again to find F; € F(G) so that

RAver,RAvep, C OscRAvep, (f).

Continuing in this vain, we see that in the worst case we can find a sequence (F,) C F(G) so that
for each n
OscRAveg

n+1

RAvep, (f) C OscRAveg, (f).
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Appealing to Messrs. Arzela and Ascoli, we can pass to a sequence (F,) C F(G) so (RAveu (f)) is
uniformly convergent.

The point is that because our averages were taken with respect to right translates, in the long
run, judicious choices of the F,’s ought to produce an average that is right invariant. Remarkably
enough the wisdom needed has already been provided by Von Neumann.

LEMMA 0.1.4. Let f € C(GQ) and K = {RAvepf : F € F(G)}. Then

inf Oscg = 0.
inf. O

PRrROOF. Let
s = HellfC Oscg = inf{OscRAver f : F € F(G)}.
9

Therefore there exists (F,) in F(G) such that (RAvep,) “\, s. Thanks to Arzela and Ascoli we can,
by passing to subsequences if necessary, assume that
RAver, f — g € C(G),
uniformly. It’s plain that on assuming the uniform convergence of (RAver, ) that
min RAver f — ming and maxRAvep, f — maxg,
and so
OscRAvep, [ — Oscyg.

Thus Oscg = s. Here’s the point: g is constant! Indeed if g were not constant there would be an
Fy € F(G) such that
s0 = OscRAvep,g < Oscg = s,

thanks to lemma 0.1.2. Since (RAveg, f) is uniformly convergent, there exists N such that

s—s
[RAvery f = glloe < ==
i.e., for any z € G,
s—s
[RAvep, f(z) — g(z)| < TO-
But this is quickly seen to mean
s—5
[IRAver,RAvep, f(z) — RAver,g(z)| < 3 9

for all z € G as well. It follows that for all x € G

|OscRAver, RAver, f — OscRAver, g| < 2 (s _380) .

ie, forall z € G,

|OscRAver, RAver, f(z) — so| < 2 (8 _350> .

But this in turn means that

— 2 1
OscRAver, RAvep, f(z) < so +2 (S 3SO> = §S+ 3% <s.

But
OscRAveg,RAver, f = OscRAvep, p, f,



February 3, 2009

7. VON NEUMANN’S PROOF OF THE EXISTENCE AND UNIQUENESS OF AN INVARIANT MEASURE 83

and

s= _inf OscRAverf.
FeF(G)
This should elicit an ‘OOPS’ because

RAver,RAvep, f = RAveg,.r, f € K.

Therefore g is constant and s = 0. i.e.,
inf Oscg = 0.
geK
O

We say the real number p is a right mean of f if for each € > 0 there is an F € F(G) such
that

[RAverf(z) —p| <e
for all z € G. i.e.,
[|IRAvVer f — plloo < €.

THEOREM 0.1.5. Every f € C(G) has a right mean.

PROOF. By the techniques used in Lemma 0.1.4, there is a constant function h (say h(z) = p)
and a sequence (F,) C F(G) such that

lim |[RAvep, [ — hl[e = 0.
ie.,
||RAV€an 7p||00 - Oa

as n — oo. Plainly p is a right mean of f. O

It’s plain that each f € C(G) has a left mean as well, that is, there is a ¢ € R so that if
€ > 0 is given there exists an F' € F(G) so that

ﬁszx)—q

acF

<€

for all z € G. For obvious reasons, we define

1
LAverf(z) = — Z f(ax).
|F| acF
THEOREM 0.1.6. Let f € C(G). Let p be a right mean of f and q be a left mean of f. Then
p=q

PROOF. Let € > 0. Find A, B € F(G) so that

€ €
HRAveAf—pHOO < 2 ||LAVGBf—Q||oo < 3
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Now

RAvesRAvep f(x)

RAve, — Z f(bx)
wa

1
= |A||B\sta (where S(x Zfbx

beB
- |A|| \ZZ“‘”"

a€cAbeB

-

bGB a€cA

= |B|Z Zfba:a

beB aGA

= Z RAve4 f(bzx)
||%B
= LAVGBRAVGAf.

Further,

RAves(LAvegf — q) = RAvesLAvepf — ¢
and

LAveg(RAvesf — p) = LAvegRAvesf — p.
So for any x € G,

|p — RAve LAvegp f(2) + RAvesLAvep f(z) — ¢|

|p — RAvesLAvepf(x)| + |RAvesLAveg f(z) — q|

= |p—LAvegRAve,f(x)| + |[RAvesLAvep f(z) — ¢|

|[LAvep(p — RAveaf(2))| + |[RAves(LAvep f(x) — q)|

< |p—RAveaf(z)| + |LAvepf(z) —q| (since |LAvepf| < |f| and RAvegpf| < |f])
€ €

< gtyTe

and p = ¢q. Go figure.

Ip — q

IN

COROLLARY 0.1.7. For any f € C(G) there is a unique number M(f) that is both a right and
left mean.

THEOREM 0.1.8. The functional M on C(G)satisfies the following
(i) M is linear.

(i) Mf >0 sz > 0.

(iil) M
) M
) M

1=
(iv ];) M(f) = M(fa) for each a € G, where f(x) = f(ax) and fo(x) = f(xza).

(
(a
(v ( >04f f>0 but f#0.
(vi) M(f) = M(f) where f(x) = f(z~") for each x € G.
PRrOOF. We start by showing

(0.1) M(RAvepf) = M(f)
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for each f € C(G) and each F' € F(G). Suppose that M (f) = p. If ¢ > 0 is given to us then we can
find Fy € F(G) such that
[[LAveFo f — plloo < €.

ie.,

<e

éaZfW%p

beFy
for all z € G. It follows that for any x € G and a € F,

|IRAverpLAver, f(x) — p| <e.

Since
RAVGFLAVGFO f = IuAVGF0 RAVGFf,

p is a left mean of RAvep f. Hence by our previous result,
M(RAverf) = p,
and
M(RAver f) = M(f).
To see that M is linear, let M (f) =p and M (h) = q. Pick Hy € F(F) so that
[[RAvVer h — || < €.
i.e., for all x € G,

<e.

1
—_ E h(zb) —
’H0|beH S
0
ie,if E € F(G) and = € G then

[RAveg.g, h(z) — q| = |RAvegRAvey h(z) — q| < e.
Now
p=M(f) = M(RAver f)
for any F' € F. Therefore p is the right mean of RAvep, f. Hence there exists F € F(G) so that
[[RAver,RAven, f —p|| <e.

ie., forall x € G,
[RAver,.m, f(x) — p| = |RAver,RAveq, f(x) — p| < e
Since we already know that for all € G and each E € F(G),
[RAver. g, h(z) — q| <€,
it follows that by taking F = Fy we get for each z € G,
[RAver,. ., (f +h)(z) — (p+ q)] < 2

Thus

M(f+h)=DM(f)+ M(h).
It follows from this and the easily established fact that M (kf) = kM (f) that M is linear, and we
have shown (i).

Parts (ii) and (iii) are clear. To see (iv), since

(0.2) RAver f(za) = RAve,.p f(2),
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M (fa) M(RAvep fa(x)) (by (0.1))
= M(RAvepf(za))
= M(RAveq,.rf(z)) (by (0.2))
= M(f) (by (0.1)).
Similarly,
(0.3) LAvep f(ax) = LAvep., f (),
and so
M(.f) = M(LAver(of(z))) (by (0.1) actually it’s equivalent with left averages)
= M(LAverf(az))
= M(LAvep.qf(z)) (by (0.3))
= M(f) (by (0.1) actually it’s equivalent with left averages),
and thus

For (v), suppose that f € C(G),f > 0, f # 0. Then there is a > 0 such that U =
empty and open; it’s easy to see that {U,-1
then for any y € G, 2 = y(y~'2) € U(y ') C U, Ua

M(af) = M(f) = M(fa)-
[f > «] is non-
ca € G}is an open cover of the compact G. (If z € G

—1) It follows that for some a1, ...,a, € G

G:Ual_1UUa2_1U...UUa;1.

Let’s check to see how this plays out.

If + € G then x € Ua,;1

lows that

for all x € G. Therefore

for some 1 < k < m. Hence, zar, € U and thus f(zag) > «. It fol-

1 s a
RAVe{al,u.,am}f(x) = E ;f(:wz) > E’
0< % < M(RAve(q, . a1 f) = M(f).

Almost done; we have but to show that M(f) and M (f) agree. To establish this, define

N(f) = M(f oinv),

where inv : G — G is given by inv(x) = 21, N is a linear functional on C(G), N(f) > 0if f > 0,

and N (1) = 1. Moreover

N(of) = M(fqoinv)
= M(,1f) (since fooinv(z) = fu(z™") = fla™'2) =41 f(2))
M(f) (by (iv))
= N().
But by Corollary 0.1.7, there is only one invariant mean on C'(G) so N(f) = M(f). O
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CHAPTER 8

The Fubini-Tonelli Theorem

1. Kakutani’s Proof of the Uniqueness of Haar Measure

Let G be a compact topological group. We view G as a group of homeomorphisms of G onto
itself. A Borel measure p is left G—invariant if for any Borel set £ C G any z € G,

wzE) = p(E).

A Borel measure p is right G—invariant if for any Borel set £ C G any z € G,
w(Ex) = u(E).

A Borel set E C G is left G — p—invariant where y is any Borel measure on G if for each x € G
wEAzE) =0.

A Borel set E C G is right G — p—invariant where p is any Borel measure on G if for each z € G
w(EAEz) =0.

We say that G is left ergodic if given a left G—invariant countably additive non-negative Borel
measure p then any Borel set E C G that is left G — p—invariant satisfies either

w(E)=0 or u(E°) =0.
Similarly, G is right ergodic is defined analogously.

We'll first show that if G is left ergodic then the left invariant measure on G is unique. Then
we will show that G is left ergodic.

Assume then that G is left ergodic but g1 and po are both left invariant measures on G for which
there are Borel sets Fy, E5 C G and a real « such that
p1(Er) < ape(Er), and py(E2) > auz(Es)
(so that 1, uo are not constant multiples of each other). Look at
= p(E) = pi(E) — apz(E),

a left invariant countably additive Borel measure on G.

The Hahn Decomposition Theorem splits G into the disjoint union
G=PUN

of Borel sets P, N in such a way that if E is a Borel subset of P then p(E) > 0 and if F is a Borel
subset of N then p(FE) < 0. Moreover, P and N are p—essentially unique in this regard.
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Now p is left invariant so P is left invariant and so is N. Why is this so? Let E be a Borel
subset of P, and let y € G. Then for any = € G,

p(xzE) = p(E) = 0.
But if F is a Borel subset of yP then y~'F is a Borel subset of P = y~'yP and so
p(F) = p(y™'F) > 0.
Tt follows that for any Borel subset F' of yP, u(F) > 0 and yP is also a positive set for . Thus
w(P) = p(yP) = 0.
Since P is essentially unique as a positive set for pu, it follows that
w(P) = p(yP).

In a similar fashion we see that IV is left y—invariant.

Look at the countably additive, non-negative, left invariant measure |u|, the variation of p,
Hl(E) = w(ENP) + u(ENN).

Ergodicity of G says
[ul(P) =0 or [u|(N) =0,
since each of P and N is G — |p|—invariant. But u(Eq) > 0 and p(E2) < 0. Therefore

lul(P) = p(Ex N P) = p(Ey) >0, and [p|(N) = —u(E2 N N) = —p(E2) > 0,

Oops! The uniqueness of left-invariant measures on G follows.

We now show that G is left ergodic. Let p be a left invariant countably additive non-negative
(real-valued) Borel measure on G and let E be a left y—invariant Borel subset of G.

Look at u® X on G x G where X is an arbitrary but fixed right invariant regular Borel measure on
G. Consider x g, a Borel function on G to be sure. Set
o(x,y) = xB(yz).
Since x g is a Borel measurable function ¢ is a Borel measurable function on G x G. For any y € G,
|XE(33) - ¢($a y)| = XEAy—lE(fE)~
But our assumption on FE is that F is left y—invariant; hence
w(EAYE) =0
for each y € G} in particular,
[ Ixe(@) = dla, )l dute) = [ xpoy-1(e) dute) = (LY E) =0,

for each y € G. It follows that

[ et@) = 6t duto) dxie) =

Monsieur Fubini steps in to say that for y—almost all z € G, we have

/|XE (z,y)] d\(y) =
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He further stipulates that there exists M C (G, u) M a Borel set, u(M) = 0 so if z ¢ M there exists
C, C (G, \), C, aBorel set, A(C) = 0so for any y € C, we have xg(z) = xg(yz). To see this, take
x & M. Then y ¢ C,, means yx ¢ C,-x; on letting z = yx we have for z ¢ C,. -z that xg(z) = xg(2).

Now look at @' € M. Then there exists C,y C (G, \), C,s a Borel set, \(C,/) = 0 so if y ¢ C,/ then

XE(x/) = XE(yx/). Again, y € C,+ is the same as yzr € C/ -2’ soif z = ya' we have z ZC,-x,
implying xg(z ) = xe(2).

Since

MGy - 2) = MCy) = 0 = \(C

x

- d) = MOy o),
Cy-2,Cp - 2’ both have the same A—measure as C, and C+, respectively; that is,

ACy-z) =0=XC, -2).

x

So there exists z € G\((C, - 2) U(C,, - &')). For such a z,

P
xe(7) = xE(2) = XE(LL'I)-
In other words xg is constant on M€. Check out the possibilities:
xeg =0 or xg=1.
Either way is okay!
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CHAPTER 9

Homogeneous Spaces

Let G be a compact topological group and K be a compact Hausdorff space. We say that G
acts transitively on K if there is a continuous map G x K—K : (g,k) — g(k) such that

(i) e(k) =k for all k € K (e is the identity of G);

(ii) (9192)(k) = g1(g2(k)) for all g1, g2 € G, h € K;
(iil) given ki, ks € K there is a g € G so that g(k1) = ka.

It is noteworthy that each g € G may be viewed as a homeomorphism of K onto itself; after all, the
map k—g(k) is continuous and has k—g~*(k) as an inverse.

Condition (iii) says, in particular, that the space K is homogeneous;i.e., we can move points of
K around K via homeomorphisms (members of G, in fact) of K onto itself.

If i is the unique translation invariant Borel probability on G then p induces a G—invariant Borel
probability on K. This is an important construction, one worth understanding in general as well as
in special cases. WE HAVE NOT USED THE WORD ‘PROBABILITY’ ANYWHERE
BEFORE THIS PARAGRAPH.

Suppose H is a closed subgroup of the compact topological group G. Consider the set G/H
with the so-called ‘quotient topology,” that is, the strongest topology that makes the natural map
qu : G—G/H (taking g € G to gH € G/H) continuous; so U C G/H is open precisely when ¢j; (U)
is open in G. In other words, a typical open set in G/H is of the form {xH : x € V} when V is open
in G. Because H is supposed to be closed, this topology is Hausdorff; because gy is continuous and
surjective, G/H is compact.

More is so. (@ acts transitively on G/H. The map (g, g H)—gg H fits the bill in the definition.

In fact, any transitive action of a compact group on a compact space is of the sort just described.
To be sure we need to tell when seemingly different spaces are the same under G’s action. Let
G act transitively on each of the compact Hausdorff spaces K1, K5. We say that K; and K> are
isomorphic under G’s action if there is a homeomorphism ¢ : K1— K5 such that

¢(g(k1)) = g(d(k1))

for each k1 € K.

THEOREM 0.0.9 (Weil). Let the compact group G act transitively on the compact Hausdorff
space K. Then there is a closed subgroup H of G such that K and G/H are isomorphic under G’s
action.
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Proor. Fix kg € K. Look at
H={g€G:g(ko) = ko}

H is called the isotopy subgroup. It is plain that H is a closed subgroup of G. A natural candidate
for the isomorphism of G/H and K is at hand: ¢ : G/H—K given by

¢(gH) = g(ko).
For g1, g2 € G, g1(ko) = ga(ko) precisely when
g1 ' (92(ko)) = g1 ' (g1(ko)) = e(ko) = ko,
or g; lgo € H, which is tantamount to gy H = goH. This assures us that ¢ is well-defined and

injective.

The transitivity of G’s action ensures ¢’s surjectivity. To see that ¢ is also continuous, fix g € G
and let V be an open set in K containing g(ko). By the continuity of the map

(9,k)—g(k)

on G x K, there is an open set U in G which contains g so that u(kg) € V for all u € U. But gy (U) is
open in G/H’s quotient topology and gy (U) C ¢ (V). This shows that ¢ is a continuous bijection
between the compact Hausdorff spaces G/H and K; as such ¢ is a homeomorphism.

Further if g1, g2 € G then
91(¢(92H)) = g1(92(ko)) = (9192) (ko) = ¢(g1(g2H)).

Thus G/H and K are isomorphic under G’s action. O
Note that because of this isomorphism theorem we can consider any G/H where H is the iso-
topy subgroup associated with any ko € K.

Now we’re ready for the main course.

THEOREM 0.0.10 (Weil). Suppose the compact group G acts transitively on the compact Haus-
dorff space K. Then there is a unique G—invariant reqular Borel probability measure on K.

PrOOF. We identify K with the isotopy subgroup G/H as in our previous theorem. Let
gy : G—-G/H
be the natural quotient map. Suppose y is the normalized Haar measure on G and define pg,g on
G/H by
ue/u(B) = ulay (B))
for any Borel set B C G/H.

If g € G and B is Borel subset of G/H then

9lay (B)) = {gz:2H € B}
= {gz:gzH € gB}
a5 (9B).
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Therefore
pe/u(gB) = plqy (9B))
= pu(g(gy (B))

and pig g is G—invariant.

Uniqueness is a touchier issue, as is always the case it seems. We take a close look at how members
of rca(Bo(G)) act on C(G). Take ¢ € C(G) and g € G. DEFINE rca SOMEWHERE? Define
¢q € C(G) by

¢g(x) = P(gz).
Denote by ppg the Haar measure (normalized so pup = 1) on H. The map G—C/(G) that takes g to
¢4 is uniformly continuous (this is an easy modification of Theorem 3.0.9) so that

o9) = [ 6yh)dun(h), g€ G
H
defines a member ¢ of C(G).

Suppose g1 H = goH. Then gflgg € H,

Mg = /H b1 (1) dpazr ()

/ b9, (91 'goh) dusr(h) (by pp’s invariance and gy 'gs € H)
H

/ &(g2H) dyurr ()
H

- / bgn () dpirs (h) = (g2).
H

Therefore (;3 is constant on the left cosets of H so we can lift (;3 to a continuous function (5 on G/H:

$(gH) = d(g)-
To summarize: if ¢ € C(G) then we define ¢ € C(G) and from this we get ¢ € C(G/H). Remarkably,
each member of C(G/H) comes about from this procedure. In fact, if f € C(G/H) then foqpg €
C(G) and for any g € G

—_~— o —

(foqu)(gH) = (foqm)(g)
/H (f o ar)(h) dyura ()

/H (f o qz) (gh)duz (h)
= /f(th)duH(h)
H

= /Hf(gH)duH(h)
flgH)pu(H) = f(gH).
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—_~

In other words, f = (f oqn).

Now we look at G’s action. Take any G—invariant regular Borel probability measure v on G/H.

For ¢ € C(G) define

A¢g) = o ¢(gH) dv(gH).

Then A is a probability measure in C'(G)*. Moreover, \ is translation invariant. Indeed if © € G

AM¢s) = G/Héz(gH)dV(gH)

¢:(g) dv(gH)
G/H

= P(zg) dv(gH )
G/H

¢(zgH) dv(gH)
G/H

S(gH) dv(gH) = N(9).
G/H
So A is nothing else but normalized Haar measure on G. WE SHOULD TALK ABOUT WHAT
IT MEANS TO BE ‘TRANSLATION INVARIANT’ IN TERMS OF MEMBERS OF

C(K).
If v; and vy are G—invariant regular Borel probabilities on G/H and if z = (;\c};) € C(G/H)
then
vi(z) = Mz oqy) = va(x);
in other words, vy and vy are the same. WHY? O

The worth of an abstract construction lies, at least in part, it its applicability to concrete cases. Our
first application is classical and was well-known before Weil’s general theorem. It is, nonetheless,
interesting and important.

Our setting: O(n), the orthogonal group of order n is our compact group; S™~!, the unit sphere in
R” is our compact Hausdorff space. The action of O(n) on S"~! is given, naturally by
(u, z)—u(z).

It is easy to verify that O(n) acts on S™~! in a suitable fashion! Transitivity follows by letting
z,2 € §"1; choose orthonormal bases T1,%2,...,2Ty and :cll, x;, . ,mln for R™, and let u : R*—R"
be the member of O(n) that takes z to z, x; to a:; for j=2,...,n.

Acknowledging the descriptions of members of O(n) as rotations of R™, a direct application of
Weil’s theorem says: There is a unique rotation-invariant regular Borel probability measure on S™ 1.

Geometry is replete with examples of compact Hausdorff spaces that are homogeneous spaces on
which various compact groups act transitively.
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Here are a few more.

Again our group is O(n). This time our underlying compact space is

Z(n) ={(z,y) € S" P xStz Ly},
where z | y means x is perpendicular to y. Note that (z,y) € > (n) precisely when for any real
valued numbers a, b:
l|az + by||* = a® + b*.
It is easy to see from this that > (n) is a closed subset of S?~1 x §"~! hence, is compact. The
action of O(n) is natural enough, too: (u,(z,y))— (ux,uy). It is quick and reasonably painless to
see that O(n) acts transitively on Y (n).

One more. Let 1 < m < n. Denote by 3™ (n) the set

(m)
Z(n) = (21, ) €SV X o x SV g, ..., 2., ) is orthonormal

m times
Note that (z1,...,%m) € Z(m)(n) precisely when regardless of the real numbers ay, ... a,,, we have
2
m m
2
Sae|| -3a
j=1 j=1

This in mind, Y™ (n) is a compact set of (S"~1)™ is easy to see; moreover, the action of O(n) on
520™) (n) s given by

(u, (1, ..., Tm))—(ux1,uss, ... UTy,)
is a transitive one, establishing, with a modicum of tender love and care, that O(n) acts transitively

on 3" (n).

Next let G,,(n) denote the m—dimensional Grassmanian manifold, that is, G,,(n) is the space
of all m—dimensional linear subspaces of R™. There is a natural surjection of 3, (n) onto G, (n)
that takes (z1,...,%m) € Z(m) (n) to the linear span of {z1,...,Zm} € Gn(n). If we equip G (n)
with the natural quotient topology the result is a compact Hausdorff space. Clearly O(n) acts
transitively on G,,(n). The map reflecting the action of O(n) on G,, is plain: if {zy,...,2,,} is an
orthonormal set in R™ then

(u,span{zy,..., Ty }) = span{uzry, ..., uzy,}.
Here we interject that the geometry imparted above on G,,(n) is such that if E = span{z1,..., 2z}
and E' = span{z},...,,,} are members of G,,(n) and if each x}, is close to x; in R™ then E is

close to E in Gp(n).

In this way we find that there is a unique rotation invariant probability Borel measure on the
n—dimensional Grassmanian manifold G,,(n).
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CHAPTER 10

Metrics in Compact Groups

Let G be a locally compact metrizable group with left invariant metric. Then G has a neigh-
borhood basis of open balls with compact closure. Can G have a metric in which all of the balls
have compact closure? If so then G must be second countable; afterall G = U, B,, where the B,’s
are centered at a fixed point of G and have a radius n. Since each B,, has B,, compact, and since
(G is separable and metrizable, it’s second countable.

Here’s a theorem of R. Struble. [?]

THEOREM 0.0.11. A locally compact group metrizable topological group has a left invariant
metric (that generates its topology) in which all its open balls have compact closure if and only if G
is second countable.

Though the first Lemma’s content is a consequence of the Birkhoff-Kakutani thereom, the proof
rendered here (and due to Struble) is too clever and enlightening not to be included.

LEMMA 0.0.12. Let G be a locally compact group with left Haar measure. Let (Vy,) be a decreasing
sequence of open sets that form a neighborhood basis of the identity e in G where V,, compact for
each n. Then

p(x,y) = sup p(zVp AyVy)
defines a left invariant metric on G which is compatible with the topology of G.

PRrOOF. It’s clear that p(z,y) is well-defined and that p(z,y) = p(y,x). Moreover p(z,y) > 0
and p(x,y) < oo regardless of z,y € G since each V,, is a Borel set with compact closure. Further,
p(zx, zy) and p(x,y) coincide because p is left invariant.

If x # y then since G is Hausdorff there must be an m so that zV,, NyV,, = (; but now
p(x,y) > p(@Vin AyVin) = 2u(Vin) > 0.
On noticing that for any n and any x,y, z € G,
Vi AyVy, C (2V, A2V,) U 2V AyVy),
we see that for any z,y,z € G,
w@xVpohyVy) < pu((2V,A2Vy) U (2V, AyVsy))
< w@VaAzZV,) + u(zV, AyVy)
< plz,2) +p(z9),
and with this
pl,y) < plx, z) + p(z,y)-
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In sum, p is a left invariant metric on G. If G’s topology is discrete then p({e}) > 0 so V,,, = {e}
for some m; hence if x # vy,

p(z,y) = @V AyVm) = p({z, y}) = 2u({e}) > 0,
and the topoology induced by p is discrete. If G’s topology is not discrete then u(V;,) N\,
p({e}) = 0. If V is any open set containing e then there is an m € N so that V,,,V,-1 C

(M V) =
V.
Claim 1: z € V whenever p(z,e) < u(V,,). To see this, let p(z, e) < u(V;y). Then

w(EVi AVi) < p(x,e) < u(Vin),
a positive number. Were zV,, N'V,, = () then

@V AVi) = 2u(Vin) < 1(Vin),
oops! So zV,, NV, # () and thus there are vy, vs € V,y, 80 201 = v9 € 2V, NV, and

T zvgvgl S Vmanl cV.

This is so whenever p(z,e) < u(V,,), and our claim is justified.

Let’s look at all of the points = such that p(z,e) < r, where r € Q,r > 0. There must be an
m € N so that u(V,,) < 7, whenever n > m. Each of the functions

fk (.’L‘) = u(kaAVk)

is continuous and satisfies fi(e) = u(ViAVy) = u(@) = 0. But now we know there is an [ € N so
that if z € V} then f1(z),..., fm—1(x) <7

Claim 2: if z € V} then p(z,e) < r. Why is this so? Well if x € V; then by choice of | € N,
we have

w@ViAVY), oo 2V -1 AV —q) < 1.
What about pu(xVpAVy) for k > m? In this case,

w@VeAVy) <2u(Vi) < 2- 2 <r
It follows that p(z,e) = sup,, u(xV,, AV,,) < r

Our two claims taken in tandem show that p generates G’s topology about e. Since p is left invariant
and since G’s topology is too this is enough to say that p generates G’s topology everywhere. [

LEMMA 0.0.13. Let G be a locally compact, second countable (hence metrizable, separable) group.
Then there exists a family {U, : r € N,;r > 0} such that

(i) for each r, each U, is open and U, is compact,
(i) U, = U1
(iii) UpUs C Uypys (so if r < s then U, C U, U,_; C Us),
(iv) {U, : 7 > 0} is a base for the open sets about e,
(V) r>0Ur =G.
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Once Lemma 0.0.13 is established, we're ready for business. Indeed, let {U, : r > 0} be the family
of open sets about e generated from Lemma 0.0.13. For z,y € G, set

d(z,y) =inf{r :y 'z € U,}.

Iy € U, for some r > 0. It follows

e Since G = U,~oU,, for an pair z,y € G, we have y~
that d(z,y) > 0.

e ¢ € U, for each r > 0 so d(z,z) = 0.

o If y~'z # e then there is an 79 > 0 so that y~'z ¢ U,, (Part (iv) of Lemma 0.0.13) tells

us this). But whenever 0 < 7y < r we have (by Part (iii) of Lemma 0.0.13)
UT'() g Uro UT'—T‘O g UT')
so d(x,y) > 19 > 0.
o U, =U "' soy 'z €U, precisely when x~'y € U,; consequently, d(z,y) = d(y, ).
e Suppose z,y, z € G with y ' € U,,2 'y € U,. Then

2l =Yy le € UU, C U,

so d(x,z) <r+s. This is so whenever y~tx € U, so d(z,z) < d(z,y) + s; again this is so
whenever 271y € Us so d(z,2) < d(z,y) + d(y, 2).
e Finally, if x,y, z € G then

d(zz,zy) = inf{r: (zy) 'zx € U} = inf{r: y 'z € U} = d(z,y).

To summarize: d is a left invariant metric on G.

Since d(x,e) < r means z = e 'z € U,, the open d-ball of radius r centered at e is contained
in U,. Also this same d-ball contains U,/ for any 0 < r < rsince if x € U,  then

r+r 7
2

elr=2€U,CU.U,_,CU,_~
2

and so d(z,e) < # < r. Therefore if 0 < 7 < r then
U, C{z:d(z,e) <r} CU,.

Thus by Part (iv) of Lemma 0.0.13 the metric d is compatible with the topology of G and by Part
(i) of Lemma 0.0.13, all d-balls are bounded. Joe: you wrote the following instead but I had troubles
reading your handwriting: Thus the open d-balls of radius r about e are 77?7 with the collection
{U, : r > 0}, so the closure of each open d-ball is compact

ProOF. (Lemma 0.0.13) Let p be the left invariant metric resulting from Lemma 0.0.12. We
can assume that each of the open balls

B, ={zeG:p(zx,e),r}

has compact closure for 0 < r < 2; afterall, there is an ry so that for r < rg, B,, is compact by G’s
locally compact nature so recalibrate p to make ry = 2 if necessary.

For 0 < r < 2 we let U, = B,.. This assures us clearly of (iv) and since we’ll keep these U,’s, (iv)
is assumed henceforth. Also (i), (ii), and (iii) hold when r+s < 2 by p’s left invariant metric nature.
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G is locally compact and satisfies the second countability axiom so G admits a countable open

base
{WQn ne N}

for its topology, where we can (and do) assume that Wan is compact for each n. We define
Uy = Bo N W

It’s easy to verify that (i) and (ii) hold for 0 < r < 2 and if 7 + s < 2 then (iii) holds as well.
We’ll now inch our way from from (i), (ii), and (iii), (r+s < 2) holding for 0 < r <2to 0 << r < 4.

First we have to define U, for 2 < r < 22. Let 0 < r < 22. Set
U, :UUt1 Uy,

where the union extends over all ¢y, ...t,, so that each t; satisfies 0 <t; <2 and t; +---+ ¢, = .

If2 <r<22andty+---ty, =r where each t; > 0 then there must be k,l € Nsothat 1 <k <l <m
and tq 4+t <2, g1+ + 4 <2, and t4q + - -ty < 2. Why is this so? Well let &k be the least
Jj1 so that t1 4+ ---t;, < 2, and let | be the least jo so that ¢;, 1 4+ ---t;, < 2. Then Z;ZH t; <2
because otherwise, tj, 41 + - -tm > 2 and t1 + -+ -tj,41 > 2 too where j; +1 < jo + 1.

It follows that

U, - Upy -+ Uy Uty - U )(Utyyy - U )(Upyyy -+ Ut
Uttt Utipa bt Uty 4oty by (1)
Us - Uy - Us,
so U, C Uy - Uy - Uy whenever 0 < 7 < 22. Uy is compact so Us - U - Us C Us - Uy - Uy is too and U,
is compact for 0 < r < 22. Since

(Up Uy, ) = U LUt = U, o Uy

m

N 1NN

we see that



