

Mathematical modelling of infectious diseases: A story of influenza and TB

Roslyn Hickson

University of Newcastle, Australia

Tasters 2013 - slide 1

What is modelling?

Introduction Modelling Why? SIR model

Influenza

TB-DM

Thank you

- Models are a simplified representation of a complex phenomenon
 - Mathematical models are caricatures
- Used for both prediction and understanding
- Modelling is an iterative process; always return to the original problem and assess the model
- Always remember that

"Essentially, all models are wrong, but *some* are useful"

G.E.P. Box and N.R. Draper, 1987, *Empirical Model-Building and Response Surfaces*. Wiley, pp424, 1987

Introduction Modelling Why? SIR model

Influenza

TB-DM

Thank you

- The past: Understanding the underlying causes of disease dynamics
 - Did school closure impact influenza spread?
- The present: Real time data analysis and impact on policy decisions
 - Can we estimate how big an epidemic will be from early data?
- The future: Scenario planning
 - Different scenarios around infectivity, severity, timing, quarantine, etc.
 - Vaccination planning; best schedule, targeted populations, etc.

The SIR model

Introduction Modelling Why? SIR model

Influenza

TB-DM

Thank you

- S=Susceptible I=Infectious R=Removed
- Most often used in epidemiology studies
- No fine detail; low data demands
- Assumes a homogeneous, well mixed population

 $\frac{dS}{dt} = -\beta SI$ $\frac{dI}{dt} = \beta SI - \gamma I$ $\frac{dR}{dt} = \gamma I$

- $\circ \quad \beta$ is the transmission rate
- $\circ ~~1/\gamma$ is the average infectious period

Introduction

Influenza

Influenza

Equations Results

TB-DM

Thank you

Influenza – with Mick Roberts

- We explore the effect of heterogeneity in population susceptibility and infectivity on an epidemic in terms of:
 - size and timing of the peak
 - final size distribution
 - mortalities due to the pathogen
- An important question in epidemiology is "for whom should we prioritise vaccination?"
 - most susceptible?
 - most infectious?
 - highest mortality rate?

Compare how epidemic attributes are affected by vaccination prior to the epidemic for an influenza-like-illness.

Our model

Introduction

Influenza Influenza

Equations Results

TB-DM

Thank you

 $\frac{\partial x(t,\theta)}{\mathrm{d}t} = -(\beta + \rho\theta)x\frac{1}{2}\int_{-1}^{1} c(\theta)y(t,\theta)\,\mathrm{d}\theta$ $\frac{\partial y(t,\theta)}{\mathrm{d}t} = (\beta + \rho\theta)x\frac{1}{2}\int_{-1}^{1} c(\theta)y(t,\theta)\,\mathrm{d}\theta - y$ $\frac{\partial z(t,\theta)}{\mathrm{d}t} = y$

where

• x, y, z are the densities of susceptible, infectious, and removed (immune after infection or dead)

- $\begin{tabular}{ll} \hline \theta \in [-1,1] \text{, giving } \beta \pm \rho \\ \end{tabular}$
- $c(\theta)$ is the variation in infectivity

Results

Introduction

Influenza Influenza

Equations Results

TB-DM

Thank you

Susceptibility profile	Final size	Deaths	\mathcal{R}_{eff}
Uniform	42.0%	1.01%	1.32
Youngest Vacc. (RH)	0.02%	0.00%	0.95
Oldest Vacc. (LH)	39.9%	0.81%	1.35
Both	20.8%	0.50%	1.15

Final size for classic SIR model with is 14.3%.

Tuberculosis and Diabetes

Introduction

Influenza

TB-DM

TB & DM Pacific Project

Thank you

- Tuberculosis (TB):
 - TB is a contagious airborne disease
 - 1/3 of the worlds population infected with TB
- Kiribati has the 2nd highest TB case notification rate in the Western Pacific Region
 - ◆ 339 TB cases /100,000 population (WHO 2012)

Diabetes Mellitus (DM):

- DM is a chronic, not infectious, disease
- In Kiribati adult prevalence has reached 28% for adults (25+) (WHO 2009)

The risk of TB is 1.5–8 times higher in patients with diabetes (Stevenson, Critchley et al. 2007)

The Pacific Islands

Influenza

TB-DM TB & DM Pacific Project

Thank you

Introduction

Influenza

TB-DM

TB & DM

Pacific

Project

Thank you

The Project – with Kerri Viney

- Our goal: to quantify the effect of an increasing burden of DM on TB prevalence does this explain the data?
 - Develop a compartmental model system of ODEs
- I "What if" scenarios
 - E.g. If DM increases to x% of the population over the next 10 years, what is likely to happen with TB over this period?
- A sensitivity analysis;
 - what are the likely effects of assumptions made during the modelling process on the results?
 - on which parameters of TB and DM should future data collection focus?
 - Latin Hypercube Sampling with the Partial Rank Correlation Coefficient multivariate analysis

Any questions?

			- 1						
n	T.	rn	n	11	\mathbf{C}	F 1	\cap	n	
	L	10	u	u		LI	v		
						_			_

Influenza

TB-DM

Thank you