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Sequence of lectures

1. Formal methods in mathematics

2. Automated theorem proving

3. Interactive theorem proving

4. Formal methods in analysis



Recap

Remember: “formal methods” = logical methods in computer
science.

Automated methods: SAT solvers, equational reasoning, resolution
theorem provers, . . .

• “domain general”: general logical languages

• emphasis on performance

• undecidability, combinatorial explosion set in.

Interactive methods:

• also “domain general”: use a broad foundational framework

• emphasis on precision, rigor

• requires a lot of work on the part of the user



Today

Formal methods in analysis:

• domain specific: reals, integers

• can emphasize either peformance or rigor

• get further in restricted domain

Outline:

• quantifier elimination

• the universal fragment of real closed fields

• combination methods

• numerical methods

• a heuristic symbolic method



Quantifer elimination

A first-order language is given by some function and relation
symbols.

Example: the language of ordered rings: 0, 1,+,×,≤.

First-order formulas are built up using quantifiers and connectives.

Example: ∀x , y ∃z (z ∗ z = x ∗ x + y ∗ y).

A structure for a language consists of a universe, plus
interpretations of the symbols.

Example: 〈R, 0, 1,+,×,≤〉.



Quantifier elimination

A theory T is a set of sentences, closed under logical consequences.

Example: for any structure M, Th(M) = {ϕ | M � ϕ}.

Example: for any set of axioms A, Con(A) = {ϕ | A � ϕ}.

A theory T is said to have (effective) quantifier elimination if
(effectively) every formula ϕ has a quantifier-free equivalent ϕ′.

Example: Over R, ∃x (ax2 + bx + c = 0) ≡ . . .

If the quantifier-free sentences are decidable, the theory is then
decidable.



Quantifier elimination

Some theories with quantifier elimination:

• linear arithmetic:
Th(〈R, 0, 1,+,≤〉)

• integer linear arithmetic (Presburger 1930):

Th(〈Z, 0, 1,+,≤〉)

• real-closed fields (Tarski c. 1930):

Th(〈R, 0, 1,+,×,≤〉)

• algebraically closed fields (Tarski c. 1930):

Th(〈C, 0, 1,+,×〉)



The Fourier-Motzkin procedure

Theorem. The theory of 〈R, 0, 1,+, <〉 has quantifier-elimination,
and so is decidable.

Proof. It suffices to show that if ϕ is quantifier-free, ∃x ϕ is
equivalent to a quantifier-free formula.

Note:

• Can put ϕ in disjunctive normal form.

• ∃x (θ ∨ η) is equivalent to ∃x θ ∨ ∃x η.

• s 6= t is equivalent to s < t ∨ t < s.

• s 6< t is equivalent to t < s ∨ s = t.

So, it suffices to assume ϕ is a conjunction of equalities and strict
inequalities.



The Fourier-Motzkin procedure

Expressions that don’t involve x can be brought outside the
existential quantifier.

Using rational coefficients, can put expressions involving x in pivot
form:

• x = s

• x < s

• s < x

ϕ is a conjunction of these.

If any conjunct has the form x = s, ∃x ϕ(x) is equivalent to ϕ(s),
and we’re done.



The Fourier-Motzkin procedure

Otherwise, ϕ is a conjunction of formulas of the form si < x and
x < tj .

It is not hard to check that ∃x ϕ is equivalent to∧
i ,j

si < tj .

Notes:

• Can allow multiplicative coefficients from any computable
field.

• The theory is the theory of a divisible ordered group.

• Even the existential fragment is doubly-exponential in
principle, but it works well on small problems, in practice.



Presburger arithmetic

Let T = Th(〈Z, 0, 1,+, <〉).

Add binary relations s ≡n t, meaning “t − s is divisible by n”, for
each fixed n.

Theorem (Presburger, 1930). T has elimination of quantifiers,
and is hence decidable.

Tarski, Presburger’s advisor, did not think it merited a doctorate.



Real closed fields

Let T = Th(〈R, 0, 1,+,×, <〉).

Theorem (Tarski, around 1930). T has elimination of
quantifiers, and is hence decidable. It is the same as the theory of
“real-closed fields” (which is hence complete).

Theorem. T is the theory of “real closed fields.”

Corollary. T is decidable.

Corollary. Any two real closed fields are elementarily equivalent.



Real closed fields

Implementations:

• Alfred Tarski proved this around 1930 (finally published in
1948), based on Sturm’s theorem.

• Abraham Robinson gave an easier model-theoretic proof in
1956, based on Artin-Schreier.

• George Collins gave a practical method in 1975, “cylindrical
algebraic decomposition”.

• Implementations: Mathematica, Qepcad (now in Sage),
Reduce (Redlog), RAHD.

• Sean McLaughlin and John Harrison implemented a
proof-producing version for HOL light (it is slow).

• Procedures for RCF are still actively studied, from theoretical
and practical perspectives.



Applications

Application #1: For each n, and k , the statement “the kissing
number in Rn is at least k” is a formula in the language of
real-closed fields.

Application #2: The first step in Hales’ proof of the Kepler
conjecture reduces the problem to a finite optimization problem
that can, in principle, be expressed in the language of real closed
fields.

The bad news: these are way out of reach of the current
technology (except for trivial instances of the first).

The best QE procedures are doubly exponential, and this is sharp.



Formal methods in analysis

Outline:

• quantifier elimination

• the universal fragment of RCF

• combination methods

• numerical methods

• a heuristic symbolic method



The universal fragment of RCF

The universal fragment of RCF has special features.

For example, let p(~x) ∈ Z[x ].

The Artin-Schreier positive solution to Hilbert’s 17th problem
(1927) shows that ∀~x p(~x) ≥ 0 iff p can be written as a sum of
squares of rational functions.



A positivstellensatz

In the language of real closed fields, it is sufficient to consider
universal formulas of the form:

∀~x ¬(p1(~x) = 0 ∧ . . . ∧ pn(~x) = 0 ∧
q1(~x) ≥ 0 ∧ . . . ∧ qm(~x) ≥ 0 ∧
r1(~x) 6= 0 ∧ . . . rp(~x) 6= 0).

This holds iff there are polynomials P,Q,R such that

• P + Q + R2 = 0

• P is in the ideal generated by p1, . . . , pn

• Q is in the “cone” generated by q1, . . . , qm

• R is a product of powers of r1, . . . , rn



The universal fragment of RCF

Pablo Parillo has introduced the use of semidefinite programming
to find such certificates.

John Harrison has developed infrastructure to verify such
certificates in the HOL light theorem prover.

See John Harrison, “Verifying nonlinear real formulas via sums of
squares.”



Combination methods

Goal: combine domain-general search procedures with domain
specific methods.

Paulson’s MetiTarski uses

• a resolution theorem prover

• RCF back ends (Qepcad, Z3, Mathematica)

to prove general real-valued inequalities.

Some ideas:

• Replace transcendental functions by bounding rational
functions (iteratively).

• Use resolution proof search.

• Split on cases for absolute values, etc.

• Use RCF for “literal deletion,” i.e. to infer RCF entailments.



SMT solvers

Remember “satisfiability modulo theories”:

• Based on DPLL search for a satisfying propositional
assignment.

• Uses CDCL: conflict-driven clauses learning.

• Combines decision procedures / proof procedures for universal
fragments.

Strategy:

• A core propositional logic engine tries to assign values of true
/ false to literals.

• Each “module” inspects the proposals, reports conflicts.

• The core engine “learns,” backtracks, and continues the
search.



SMT solvers

There are modules based on:

• simplex methods (linear real arithmetic)

• cutting-plane methods (linear integer arithmetic)

• CAD (real closed fields)

Beyond testing feasibility, for SMT, algorithms need to:

• work incrementally

• backtrack efficiently

• produce “explanations”



SMT solvers

There is a large literature; see, for example:

Bruno Dutertre and Leonardo de Moura, “A fast linear-arithmetic
solver for DPLL(T),” CAV, 2006.

Dejan Jovanović and Leonardo de Moura, “Solving non-linear
arithmetic,” CADE, 2012.
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Numerical methods

Decision procedures for real closed fields represent a symbolic
approach.

Problems:

• Complexity overwhelms.

• Polynomials may not be expressive enough.

• Undecidability sets in quickly.

How can we integrate numeric approaches?

• Calculations are only approximate.

• We want an exact guarantee.



Approximate decidability

Sicun Gao, Ed Clarke, and I proposed a framework that offers:

• More flexibility: arbitrary computable functions

• A restriction: quantification only over bounded domains

• A compromise: approximate decidability (but with an exact
guarantee)

This provides a general framework for thinking about verification
problems.



Computable analysis

A real number r is computable if there is a computable function
α : N→ Q such that for every i , |α(i)− r | < 2−i .

Call such an α a name. So r is computable if it has a computable
name.

A function f : R→ R is computable if, given a name α for r as
input (say, as an oracle), it computes a name for f (r).

Fact: a computable function from R to R is continuous.



Computable analysis

Most real numbers arising “in nature” are computable:

π, e, γ, φ, . . .

Similarly, continuous functions arising in nature are computable:

• polynomials

• trigonometric functions

• exp, log

• absolute value, min, and max

• solutions to ordinary differential equations with
Lipschitz-continuous computable functions



Computable analysis

Note that the function

f (x) =

{
1 if x ≥ 0

0 otherwise

is not computable. In other words, we cannot decide x ≥ 0.

Fix a small δ. We can do the next best thing, that is, decide

• x ≥ 0

• x ≤ δ
Note that there is a “grey area” where either answer is o.k.

(Note also that the procedure cannot be extensional.)



δ-decidability

Choose a language with 0, +, −, <, ≤, | · |, and symbols for any
computable functions you want.

Fix a “tolerance” δ > 0. We defined:

• ϕ+δ, a slight strengthening of ϕ

• ϕ−δ, a slight weakening of ϕ

such that whenever δ′ ≥ δ ≥ 0, we have

ϕ+δ′ → ϕ+δ → ϕ→ ϕ−δ → ϕ−δ
′
.



δ-decidability

Say a formula ϕ is bounded if every quantifier is of the form
∀x ∈ [s, t] or ∃x ∈ [s, t] .

Theorem. There is an algorithm which, given any bounded
formula ϕ, correctly returns on of the following two answers:

• ϕ is true

• ϕ+δ is false.

For verification problems, think of the first answer as “the system
is safe,” and the second as “a small perturbation of the system is
unsafe.”

Note that there is a grey area where either answer is allowed.



δ-decidability

This is a theoretical result. The practical goal is to implement such
an algorithm.

Gao, Clarke, Soonho Kong, and others are developing a tool, dreal:

• It focuses on the existential / universal fragment.

• It uses an SMT framework.

• It uses interval constraint propagation.

• It uses numerical methods and CAPA packages for ODE’s.

See https://dreal.github.io.
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An example

Consider the following implication:

0 < x < y , u < v

=⇒
2u + exp(1 + x + x4) < 2v + exp(1 + y + y4)

• This inference is not contained in linear arithmetic or real
closed fields.

• This inference is tight: symbolic or numeric approximations
are not useful.

• Backchaining using monotonicity properties suggests many
equally plausible subgoals.

• But, the inference is completely straightforward.



A new method

Robert Lewis and I (initially with Cody Roux) have developed a
new aproach, that:

• verifies inequalities on which other procedures fail

• extends beyond the language of RCF

• is amenable to producing proof terms

• captures natural patterns of inference

But:

• It is not complete.

• It not guaranteed to terminate.

It is designed to complement other procedures.



Polya

We have a prototype Python implementation, Polya.

The code is open-source and available online.

• An associated paper.

• Rob’s MS thesis.

• Slides from Rob’s talks (from which I have borrowed).

We are planning to implement this in Lean.



Overview

Our system verifies inequalities between real variables using:

• operations + and ·
• multiplication and exponentiation by rational constants

• arbitrary function symbols

• relations < and =

As with resolution theorem proving, we establish a theorem by
negating the conclusion and deriving a contradiction.



Terms and normal forms

The term

3(3y + 5x + 4xy)2f (u + v)−1

is expressed canonically as

75 · ( x︸︷︷︸
t1

+
3

5
· y︸︷︷︸

t2

+
4

5
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t6=t1+
3
5
t2+

4
5
t3

)2 f ( u︸︷︷︸
t4

+ v︸︷︷︸
t5︸ ︷︷ ︸

t7=t4+t5︸ ︷︷ ︸
t8=f (t7)

)−1

︸ ︷︷ ︸
t9=t26 t

−1
8



Modules and database

Any comparison between canonical terms can be expressed as
ti ./ 0 or ti ./ c · tj , where ./ ∈ {=, 6=, <,≤, >,≥}.

A central database (the blackboard) stores term definitions and
comparisons of this form.

Various modules use this information to learn and assert new
comparisons.

The procedure has succeeded in verifying an implication when
modules assert contradictory information.



Computational structure

Blackboard
Stores definitions and

comparisons

Additive Module
Derives comparisons using

additive definitions

Multiplicative Module
Derives comparisons using

multiplicative definitions

Axiom Instantiation Module
Derives comparisons using universal

axioms

Exp/Log Module
Derives comparisons and

axioms involving exp and log

Min/Max
Module

Derives comparisons

involving min and

max

Congruence
Closure Module

Enforces proper

interpretation of

functions

Absolute Value
Module

Derives comparisons and

axioms involving abs

nth Root Module
Derives comparisons and axioms

about fractional exponents


